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Abstract 
During development of a dynamical model to simulate the central T-cell subsystem of the human 
immune system, its extraordinary stability lead to the assumption that it might be deduced solely from 
stability considerations. We demonstrate that linear stability conditions together with additional 
general requirements indeed define a low number (of the order of 10) of dynamical systems from about 
1010 possibilities for systems with up to four components. At least two of the most simple linearly stable 
systems play central roles in biology, indicating that stable dynamical subsystems resulting from 
evolutionary processes might be understood on a mathematical basis. We expect that our dynamical 
subsystems are generic and will be found as basic building blocks in biological, social or technical 
systems. 

 
Key words: linearly stable dynamical systems, theoretical analysis, generic 
structures, immune system, evolution, structural biology. 
 
 
Introduction 

The immune system1 fulfills the difficult task to attack and eliminate a large 
variety of unknown invaders (antigens such as viruses, bacteria) without harming the 
own tissue. Based on extensive research over the last decades, a detailed but still 
growing model of the dynamics of the immune system could be developed. At the 
heart of this very complicated structure are B- and T-cells, maturing in the bone 
marrow and in the Thymus, respectively. They interact mediated by chemical 
substances (cytokines) such as interleukins, interferons, etc. Growth of a specific 
subgroup of T-cells can be triggered by antigen presenting cells displaying short 
strings of foreign peptides (resulting from cutting an antigenic protein into small 
pieces) that match receptors located on the surface of the T-cells. With this 
mechanism, only T-cells directed against the particular antigens, are activated and 
multiply to initiate a process finally eliminating the antigens specifically. The vast 
number of T-cell subsystems (estimates give 107..1011 different T-cell receptors each 
specific for a single antigen) is permanently present and waits to be activated by an 
antigen attack. If one specific subsystem gets triggered, cytokine-levels change due to 
the immune response. As cytokines act on all subsystems in parallel, they are all 
influenced by the excursion of one single subsystem. It is of vital importance that 
these subsystems remain in a stable state under any conditions. As soon as antigens 
are eliminated, the subsystems involved in the elimination process, from any state of 
excitation, have to relax to their quiescent and stable ground state. These 
considerations illustrate that stability is one of the most important issues for the 
immune system. 
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A central part of the immune system, being in the focus of ongoing research on 
the development of allergies2, is the interaction of two types of helper T-cells called 
Th1 and Th23 that interact by secretion of cytokines as shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

Fig. 1: Interaction of helper T-cells of type 1 and 2 mediated by interferon-γ (IFN-γ) and interleukins 
(IL-4, 5, 13). 

 

Examining this symmetric interaction scheme, the fundamental questions arises, if 
other structures would be possible. From the modeling point of view, the main 
question will be how to translate the interaction scheme into differential equations, 
i.e., into a dynamical model. In the present paper, we answer both questions on the 
basis of generic stability considerations and other generic assumptions. Our result will 
be that there is one unique structure that can be interpreted as two cell-types 
interacting with two substances (the one shown in Fig. 1) and fulfilling all imposed 
generic conditions. Our investigation explains why evolutionary processes, starting 
from the most simple systems, necessarily had to find this structure.  

With the same set of generic assumptions, we will analyze systems with 1, 2, 3 
and 4 components. However, the method we develop in the present paper can be 
applied also to systems with more than four components. 
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Systems with 1 component 

A dynamical model for a 1-component system can be written as follows: 

  

! 

dx

dt
= a

0
+ f T( ) + g(T)x "

x

#
 (1) 

f(T) and g(T) are nonlinear functions of external parameters T. In many cases, T is, 
e.g., temperature influencing a system, but T can be considered as a vector including 
more than one external influence (or force). For our investigation, we linearize f and 
g and write f(T)=a1µ and g(T)=a2ν with the external forces µ, ν being positive 
(including zero). Due to our linearization, the parameters ai vary according to the 
operating point (i.e., the linearized domain around T). Further, parameter values in 
most biological or social systems are subject to many influences and therefore can 
vary in a considerable range. We assume that the parameters ai are either positive or 
negative, but we exclude their sign to change. This assumption is important, because 
it defines whether we call two systems with the same structure but different parameter 
values to be different or the same. In many cases, stability of a system will change if 
the sign of certain parameters change. For similar reasons, we restrict all variables 
to positive values. For many systems, this restriction arises quite naturally, e.g., for 
variables describing concentrations or populations. The term -x/τ describes a decay 
with a positive time constant τ we always include into our equations. For biological, 
biochemical or social systems, such a decay term describes lifetimes of cells, 
biomolecules or individuals. In general, such systems are called dissipative. Finally, 
we impose our stability condition that there must be a linearly stable equilibrium 
state for all µ , ν  >0. The equilibrium condition reads: 
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µ

1

"
#a

2
$

 (2.1) 

Our condition for x to be positive, irrespective of the norms of all ai implies a0≥0, a1≥0 
and a2≤0. To ensure linear stability, we claim the derivative of the r.h.s. of (1) towards 
x to be negative: 

  

! 

"a
2
#

1

$
< 0 (2.2) 

giving once more the same condition a2≤0. According to (2.1), a0 defines the value of 
x for µ=ν=0. By a linear transformation x–>x-x0, the equilibrium for vanishing 
external forces can always be shifted to any point. In this report, we assume zero 
to be the equilibrium point for vanishing external forces and therefore, the 
parameter a0 will be omitted. Further, a term a2νx with negative a2 is an inhibiting 
external influence and drives the system into a "dead" state for large ν. To avoid such 
"dead" states, we do not allow the variables to vanish with large external forces. 
We therefore skip the term a2νx with negative a2. The resulting absolutely stable 
system is therefore: 
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#
, a
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The graphical representation of the relaxation dynamics (3) is given in Fig. 2. 

Fig. 2: Relaxation dynamics (3) for a 
population or substance x with an external 
influence (effect of µ). Decay refers to the 
negative term -x/τ with positive time constant 
τ. 

 

 

 

Though we imposed with (2.2) only linear stability, i.e., relaxation of the system 
to its equilibrium after small perturbations, the analytical solution of the dynamical 
equation (3) for constant µ shows that the system returns to the same equilibrium 
point from any initial state and therefore, its equilibrium is not only linearly but also 
absolutely stable. In some nonlinear dissipative systems we will analyze below, linear 
stability will not exclude the existence of limit cycles and chaotic dynamics, and 
therefore, our linearly stable dissipative systems we will identify later might not 
always show stable behavior after large perturbations. 

 

 

Systems with 2 components 

A system with components x and u that is controlled by an external influence (or 
force) µ can be written as follows, if only bilinear or linear terms in all variables 
are taken into account: 

  

! 

dx

dt
= a

1
µ

0

1

x

u

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

+ a
2,1

x

0

1

u

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

+ a
2,2

u
0

1

" 

# 
$ 
% 

& 
' (

x

)
1

du

dt
= a

3
µ

0

1

x

u

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

+ a
4,1

x

0

1

u

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

+ a
4,2

u
0

1

" 

# 
$ 
% 

& 
' (

u

)
2

 (4.1) 

µ and τi are positive, ai, ai,j can be positive or negative. The brackets [] give different 
possibilities for the respective terms. In general, for n components (variables), there 
are 
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n
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combinations with repetitions (4.2) 

For n=2, we can combine the different terms and the equations in 300 ways. To 
specify the system, a first set of generic requirements is applied: 

• We require a coupling of each equation to at least one other equation for µ=0 
to avoid trivial systems, i.e., we do not choose n+1 zeros in any equation. 

• We avoid combinations with aix-x/τ, because such terms can be combined 
into one term x/τ'. 

• Neither equation should read dx/dt=x{...}, because this would imply an 
equilibrium state x=0 independent of the other variables and of the external 
influences. We reject such equations due to only weak interactions with other 
components of the system. In fact, only the relaxation time constant would be 
influenced by other components or by external forces and the component 
governed by such an equation would vanish and decouple from the remaining 
components: A n-component system would collapse to a simpler (n-1)-
component system. 

• The combination a1µu+a2u = a1(µ+a2/a1)u = a1µ'u does not introduce new 
dynamics and so can be considered as equivalent to a1µ'u (the linear 
transformation µ'= µ+a2/a1 eliminates the term a2u). 

• We exclude equations of the form u(a2,1x+a2,2) to simplify our analysis. It has 
to be investigated later, if interesting systems are excluded by this 
prescription. 

• Mathematical isomorphisms (systems becoming identical after exchanging 
names of variables, e.g., x and u) are excluded. 

Taking into account the above stated requirements, (4.1) reduces to the following 
equations for the variables x and u: 
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 (5.1) 
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Combinations of (5.1) and (5.2) give 
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investigated. We introduce the nomenclature i,k with k≥i (i, k=1...4) to refer to the 
system consisting of equation i for x and k for u. To demonstrate our stability 
analysis, we begin with the most simple linear system 1,1. The matrix of partial 
derivatives (we call it stability matrix) becomes: 
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It follows from basic mathematics4 that a stationary solution is linearly stable (i.e. 
stable against small perturbations) if the real parts of all eigenvalues of the stability 
matrix are negative. Calculation of the eigenvalues λ leads to the following 
polynomial P(λ): 
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 (7) 

The two eigenvalues are defined by P(λ)=0. τi are positive decay time constants, but 
all ai are not restricted at the moment to positive or negative values. If the term d=a2a4 
would vanish, the zero points of P(λ) would be obvious: they would be located in the 
left complex half plane. However, d>0 shifts the graph of the polynomial downwards, 
and moves its right zero point towards positive real numbers as shown in Fig. 3. This 
means that critical combinations of the parameters ai, and τi exist for which one 
eigenvalue gets zero, i.e., beyond these critical combinations, one real eigenvalue 
becomes positive. As we look for systems that are linearly stable for any combination 
of parameter values (however, without changing their signs), such runaway solutions 
for certain combinations are forbidden and we impose, e.g., a2<0 and a4>0 giving d<0. 
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Fig. 3: Two polynomials P(λ) with 
d=a2a4 = 0 and d>0. At a critical 
value dc, λ1=0, and for d>dc, the 
stationary state of the system 
becomes unstable. For d<0, the 
function is shifted upwards and the 
real λ approach each other until 
they merge. From this point on, its 
real parts are constant and their 
imaginary parts separate vertically 
and symmetrically to the λ-axis on 
the point-dashed-line (we assume 
the imaginary axis drawn as 
vertical axis on the same plot). 
 
 
 
 

Because also imaginary zero points would have negative real parts, system 1,1 is 
acceptable from the stability point of view. However, the stationary solution for x 
reads 
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and would give negative values for -a2a3τ2>a1. To avoid this possibility, we set a3=0 
and find the first system 1,1 meeting all our requirements: 
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Fig. 4.1: The linearly stable 2-component system 1,1 according to equation (9). 
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Analogous analysis of system 1,2 shows, that both conditions (no positive real 
eigenvalues, positive variables) can be met for all parameter values if a1>0, a2>0, 
a3>0, a4<0. As a last check, we have to search for complex eigenvalues crossing the 
imaginary axis towards the right complex half plane. For this aim, we eliminate a2u in 
P(λ) using the first equation of (5.1) to get 
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To find eigenvalues on the imaginary axis, we evaluate P(λ) for λ=iη giving the 
following equations for the real and the imaginary part: 
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The imaginary part of equation (10.2) implies η=0 and the real part equation becomes 
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From the dynamical equation for x follows (for the stationary solution)  
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x
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µ = a

2
u > 0 (10.4) 

and this implies that (10.3) can never be satisfied. Therefore, no complex eigenvalues 
can cross the imaginary axis to the right complex half plane with any combinations of 
the parameter values, and system 1,2 is linearly stable and meets all our conditions: 
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Fig. 4.2: The linearly stable 2-component system 1,2 according to equation (11.1) can be interpreted as 

a cell population u and a substance x produced by the cells that has a inhibitory effect on the 
cells.
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System 1,2 shown in Fig. 4.2 is often found in a biological context: cells u 
stimulated by an external influence produce a cytokine x inhibiting their growth. In 
this context, the external influence on the cytokine x might come from other cells 
producing the same cytokine. The external influence on the cells u could be a stimulus 
for cell multiplication.  

Investigation of all 10 combinations of equations (5.1) and (5.2) give the results 
summarized in Tab. 1. The two additional systems 2,2 and 2,4 that were found are 
given below as equations (11.2), (11.3) and in graphical form in Fig. 5. The two 
systems 1,3 and 2,3 with a3=0 are special cases of systems 1,1 and 2,1 (2,1 is identical 
with 1,2 after exchanging x and u) and therefore, they give no new dynamics.  
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Fig. 5: The linearly stable 2-component systems 2,2 (without broken line) and 2,4 (including broken 
line) according to (11.2) and (11.3). 

 
The analysis for 2-component systems shows that mainly combinations of 

equations 1 and 2 lead to systems meeting our conditions. Though for systems with 
3 or more components, valid systems containing equations of type 3 and 4 can 
surely be found, we restrict our further analysis to systems combined with 
equations of type 1 and 2 only. With this restriction, we exclude systems with 
nonlinear external influences (such as, e.g., system 2,4) described by aiµx, aiµy, aiµu 
and aiµv. Our motivation to postpone this class of systems to a later analysis is to 
simplify analytical calculations as well as the structure of the present report. 
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Table 1: Polynomials P(λ) for all 10 combinations of equations (5.1) and (5.2). The signs of the 
parameters ai were chosen to avoid negative variables for the equilibrium state (yes in column "positive 
u, x"). If this first requirement could be met, the P(λ) was checked for the absence of eigenvalues with 
positive real parts (yes in column "stability"). Systems 1,1 / 1,2 / 1,3 / 2,2 / 2,3 / 2,4 are retained as 
valid systems. As we exclude "dead" equations with a3<0, a3 is set to zero in systems 1,3 and 2,3. With 
this restriction, these two systems are special cases of systems 1,1 and 1,2. 
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Systems with 3 components 
We reverse now the procedure followed in the previous section and begin with 

the stability requirements. We will demonstrate first that a stability matrix leading to a 
polynomial P(λ) of the form (7) must have the generic form: 
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In every row and every column, there is only one matrix element different from zero 
(z) in addition to the diagonal elements (•). All elements z or • can be constants or 
functions of those variables that are not restricted by zeros in the same row. With the 
most simple settings z= ai and • =-1/τ � , the eigenvalue problem is the following: 
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To calculate the eigenvalues λ, we solve the equations 
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giving the polynomial P(λ) 
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with the correct form (7). Introducing a constant b instead of zero in the first row of 
the stability matrix (13) would give 
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For b=0 (16) reduces to (15). However, for b different from zero, an additional 
relation between the parameters has to be true for preventing real parts of eigenvalues 
to become positive: 
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As we look for systems that are stable irrespective of the values of the involved 
parameters, inequalities such as (17) have to be avoided.  

As the choice of the matrix (12) is only one of different possibilities, we 
investigate variants arising from permutations of the variables: Exchanging the names 
of u and v in a system with variables x, u, v transforms (12) into the following matrix: 

  

! 

• 0 z

z • 0

0 z •

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
 (18) 

In the first row are the partial derivations of the x-equation in the order x, u, v. As u 
and v are exchanged, the second and third positions have to be exchanged. The 
second and third row refer to the u- and v-equations that change place according to 
the transformation u'=v, v'=u. The transformed system has to be arranged in the order 
x, u', v'. Further permutations of (18) do not result in new structures. 

We explained above why we accept only matrices with a maximum of one non-
zero position in addition to the diagonal element in every row. We explain now, why 
we require the same condition for the columns. The following equivalent stability 
matrices fulfill the row conditions, but not the column conditions: 

  

! 

• 0 z

z • 0

z 0 •

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
(

• z 0

z • 0

z 0 •

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
(

• z 0

z • 0

0 z •

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
(

• z 0

0 • z

0 z •

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
(

• 0 z

0 • z

0 z •

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
(

• 0 z

0 • z

z 0 •

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
(19) 

As all 6 matrices are equivalent, it is enough to analyze the first one. The two zeros in 
the second column mean that the x and v-equations are not influenced by the u-
equation, i.e., the x-v-system can be solved independently, and the system can be 
reduced to a 2-component system influencing a 1-component system. It is therefore 
enough to investigate systems with a stability matrix of the form (18), i.e., we have to 
investigate the following differential equations (excluding nonlinear external 
influences and terms of the form u(a2,1x+a2,2)): 

  

! 

dx

dt
= a

1
µ + a

2
v

1

x

" 

# 
$ 
% 

& 
' (

x

)
1

du

dt
= a

3
µ + a

4
x

1

u

" 

# 
$ 
% 

& 
' (

u

)
2

dv

dt
= a

5
µ + a

6
u

1

v

" 

# 
$ 
% 

& 
' (

v

)
2

 (20) 

 
Tab. 2 gives an overview of the results we obtained for the remaining 

  

! 

2 + 3"1

3

# 

$ 
% 

& 

' 
( =

4 )3 )2

3 )2 )1
= 4  combinations. 
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system positive 
variables 

stability signs of ai valid 
system 

1,1,1 yes no a2>0, a4>0, a6<0 
a1=a3=0, a5>0 

no 

1,1,2 yes yes a2>0, a4>0, a6<0 
a1=a3=0, a5>0 

yes 

1,2,2 yes yes a2>0, a4<0, a6<0 
a1=0, a3>0, a5>0 

yes 

2,2,2 yes yes a2<0, a4<0, a6<0 
a1>0, a3>0, a5>0 

yes 

Tab. 2: Overview of our results from the analysis of systems with 3 components combined from 
equations of type 1 and 2 according to (20).  

 
We identified the three systems 1,1,2 / 1,2,2 / 2,2,2 as valid systems according to our 
requirements. The special conditions a1=a3=0 we imposed on system 1,1,2 and a1=0 
for system 1,2,2 helped to simplify the analysis, but they could turn out to be 
generalizable to a1>0, a3>0. These three systems are given by equations (21), (22), 
(23) and in graphical form in Figs. 6 and 7. 

  

! 

dx

dt
= a

2
v "

x

#
1

system1,1,2 :

du

dt
= a

4
x "

u

#
2

a
2

> 0, a
4

> 0, a
6

< 0

dv

dt
= a

5
µ + a

6
uv"

v

#
3

a
5

> 0

 (21) 

  

! 

dx

dt
= a

2
v "

x

#
1

system1,2,2 :

du

dt
= a

3
µ + a

4
xu"

u

#
2

a
2

> 0, a
4

< 0, a
6

< 0

dv

dt
= a

5
µ + a

6
uv"

v

#
3

a
3

> 0, a
5

> 0

 (22) 

  

! 

dx

dt
= a

1
µ + a

2
vx "

x

#
1

system 2,2,2 :

du

dt
= a

3
µ + a

4
xu"

u

#
2

a
2

< 0, a
4

< 0, a
6

< 0

dv

dt
= a

5
µ + a

6
uv"

v

#
3

a
1

> 0, a
3

> 0, a
5

> 0

 (23) 
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Fig. 6: System 1,1,2 
according to (21). 

 
 

 

 

 

 

 

 

 

 

Fig. 7.1: System 1,2,2 
according to (22).  
 
 
 
 
 
 
 
 
 
 
Fig. 7.2: System 2,2,2 
according to (23). 
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We would like to add some comments concerning two other systems: 
System 1,1,1 referenced in Tab. 2 is excluded due to stability reasons. Its polynomial 
P(λ)  

  

! 

P "( ) = " +
1

#
1

$ 

% 
& 

' 

( 
) " +

1

#
2

$ 

% 
& 

' 

( 
) " +

1

#
3

$ 

% 
& 

' 

( 
) *a

2
a

4
a

6
 (24.1) 

gives for λ=iη the following conditions resulting from P(iη)=0: 

  

! 

"2 1

#
ii

$ = %a
2
a

4
a

6
+

1

#
ii

& a
2

< 0, a
4

> 0, a
6

> 0

"2
=

1

#
i
#

ji' j

$ > 0

 (24.2) 

We can therefore separate the τ-terms from the a-terms giving 

  

! 

1

"
i
"

ji# j

$
% 
& 
' 

( 
) 
* 

1

"
ii

$
% 
& 
' 

( 
) 
* 
+

1

"
ii

, = +a
2
a

4
a

6
> 0 (25) 

The negative product term is cancelled by the same positive term from the product 
{}{} and so, the l.h.s. of (25) is a sum of positive terms. For any choice of the τi it is 
possible to choose a set of ai that meet the condition (25), i.e., complex eigenvalues 
are found on the imaginary axis and therefore, system 1,1,1 gets oscillatory unstable 
for many parameter combinations.  
System 1,2,3 with a2>0, a4<0, a6<0, a1=0, a3>0, a5>0 is an example of a valid system 
with nonlinear external influence we excluded from further investigations to simplify 
the present analysis. 
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Systems with 4 components 
We follow our procedure developed for 3 component systems and begin with the 

stability matrix and its 9 possible permutations. There are two symmetry groups 
shown in (26): an asymmetric group with six elements and a symmetric group with 
three elements. 

 

  

! 

asymmetric group

• 0 z 0

0 • 0 z

0 z • 0

z 0 0 •

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

(

• z 0 0

0 • z 0

0 0 • z

z 0 0 •

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

(

• 0 z 0

z • 0 0

0 0 • z

0 z 0 •

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

• 0 0 z

0 • z 0

z 0 • 0

0 z 0 •

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

(

• 0 0 z

z • 0 0

0 z • 0

0 0 z •

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

(

• z 0 0

0 • 0 z

z 0 • 0

0 0 z •

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

symmetric group

• 0 z 0

0 • 0 z

z 0 • 0

0 z 0 •

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

(

• 0 0 z

0 • z 0

0 z • 0

z 0 0 •

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

(

• z 0 0

z • 0 0

0 0 • z

0 0 z •

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 (26) 

 
Within the two symmetry groups, all elements are connected by permutations of the 
equations as explained above (see (12), (18) and (19)).  

The symmetric group consists of systems composed of two non-interacting 2-
component systems. This property can be understood with the third element, where 
the two non-connected subsystems are indicated with broken lines. The symmetric 
group can therefore be reduced to 2-component systems we discussed above. 

The asymmetric group consists of six elements that show up as symmetric pairs 
with respect to the main diagonal. The symmetric pairs (located vertically one on top 
of the other in (26)) are connected by the two permutations 1-3 and 2-4. A 2-3 
permutation and a 1-2 permutation connects the pairs in (26) horizontally. As all six 
elements are connected by permutations, they represent the same system, and we can 
restrict our investigation to the first element: 

  

! 

• 0 z 0

0 • 0 z

0 z • 0

z 0 0 •

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 (27) 
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Due to our above explained restrictions, there remain only 
  

! 

2 + 4"1

4

# 

$ 
% 

& 

' 
( =

5 )4 )3 )2

4 )3 )2 )1
= 5  

combinations of the following equations to be investigated: 

  

! 

1)
dx

dt
= a

1
µ + a

2
u"

x

#
1

2)
dx

dt
= a

1
µ + a

2
ux"

x

#
1

1)
dy

dt
= a

3
µ + a

4
v"

y

#
2

2)
dy

dt
= a

3
µ + a

4
vy"

y

#
2

1)
du

dt
= a

5
µ + a

6
y "

u

#
3

2)
du

dt
= a

5
µ + a

6
yu"

u

#
3

1)
dv

dt
= a

7
µ + a

8
x"

v

#
4

2)
dv

dt
= a

7
µ + a

8
xv"

v

#
4

 (28) 

  
Systems combined of equations of type 1 and 2 have the following stability 

matrix: 

  

! 

"
1

#
1

+ a
2
u $

0

1

% 

& 
' 
( 

) 
* 0 a

2
$

1

x

% 

& 
' 
( 

) 
* 0

0 "
1

#
2

+ a
4
v $

0

1

% 

& 
' 
( 

) 
* 0 a

4
$

1

y

% 

& 
' 
( 

) 
* 

0 a
6
$

1

u

% 

& 
' 
( 

) 
* "

1

#
3

+ a
6
y $

0

1

% 

& 
' 
( 

) 
* 0

a
8
$

1

v

% 

& 
' 
( 

) 
* 0 0 "

1

#
4

+ a
8
x $

0

1

% 

& 
' 
( 

) 
* 

+ 

, 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

. 

/ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

 (29) 

leading to the eigenvalue-polynomial: 

  

! 

P "( ) = " +
1

#
1

$a
2
u %

0

1

& 

' 
( 
) 

* 
+ 

, 

- 
. . 

/ 

0 
1 1 " +

1

#
2

$a
4
v %

0

1

& 

' 
( 
) 

* 
+ 

, 

- 
. . 

/ 

0 
1 1 " +

1

#
3

$a
6
y %

0

1

& 

' 
( 
) 

* 
+ 

, 

- 
. . 

/ 

0 
1 1 " +

1

#
4

$a
8
x %

0

1

& 

' 
( 
) 

* 
+ 

, 

- 
. . 

/ 

0 
1 1 

$a
2
a

4
a

6
a

8

1

x

& 

' 
( 
) 

* 
+ %

1

y

& 

' 
( 
) 

* 
+ %

1

u

& 

' 
( 
) 

* 
+ %

1

v

& 

' 
( 
) 

* 
+ 

(30) 

 
The system 1,1,1,1 (all upper values in brackets [] in (30)) gives the same structure 
for P(λ) as the above investigated system 1,1,1 and has to be excluded due to the 
possibility of complex eigenvalues with positive real parts. 
System 2,1,1,1 (equivalent to system 1,1,1,2) leads to 

  

! 

P i"( ) = i"+
1

#
1

$a
2
u

% 

& 
' 

( 

) 
* i"+

1

#
2

% 

& 
' 

( 

) 
* i"+

1

#
3

% 

& 
' 

( 

) 
* i"+

1

#
4

% 

& 
' 

( 

) 
* $a

2
a

4
a

6
a

8
x = 0  (31) 
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The real and imaginary parts give the conditions 

  

! 

"4 # "2 1

$
i
$

j

#a
2
u

1

$
ii=2

4

%
i& j

%
' 
( 
) 

* 
+ 
, 
#a

2
a

4
a

6
a

8
x = 0

"2
=

1

$
i
$

j
$

k

#a
2
u

1

$
i
$

ji& j&1

%
i& j&k

%

1

$
i

#a
2
u

i=1

4

%

 (32) 

For the special case a3=a5=a7=0, we can find the following relation from the four 
equations defining system 2,1,1,1 

  

! 

a
4
a

6
a

8
x =

u

"
2
"

3
"

4

, a
3

= a
5

= a
7

= 0 (33) 

to eliminate x in (32). With a2<0 and all other parameters as well as u,x positive, the 
second equation of (32) always gives two real η (symmetric to zero) that can be 
inserted into the first equation giving: 

  

! 

1

"
i
"

j
"

k
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2
u

1

"
i
"

ji$ j$1

%
i$ j$k
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' 
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) 
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2

+
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2
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"
2
"

3
"

4

1

"
i

#a
2
u
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4

%
& 
' 
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* 
+ 

2

=
1

"
i

#a
2
u

i=1

4

%
& 
' 
( 

) 
* 
+ 

1

"
i
"

j
"

k

#a
2
u

1

"
i
"

ji$ j$1

%
i$ j$k

%
& 
' 
( 

) 
* 
+ 

1

"
i
"

j

#a
2
u

1

"
ii=2

4

%
i$ j

%
& 
' 
( 

) 
* 
+ 

 (34) 

A combination of parameters such that (34) holds would mean that two symmetric 
imaginary eigenvalues would be about to enter the right complex half plane and the 
system would show oscillatory instability. To exclude such instability, we have to 
show that (34) never holds. On the l.h.s. of (34), we have 49+25=74 positive terms, 
on the r.h.s. we have 5·7·9=315 positive terms. Using basic mathematics, it can be 
shown that all 74 terms show up among the 315 terms also on the r.h.s. (a practical 
way to prove this is to arrange all terms as powers of (-a2u) and to prove the 
cancellation separately for power 0, 1, 2, and 3). The result is that (34) becomes the 
form 

  

! 

0 = sum of positive terms  (35) 

what obviously never can be true. System 2,1,1,1 has therefore no oscillatory 
instability and the last point we have to show is that its variables in the stationary 
states are always positive. We set the time derivatives of the dynamical equations to 
zero and solve the equations analytically giving: 

  

! 

x =
1

2"
#1+ 1+ 4"a

1
$

1
µ{ }

" % #a
2
a

4
a

6
a

8
$

1
$

2
$

3
$

4
> 0

 (36) 

From (36) follows x>0 for all possible parameter values and from the remaining linear 
equations we get also y, u and v positive. All our requirements for a system to be 
accepted are met by system 2,1,1,1 according to equations (37). Fig. 8 shows the 
system in graphical form. 



 19 

  

! 

system 2,1,1,1: a
2

< 0 , a
4

> 0, a
6

> 0, a
8

> 0

dx

dt
= a

1
µ + a

2
ux"

x

#
1

a
1

> 0, a
3

= a
5

= a
7

= 0

dy

dt
= a

4
v "

y

#
2

du

dt
= a

6
y "

u

#
3

dv

dt
= a

8
x "

v

#
4

 (37) 

 
Fig. 8: Linearly stable 4-
component system 
2,1,1,1. 

 
 
 
 
 
 
 
 
 

 
The difference to our stable 2-component system 1,2 (Fig. 4.2) is the series of three 
substances acting on one another without being influenced directly by external forces 
instead of only one substance that can be externally influenced. Further investigations 
have to show if the condition a3=a5=a7=0 (i.e. no external influence on y, u, v) is 
necessary or could be omitted. 
The symmetric system 2,2,1,1 (equivalent to system 1,1,2,2) has the following P(λ): 

  

! 
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1
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u
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 (38) 

In (38) the product a6a8xy has been replaced by uv/(τ3τ4) according to the dynamical 
equations for the special case a5=a7=0. From (38) follows that a2, a4 be negative, and 
the stationary states obey the relations 
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x =
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"
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 (39) 
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The u-equation can be solved giving 

  

! 

u =
"

1

2(#a
4
)
#b + b2 + 4c

#a
4

"
1
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' & 
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1
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6
µ
"

3

"
2

 (40) 

Only the solution with the positive sign in front of the square root leading to u>0 has 
been retained, i.e., there is always exactly one solution for any arbitrary choice of the 
parameters (meeting the conditions a2, a4<0). The polynomial (38) leads to the 
following conditions for P(iη)=0: 
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 (41) 
u and v have to be inserted into (41) from (39) and (40), leading to an extremely 
complicated expression. However, analogous to the procedure explained before, we 
can prove that no solution exists by reducing (41) to an equation of type (35). 
Therefore, system 2,2,1,1 is a second system with 4 components that meets all our 
conditions. The system is given in graphical form in Fig. 9. 
 

  

! 

system 2,2,1,1:

dx

dt
= a

1
µ + a

2
vx "

x

#
1

dy
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= a

3
µ + a

4
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2
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#
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a
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> 0

   (42) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Linearly stable 4-component system 2,2,1,1 according to equations (42). 
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The structure of this system is equivalent to the T1-T2-cell system, the basic building 
block of the immune system, shown in Fig. 1. Here, x, y are T1 and T2 helper cells, u, 
v are interferon-γ and an indicator for Interleukins 4, 5, 13, respectively. Fig. 10 
shows the same system in a form more familiar for scientists working in the field of 
system dynamics. 

 

Fig. 10: Linearly stable 4-component system 2,2,1,1 in system dynamics view. 

 
 
Summary of imposed conditions and results 

For didactic reasons, we introduced our conditions step by step at the place where 
we needed them. To avoid the impression of arbitrariness, we sum up here the entire 
list of conditions to show once again their generic character. 

• we impose the stability condition that for all external influences µ>0 and for 
all parameter values (not changing signs), a stationary state exists and is 
stable. 

• the stationary state with all variables being zero must result from µ=0. 

• equilibrium values for all variables must be positive for all parameter 
combinations and all µ>0. 

• each component decays, described by a positive time constant. 
• quadratic terms like x2 are excluded, only bilinear terms are allowed, such as 

ux, vx, etc. (linearization around equilibrium). 

• neither equation should read dx/dt=x{...}, because this would imply an 
equilibrium state with x=0 only or equilibrium states for all x (with {}=0). For 
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both cases, the terms within the brackets {} would have to fulfill conditions 
that cannot be true for arbitrary choices of the parameters. 

• We require a coupling of each equation to at least one other equation for µ=0 
to avoid trivial systems. 

• the combination a1µu+a2u = (a1µ+a2)u = a1µ'u does not introduce new 
dynamics and so can be considered as equivalent to a1µ'u. 

• mathematical isomorphisms (systems getting identical after exchanging its 
variables) are considered as one and the same system. 

All of the above stated conditions arise quite naturally in a biological or sociological 
context. However, we omitted systems with nonlinear external influences of type aiµx 
and equations of the form u(a2,1x+a2,2) to simplify our analysis. It is an open question, 
how many interesting systems are lost by these restrictions. 

The main result of our mathematical analysis is a reduction of the number of 
valid systems from about 1010 to 10. From these 10 most simple systems, at least 2 are 
of central importance in a biological context. The 10 linearly stable systems are 
summarized in "stenographic" form in Fig. 11.  

The number 1010 for possible system configurations is derived from the 4-
component systems according to relation (4.2): 
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Fig. 11: Overview of the ten most simple linearly stable systems found among about 1010 different 
possibilities. Components with inhibitory nonlinear inputs (open circles) may be interpreted as 
cells, the other components as chemical substances. Broken lines refer to external inputs that 
were neglected in this report to simplify calculations. All components are assumed to have a 
decay-term driving the respective variables to zero when all external influences (forces) are 
absent. Systems with nonlinear external influences of type aiµx and equations of the form 
u(a2,1x+a2,2) were omitted in 3- and 4-component systems. Also systems 2,2,2,1 and 2,2,2,2 
were not yet analyzed. 
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Discussion 
We have analyzed interactions in systems with up to four components based on a 

set of conditions we imposed on them. Most of our conditions are based on general 
requirements we think are mandatory for a lot of systems where stability in a very 
large parameter space is an important issue. However, our set of restrictions might be 
too strong for certain classes of systems (only systems with linear external influences, 
no equations of the form u(a2,1x+a2,2)). Therefore, our resulting ten systems have to be 
considered as a subset of all conceivable linearly stable systems with up to four 
components. A first extension of this minimal subset might follow from the inclusion 
of additional external influences (indicated by broken lines in Fig. 11). Then, more 
systems would be found if we considered also nonlinear external influences. In 
addition, weaker conditions might enlarge the class of linearly stable systems. We 
would like to point out that our stability analysis only ensures linear stability against 
small amplitude oscillations around stationary states. Nonlinear systems can display 
large amplitude nonlinear oscillations (called limit cycles) not detected with our linear 
analysis, i.e., some of our systems might show this type of instability and will have to 
be cancelled from the list of absolutely stable systems. 

Though the number of possibilities grows quicker than exponentially with 
increasing number of components n (see (4.2) and (43)), the number of most simple 
stable system configurations found for n=1,2,3,4 was not increasing: we found one to 
four systems for every n. The next step to analyze the about 1016 5-component 
systems seems feasible and might indicate how a search for systems with more 
components might go on. It is an interesting open question, if solutions can be found 
for every n or if there exists an upper limit for the number of components. A different 
but also important question concerns the stability of systems resulting from the 
combination of many systems with four and less components. In the immune system, 
the helper cell subsystems are built upon specific T1 and T2 cells resulting in a large 
number (in the order of 107 to 1011) of parallel 2,2,1,1-subsystems that are 
interconnected by a few substances (such as interferons and interleukins). What are 
the conditions that an interconnection of stable systems remains stable? 

Considerable activity in the field of system dynamics was devoted to define 
generic structures over the last decade5 resulting in the definition of a series of useful 
tools (e.g. generic system archetypes, generic infrastructures) supporting model 
conceptualization, systemic thinking, and communication to share dynamic insights. 
In contrast, our classification is based on mathematical concepts and has to be 
considered as a theory aimed towards understanding of system structure rather than a 
set of practical rules helping model building and communication. We think that the 
combination of both, theory and practical rules, are the ingredients having the 
potential to boost the development of the field of system dynamics. Our approach 
towards a theory of stable systems seems to have a considerable potential for further 
development. 
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Conclusions 
We have developed a theory of stable dynamical systems based on imposed 

generic conditions and some simplifications. We found the surprising result that our 
requirements were strong enough to reduce the variety of possible systems from the 
order of 1010 to 10. Several additional candidates are open to be analyzed further. It is 
interesting that two of the ten most simple systems play basic roles in biology, where 
stability in extremely varying conditions is mandatory. We think that the here 
presented theory of stable systems reveals important generic dynamical structures that 
can be used as building blocks for larger systems. It is open for further investigations, 
if the theory can be extended to systems with five or more components and to 
interactions of different systems. A general theory of stable dynamical systems would 
boost development of the interdisciplinary field of system dynamics. Further 
applications for such a theory could be found in the upcoming new research field 
called structural biology dealing with models to simulate the very complex 
biochemical reactions within a living cell. 
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