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Abstract

Technological substitution is the process by which disruptive technologies
replace the dominant ones in an industry. The formulation of classical models of
diffusion and substitution impose simplification constraints to reach analytical
solvability. We use the system dynamics methodology to build upon existing models by
integrating dynamic aspects derived from a broad theoretical framework and to explore
the links between social dynamics, technological developments and substitution
patterns. Our simulation model generates a substitutive drop in the life cycle which is
not replicated by classical models but substantiated by empirical data from various
industries. The more general theory embodied in the model allows to better understand
the underlying dynamics of technological substitutions. The generic structure can
generate the dynamics of a sailing ship effect and account for the non-uniformity of
interpersonal communications.

Keywords:  Technological substitutions, diffusion models, expected utility,
heterogeneity of markets.

1 Introduction

The diffusion process is a very well-ploughed @&rad ground; a widely
researched and extensively documented social pheammm Yet, classical models of
diffusion typically make oversimplifying assumptsrio describe it. The classical
models usually are analytical refinements of thesBaodel (Bass, 1969) and generate
bell-shape life cycles; hence the smooth logidtigpe of cumulative adoption. Despite
their good fit to historical data, their epidemitusture — based on external and internal
communications — lack explanatory power by oversiiyipg the adopter’s decision



making process and do not fully account for marketerogeneity. Moreover, the

innovation under scrutiny is almost always congdeas static; classical models ignore
the technological evolution over the life cycle.n8models focus on substitution and
account for successive generations of technologié®ese are usually descriptive

models limited to two competing technologies foliogvthe tradition of the Fisher and

Pry model (Fisher and Pry, 1971).

A review of the literature shows that severaludifbn and substitution models
attempt to account for non-linear influence, formailti-stage adoption process, for
heterogeneity at the individual level, for a dynarmpotential market, for technological
evolution and finally for multi-innovations subsiitons dynamics.

Nevertheless, there is an opportunity to broaden lioundaries of existing
models by integrating these different stream ofksoiWe show that it is possible to
develop a model which accounts for technologicall@ion, market adoption and the
dynamics induced by market heterogeneity and sauvorks (Dattee and Weil,
2005). Thus, we present a simulation model developéh the system dynamics
simulation methodology. We discuss its theoretisalerpinnings, describe the model's
structure and present how its dynamic behavioiga@ both diffusion and substitution
effects. The model generates an asymmetrical yideowvhereby there is a sudden drop
in the sales of the current technology when itasfonted by the take off of a new
generation. This dynamic behavior is not replicabgdclassical analytical models of
diffusion; yet historical data from different induses (DRAM, VHS/DVD, etc...)
clearly corroborate this substitutive drop.

With the broader theoretical framework embeddedtsnstructure, the model
allows the exploration of more complex dynamics. Mstrate how a defensive surge
from the threatened technology can induce a deldlge substitution time-path. This is
the classical “sailing ship effect” described ine thiterature on technology and
innovation management. These are broader dynarhi&s dannot be captured by
classical diffusion models. We then discuss how thedel's structure could be
modified to account for some of the social dynanmacsurring during technological
substitutions.

2 Existing models of diffusion

The underlying assumption of diffusion researchthat an innovation is
communicated and absorbed over time into a sog&ém in stages, corresponding to
the psychological and social profiles of variouggmeents within that population.
Diffusion models have been developed to represenspread of an innovation in terms
of a simple mathematical function of the time thas elapsed from the introduction of
the innovation. Thus, the need for a simpler stmgctleads to several simplifying
assumptions which could seem unrealistic.

Classical models do not account for importantraigpendencies and structural
fundamentals. They make strong assumptions onrtieegs of innovation diffusion by
considering that adoption is a binary processptitential market size is constant, there
IS no repeat purchase, there are uniform probglufidyadic interactions between prior
and potential adopters, and that the innovatiaeifittoes not change over the diffusion
process. This latter assumptions implies that fdechnological innovation, further
developments in price and performance are not axtedufor in the modeling of the
diffusion process. Figure 1 illustrates the forntiola and structure of the classical Bass
model (Bass, 1969).
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Figure 1: The classical Bass diffusion model: atiedy formulation and system dynamics structure

Parker offers a review of analytical refinemergstad in the fundamental model
formulation (Parker, 1991). Easingwood et al. psgabflexible versions of the internal-
influence and mixed-influence models, the Non-sytnimeResponding Logistic
(NSRL) and Non-Uniform Influence (NUI) respectiveligasingwood, Mahajan et al.,
1983). The purpose of these models is to overcdraanherent assumption that the
“word-of-mouth effect remains constant over tharerdiffusion span”.

Some attempts have also been made to extend thestdige model to
incorporate the multi-stage nature of the diffuspocess. These models hypothesize
that social members first become potential ado@edsthen current adopters. Dekimpe
et al. in their study of the diffusion of technolog innovations at the national policy
level (Dekimpe, Parker et al., 1998) adopted aratthrate structure applied to a two-
stage process. Similarly, there are examples ofitstalge models structure with an
untapped market, potential adopters and currenptado (Milling, 1996; Maier, 1998;
Milling, 2002). However, these models do not oftertheoretical rationale for the
growth of the potential adopters group.

The Fisher-Pry model is an analytical formulatissed to project the market
share evolution of an emerging technology. The maldased upon three explicit
assumptions: that “many technological advances lmanconsidered as competitive
substitutions of one method of satisfying a needafeother”; that new technologies
often completely supplant older ones; and “the aditactional substitution of new for
old is proportional to the remaining amount of thd left to be substituted”. They
assert that the rate constant of substitution, doegrin, does not change. The market
share model is expressed as:

% = Kks(t)[1- s(t)] 1
where g(t) is the fractional market share of the innovatiotirae t, andk is a constant
of proportionality (Fisher and Pry, 1971). Using thssumption that there are only two
competing technologies, Fisher and Pry derive aensonvenient form for purposes of
estimation. The result is that the log of the ratidhe market share of the succeeding
technology to that of the first is a linear functiof time:
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Nevertheless, by normalizing the market potentiath a market share
formulation for only two competing technologiesgtBystem appears static. As an
innovation invades a market, it starts interactwgh the technologies already
established. Pistorius and Utterback argue thatirtezactions between technologies
should be viewed in a broad sense (i.e. not just pampetition) and suggest a multi-
mode technological interaction framework (Pistorunsl Utterback, 1995; 1997). Their
formulation through a Lotka-Volterra formulation & general model for multi-
technology, multi-mode interaction. It can be usedhodel the interaction of any finite




number of technologies where the interaction amang pair can either be pure
competition, predator-prey, or symbiosis. Howevitis Lotka-Volterra modelling
formulation remain descriptive and do not accoontéchnological development.

Classical models characteristically make the foilg assumptions; that
adoption is a binary process; the size of the piiemarket is constant; there are no
repeat or upgrading purchases; dyadic interactiebseen prior and potential adopters;
and the innovation itself is static over the diftus process. Hence, developments in
price and performance are ignored. Several attehmte been made to release one or
two of these limitations based on either analytreihements (Easingwood, Mahajan et
al., 1983; Parker, 1991), a multi-stage structrek{mpe, Parker et al., 1998), a multi-
innovations model (Fisher and Pry, 1971; Kabir, rtBhet al., 1981; Norton, 1986;
Norton and Bass, 1987, 1992; Pistorius and Uttégba895; 1997), individual level
parameters (Roberts and Urban, 1988; Chatterjee Ediadhberg, 1990; Lattin and
Roberts, 2000; Adner and Levinthal, 2001) or a dyieapotential market (Homer and
Finkelstein, 1981; Kabir, Sharif et al., 1981; Mortand Bass, 1987; Lyneis, 1993;
Maier, 1996; Milling, 1996). The model developed\Wil and Utterback has dynamic
market size, repeat purchases of two generationscbinology, and dynamic product
price/performance (Weil and Utterback, 2005). leslmot, however, contain the social
dynamics and other refinements in the digital muscsion later described by Weil
(Weil, 2007). There is still an opportunity to deye a model that integrates these
various attempts in order to fully link social dymas, technological developments, and
market adoption. We can see that there is an appitytto improve the descriptive
approach with a model that combines the underlgyrgamics of market adoption with
technological developments. Moreover, a better lagaf the social dynamics could
lead to a powerful structure explaining diversdeyat of technological substitutions.

3 A system dynamics model of technological substitutions

We believe that a multi-stage, multi-innovatioryndmic potential diffusion
model based on the aggregation of restricted iddali level parameters will allow
exploring the links between technological evolutisocial dynamics and substitution
patterns. We use the system dynamics simulatiomadetogy to integrate all these
processes, linking them to the trajectories of essive technologies. The use of system
dynamics is particularly interesting for the study social factors in technological
substitution because it considers system causasoendogenous, i.e. not brought by
external variations or shocks, but by the way fee#bstructures process external
events. Moreover, our approach integrates sevesdke that taken together cannot be
solved analytically. The system dynamics methodplegables us to simulate their
behavior. Figure 2 shows a synoptic view of thacttrre of the simulation model.



Technologie
PerformancZ\‘

Technologies Price
Utility/Price

Technologies Upgrading
Adopters

Considering
Upgrading Rate

*
Adopters

Untapped o Potential

\PAN
Market Penetration Adopters Purchase
Rate }
Innovators Followers Niche A NicheB Avallable
e Information| |nformation Rate

N+1

N+2

N+3

Y% Matrix Structure
Figure 2: Synoptic view of the model structure

Technol ogy assessment

Consumers in the untapped market are assumedahoa¢® the innovation along
a performance index and price. We operationalieeetraluation process through a von
Neumann-Morgenstern framework via the uniattributegative exponential utility
function and risk aversion(Chatterjee and Eliashberg, 1990). Performanceodeled
as an aggregated index of attributes moving aloteglanological trajectory and price is
decreased as a function of cumulative volumes.vEhge of a technological innovation
n is thus represented by:

K
Xn = Xn(ynl’ yn2""’ynK) :Zwkynk 3

k=1
where vy is the level of attributé for technologyn and w, is the relative importance

weight of attributek in the targeted market segment. The mean vglughanges over
time due to both technological developments anddveérmouth communication which
influences the estimation. DeGroot's formulationBafyesian estimation theory is used
to reflect the updating of prior perceptions of meand uncertainty (DeGroot, 1970;
Roberts, 1984). As more “units” of information areceived, expectations move
towards the true value.

Given the technological innovation’s dynamic pric®,, consumers in the

untapped market perceive a utility that may be espnted by the additive utility
function:

U(X,, R) =k, (X,) +ku, (W) 4
where Y. denotes the potential adopter’'s uncertain perceptib performance after
receivingr,, “units” of information, and wherk, andk, are the scaling constants which

may be interpreted as importance weights associaidthe two uniattribute utility
functions for performance and price respectivelfgtterjee and Eliashberg, 1990). We
assume that the consumers’ uncertainty about tresunable value of technology

X, is characterized by a normal distribution (mexn, variance g?) and that a

n

consumer’s utility for price is linear in its argemt. Consistent with the micro-



economic model of choice based on maximizationxpeeted utility subject to a budget
constraint, the expected utility of technologygiven the risk aversiom and the
adoption decision rule are (Roberts and Urban, 1@8&tterjee and Eliashberg, 1990):

E(U (X, P)) =1-exp(r (X, =500) ~k,¥, 5

p

Elu, (X,)] » .
W

n
Market penetration

At time t, consumers in the untapped market who believethi®atechnologyn
offers a utility-price ratioUPR,(t) that exceeds their threshold requireméntwill
become potential adopters of that technology. Téwsmdition assumes that the
penetration of the untapped market is driven bytédwanology perceived to offer the
bestUPR in the sefS of available technologies. The model assumesphigmetek, is
distributed across the entire population with thengity function f, () and the

cumulative functionF, [() The cumulative penetration of the market, drii®nthe
successive generationsn the technology landscageis thus:

C(t) = M.F, (Max(UPR (1))),0n0S 7

whereM is the total size of the targeted market. This mses common market for all
competing technologies as opposed to unrelatedithdil markets as in other existing
models (Norton and Bass, 1987). The penetratian wditich depends on technological
evolution and market heterogeneity is thus givethiyfirst derivative:

ct) =M aMaX(l;tPR(t)) f (Max(UPR (t))),t >0,0n0S 8

If a normal distribution f,, o?) is used for the individual thresholg and
assuming that technologydrives market growth, then the rate of potentdders of
technologyn is given by:

L UPR, (=i

OUPR,(M), 1 50, .
ot o2

Rogers identifies the innovators adopters asitise 2.5% of the social system
(Rogers, 2003, p. 281). Therefore, up to this pereeof Fy(.), those potential adopters
will be considered as innovators independentlyhef technology generation; past this
value the market penetration flow will be distribdtinto the followers subgroup of
potential adopters of technology If a new technologyn+1 subsequently takes the
lead, then these followers become potential adsmtetechnologyn+ 1. Figure 3 shows
the system dynamics structure of technology assassrand market penetration,
inclusive of equations (3) to (9).

cCt)y=M(@®*



MEAN OF UPR STD OF UPR
DISTRIBUTION DISTRIBUTION

Tachnologies
Prices O <>
OO <
Variance of Beliefs Variance of © - ~. ]
for Technelogy Inherent Technical / /" Mapket Driven by . \ ]
Value Vanability I / . \
= <1 = | / / o |
1o Q| // oy
£ =1 Tl SN ! | / /
T~ V\is< Avehsion | / ©
— - . \ ,' UNTAPPED MARKET S MASS POTENTIAL
} T N | __Perigtpation Flow ADOPTERS
Industry — Ny Te |OC|CJIF‘S LP? \ g
Technologie: - ,.‘1._,:: = \ </
Fe—’a"nsnce . © O O O / Mass Parameter @
_An umt ts Te M \c \es\ UPR MAX ~—UPR_MAX-—
@ - D_H vative
/ T
TECHNOLOGY / yd N\
FEATURES ) - i ) iz / J?DI
) ’ 4 Tech nc\oj\ - O Upd aH e 3 e Q /- Q L _ .
<<>—- Offered Values pdat f / »H::I'\CE -u-f Eeh.@ s
Progress Updating Value g $ian Untating / Updat 11 © Tfff_“‘;‘c‘g?
Attribute Attribute T S Varian
Functions Importance o T i
Parameters Weights ~ N o L
X Word of Mol Numbar of ©
/ \ “.__Informatio
= WA — ]
© Varianée of Word
A L= of Mouth
Industry ﬁ’?[‘mc\?g\es
Technologies Offered Values

Perfermance . -
Variance of

Inherent Technical
Variability

Figure 3: System Dynamics structure of considenatide
First time purchase

Chatterjee and Eliashberg introduced the notion ‘arftical amount of
information’, i", which is the cumulative amount of information aba technology that
an individual requires so that the degree of uagait passes under the risk hurdle. A
consumer receivgs, units of information from external sources apdinits from word
of mouth communication. We consider that a potéati@pter receives units of word of
mouth information from a constant proportioh, of A,(t), the cumulative number of
adoptersof technologyn at timet. Discounting factors are introduced to accountier
moderating effect of the social topology, i.e. thedibility of information and relevance
of opinion in inter-segments communication. If teglogy n is introduced at timéy ,
the amount of information available is:

i(t) = [7,(r)dr 10

Thus, the pattern of first purchases is a functdncumulative information
received and the distribution of in the population. Let the distribution of be the
density functionf.. () . The fractional rate of purchase by potential aelispis obtained

with the first derivative:
A®) =7, . (i,(1) 11
In classical diffusion models the potential adoptdl have the same hazard rate,
i.e. likelihood of adoption at time In contrast, the density. (i (t)) captures only those
consumers who are “ready” to adopt. As shown inurgg4, the structure of this

information feedback replicates the behavior o$sieal diffusion model when has a
negative exponential distributibacross the population:

! Chatterjee and Eliashberg give the relationshipeden parameters of the Bass model (p, q) and this

critical information framework (Chatterjee and Eliberg, 1990)
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Niche markets

When a technology emerges, it is often crude, esipe, and does not appear to
offer significant improvement on any of the usuahensions. However, it can often
perform a new functionality unrecognized in the sasarket, but highly valued in
some niche segments (Christensen, Suarez et &8).1We consider two niches: a
niche A in which consumers apply a disjunctive rble requiring a technology to
perform, either a function F1, or another functif) and a niche B in which consumers
apply a conjunctive rule and require a combinatdrboth. If a technology emerges
which satisfies such a decision rule, then it atés diffusion through the concerned
segments and the feedback information above apjalidse given subgroup. The word
of mouth from niche adopters is integrated into iess market by applying an inter-
segment relevance factor. These decision rulesflamdstructure allow technologies
with lower performance and higher price to stilarstdiffusing by offering new
functionalities. Figure 5 shows the adoption floeni both the niche and the mass
markets potential adopters into the adopters stoatkix (technologies * categories).
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Figure 5: System dynamics structure of adoptloe rat

Upgrading and renewal

Lattin and Roberts found that market heterogene#tsiables have a greater
explanatory power than that of individual dynamarigbles (Lattin and Roberts, 2000,



p.22). The model assumes that the upgrading pramfessovators is driven by the
best available performance. The relative perforraamica technology in the set of
technologies is:

_ MAX(R,..,R,)

RP

n

,0n0S 13
n

Lattin and Roberts have considered the distriloutidd the requirement for
relative utility to be uniform over [L;U] (Lattin rad Roberts, 2000). Because the
innovators represent a small fraction of the marke¢ also assume a uniform
distribution with regards to the requirement folatee performanceRP, among the
innovators category. The fractional rate of innovsitupgrading from technologyand
to the leading-edge can thus be written:

ORP_(t), 1
If RP, =1, UPI (t)= t)* o *
n l n( ) A1,Innov() at U _ L

with A ., (t) the number of innovators currently possessingrtelcigy n. Due to the

upgrading distribution, the innovators can be spremaer several generations of
technology. The total rate of upgrading to the iegedge technologil is the sum of
all innovators upgrading from their current teclogyln < N.

The pragmatic followers are assumed to be moce @ensitive; we assume that
they consider upgrading based on perceived reldliP® Because of their larger
number, we assume that the requirement for upggadith regard toRU is normally

distributed (uq,, 0%,) across the followers population. Thus, the waftdollowers

upgrading from their technology to the technology offering the best UPR can be
expressed:

,0On0OS 14

_1 RU,()~Hry )2

(
G(RUn(t))* 1 e 2 Iry NS 15
ot OpuN 21T

with A ,..() the number of followers possessing technologyThese followers

considering upgrading become potential adopteth@technology with the bebIPR;
their effective adoption is thus controlled by thdormation feedback described
previously.

Finally, we account for sales derived from theergal purchases after the
physical life of an artifact. With a total numbefrarloptersA and an average physical
life of x years, then the average renewal ratd/isper year. We further assume that
adopters renewing will always choose to buy thet beshnology according to the
decision criteria of their adopters category. Feg@rshows the upgrading and renewal
structure; table 1 highlights the key points of system dynamics model.

If RU, 21, UPF, (1) = A, rgiow(® *
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Property / Dynamics

M odel assumption

Decision process

Three stages: untapped, potemdiapters.

Market structure

Innovators (2.5%), Followers (9%)5and Niche segments

Penetration of main market

Utility Price Ratio

Decision to adopt in niche

Conjunctive or disjumetiule over given functionalities

Heterogeneous UPR thresholg

s

Normally distributedss entire population

Communication structure

Word of Mouth (lead usdddléwers / niche) ; relevance factor.

Uncertainty threshold

Negative exponential disttitiu of critical amount of information

Innovators upgrading

Relative Performance (upgtadewer from same or next generatidg

Followers upgrading

Relative UPR (upgrade to neéwgan same or next generation)

Physical renewing

Average annual flow given lifeley

Table 1: Summary of modeling key points

4 Simulation behavior

One technology

When the current technology (CT) is introducecde tiharket penetration is
driven by improvements qlong the URRrajectory presented in figure 7.

,,,,,,,,,,,,,,,,

Figure 7: Current Technology 'UPR evolution

Accounting for uncertainty about the expected WP the normal distribution
U, ,02) of UPR requirements across the population, theketgpenetration flow is
k k

shown in figure 8. This figure also shows that flloev variability is reduced agi, the

10



expectations of the mean level of value of techgwlo converge towardg, the mean
of the technology true average value through Bayespdating.

\\\-
S

,,,,,,,,

This market penetration flow will flow into the t@mtial adopters stock for
technology CT. The potential adopters adopt oniveag their critical amouni” of
information about technology CT. Figure 9 illuststhe time delay that exists between
consideration and the effective adoption for CTisTis an important feature of our
multi-stage adoption model. Figure 10 shows the ¢ifcle of one technology when
accounting for physical renewal.

Sales of Current Technology
People/da

141420 1/1/2010 1/1/2015 1/1/z020

Figure 9: New Sales Rate for CT alone

TOTAL SALES BY TECHNOLOGY
People/da

Total
Sales

/

New Sales

Physical
Renewal

1¢1/2005 17172010 14172015 1/1/2020

Figure 10: Total Sales of CT (New Sales + PhysicaleReal)

Two competing technologies

We now consider that a new technolofif emerges while the current
technologyCT is diffusing into the market. Multiple modes ofteraction could be
considered, but we restrict our analysis of techbgiochl substitutions to a pure
competition mode between successive generationgedifnology. How will the
introduction of this second technology interfereéhathe diffusion process of current
one? In our framework, the substitution dynamicpesiel on the development path of
each technology and the heterogeneous requirenmeritee population as given by

(4, 0¢).
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Figure 11 gives an example of the utility per eritrajectory of the two
competing technologies. As long as CT offers that h#PR, its development is driving
market penetration. It should create a market whosal size is a fraction of the
untapped market, as given by the position of itRUpper limit on the cumulative
distribution. However, onc&PRyr > UPRcr, the penetration of the untapped market is
thereafter driven by the evolution of NT and thee@d market size for the product
category can grow because the penetration of theppad market has been driven
further to the right of the requirement distributioy a highetJPRyr.

Technology UPR

NT upper limit \
CT upper limit

AN NN NN EEEE NN NSNS NN EEEEEEEEEEEEEEE

Part of market
further driven by NT

Part of market
pre-empted from CT

Level at which
NT started
offering a
better UPR

by NT

| Market Driven

by CT

0,005 4

o %
UPR Requirement Distribution
Figure 11: Technology evolution and UPR requirenaistribution

After the discontinuity, the number of potentialopters for technologiN can
no longer increase. Nevertheless, the stock of woess already engaged in the
decision process for this technology does not gieapinstantly; it gets depleted as they
continue their information gathering. Figure 12awh that the simulation of these
dynamics creates a large pre-emption effect bynigldlgy N+1 and this clearly results
in what we call a “substitutive drop” in the satefsN. If unforeseen, this could have a
devastating effect on a firm's expected return vestment. Indeed, we can see on
figure 12b that by using the data up to the digooity point, a classical Bass model
can be satisfactorily fitted to the life cycle a#chnology N. However, it would
completely miss the substitutive drop; any investimeased on this expected profile
could be seriously threatened. To overcome thigstral mismatch, classical diffusion
models are calibrated a posteriori with a smallearket size parameter and they
anticipate the peak of sales as shown in figure TBts behavior is extremely clear in
the application of Norton and Bass’ multi-genenasiomodel to DRAM devices
(Norton, 1986; Norton and Bass, 1987, figure 2).

12



Utility Price Ratio N+1

N+1

N
N (b)
Sales ]
Sales of N pre-empted Classical Bass models
by technology N+1 fitted to technology N
) life cycle
N
Figure 12: Simulation of the substitutive drop th& Bass model
Compl ete dynamics hypothesis

The experience curve assumes that every doubfitigeccumulative production
volume is associated with a cost reduction by ast@on percentage. In our model we
follow the simple pricing strategy of “full cost werage”, i.e. “standard cost per unit
plus a constant profit margin to assure prices abmst level even during the early
stages of the life cycle” (Milling, 1996).

Our framework considers the evolution of both pleeformance and the utility
per price (UPR) of each technology in order to stigate the diffusion, substitution,
renewal and upgrading dynamics. The reconstituticihe evolution of a variable must
identify the different time intervals which compa$e process and its evolution over
time. Figure 13 presents the evolution over timéhefperformance and the UPR of two
competing technologies under a general perspediateus define the following timeb
that correspond to particular events:

e TO as the introduction time of the current techgglGT,
e« T1 as the time at whiclPRcr has attracted the entire category of innovators,

i.e. F (UPR.;) = 25%,

e T2 as the introduction time of the new technoldfy

e T3 as the time at which the performance — but hetUPR — of technologiT
exceeds the performance of technol@jy

* T4 as the time at whicHPRyr exceed4JPRcr.

13
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Figure 13: Performance and Utility Price trajeaerof two competing technologies

This longitudinal perspective highlights five tiperiods with particular dynamics:
TO<t<T1

Although the current technology CT offers a relalyvlow performance, the innovators
who have the lowest UPR requirement in the markettiae only ones interested in
buying it.

T1<t<T2

All the innovators have adopted, now the UPR ofdineent technology is high enough
to be of interest to the followers. The innovatats have already adopted generate an
information stream about this technology.

T2<t<T3

The new technology NT is introducedTa&. It is still a crude version with performance
and UPR significantly lower than for CT. Therefarethe mass market, the situation is
the same than during time peridd<t<T . Blowever, if the new technology NT
offers a new functionality which is valued in amcmarket, then we could observe the
first sales of this new technology in that nicherke& This is in compliance with the
view that new technologies very often emerge fraitsioe the mass market.

T3<t<T4

FromT3, the new technology offers a better performandesbil has a lower UPR than
the current technology due to a higher price. N#nedess, the innovators are
performance hungry, so they generally tend to upgyta the leading edge performance.
This upgrading process of the innovators is coletdoby the relative performance of
their current technology in comparison to the laegdedge NT and their uniform
distribution of requirement for upgrading. Thesadeusers, alongside with the niche
markets’ adopters, will generate the first strednmarket information concerning this
new technology. However, during this period the snasrket followers are still joining
the potential group based on the development oUtPR of the current technology and
are not yet considering buying the second techryolog
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T4<t

From time4, the new technology NT offers both a better penfomce and a better
UPR than CT. Therefore, followers in the untappedketawill become interested in
buying the second technology and will join the ptid adopters group of NT.
However, it is assumed that followers who haveaalyejoined the potential adopters
group of CT will keep on considering buying thesfitechnology as they require more
information to adopt and there will be more infotroa about the first than the second
technology. Followers that already possess CT wilinterested in upgrading to the NT
based on relative UPR.

Reference mode

We now present a more generic case where suceeg@werations of
technology emerge and compete against each otheimarket place. The complete
simulation model considers the evolution of thefgranance and the UPR of four
generations of technology. Figure 15 to figure 18edor each types of adopters the
profiles of first purchases, physical renewal, apdrading. All these are aggregated to
obtain the complete life cycle of each technology.

Utility Price Ratico (UPR)

0.001

0.0005

L=}

1/1/=200%5 i1f1/z010 i/1/201S 1f1/=z020

Figure 14: Evolution of Utility Price Ratio of foeompeting technologies

Peaple/da
2501

200+

150+

100+

S0

1/1/2005 / 1/1/2010 \ 1/1/2015 1/1/2020

Sales of 3rd Tech in Niche A Sales of 4th Tech in Niche B
Figure 15: First time sales of four competing testbgies
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UPGRADING TO
lejda

100+

S0+

. e K_«
1/1/2003 \ 1/1/2010 \ //2015 1/1/2020

Innovators Upgrading

Figure 16: Upgrading to each of the four competewhnologies

PHYSICAL RENEWAL

Jda
80T

50+
40+

201

L

1/1/2005 1/1/2010 1/1/2015 1/1/2020

Figure 17: Physical renewal of four competing textbgies among innovators and followers

TOTAL SALES BY TECHNOLOGY

fam-1

200+

100+

1/1/2005 1/1/2010 1/1/2015 1/1/2020

Figure 18: Total Sales of the four competing tecbgils

Our framework creates a link between the perfooeaarajectories of successive

generations of technology and market penetratignagyregating all these user bases
across all technologies, it also captures the draftthe market size as illustrated by
figure 19, which shows a S-shaped diffusion pategrine category level. Moreover, by
normalizing by the total market size, we get thekaashare view of classical studies of
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technological models (e.g. Fisher and Pry models)lesrated by figure 20. These

models also have an inherent view of technologigales which follow the sequence
“emergence-growth-dominance”. However, figure 18oashows that when there are
some overlaps between the successive generatideslofology, each technology may
not have time to reach complete dominance. Thisltseesr multi-level substitutions as

discussed by (Kabir, Sharif et al., 1981).

People

Technologies User Base

400,000+

otal Category Level

300,000

N+3

200,000+

100,000+

N+1

N
+ F + T
1/1/2010 1/1/2015 1/1/2020 1/1/2025

Figure 19: User bases for successive generatfaestinologies and diffusion at the category level

o]

Technologies Substitution Fraction

0.6+

N+2 N+

0.4

L T
1/1/2020 1/1/2025

Figure 20: Fractional base of successive genematibtechnologies

1/1/2010 1/1/2015

Figure 19 and figure 20 show that our diffusionnfeavork operationalized
through a system dynamics simulation model can iggmehe diffusion pattern at the
product category level, the diffusion of individu&chnologies as well as the
substitution effects between successive generations

5 Substitutive Drop

Our model's structure generates a recurring pattenereby the sales of a
technologyn drop when technologg+ 1 offers a better utility per price. In our model,
technologyn+1 starts diffusing among niche markets despite loperformance or
among innovators despite lower UPR. Onedl offers a better UPR there is no more
inflow into the group of potential adopters of teology n which thus starts depleting
through actual adoption of technologylt is the discontinuity induced by the sudden
stoppage of inflow which generates the substitutingg in the life cycle.
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Norton and Bass multigenerational model

Norton and Bass have developed a formulation Her dlassical model which
accounts for some substitution dynamics (Nortorg61Norton and Bass, 1987). The
analytical formulation of the Norton and Bass mogeadlds the generic behavior
illustrated by figure 21 (Norton and Bass, 1987k ¥én see that their model does not
replicate the dynamics described in our framewdherefore, while it has a relatively
good fit to historical data, the structure of thewdel seems to lack explanatory power.

GENERATION
THREE

GENERATION,
TWO

QUANTITY

GENERATION
ONE,

T T
TIME

Figure 21: Generic behavior of the Norton and Basiigenerational model

Norton and Bass applied their model to the suteeggenerations of DRAM.
The historical data of DRAM sales feature suddespslifor each generation that their
model’'s structure does not replicate. Because tisgyan adaptation of the traditional
Bass model, their analytical formulation cannotoact for such a sudden drop in sales.
We could say that classical models reproduce “dosteipe life cycles while strong
substitution effects generate life cycles whichklaoore like the “Sydney opera”.
Therefore, as shown in figure 22, the classicakpatof their curve can only be fitted to
the data by anticipating the actual peak of sajemhny quarters and by ignoring the
pre-empted volume in their estimate of market piaenThis is exactly the bias
illustrated by figure 12.

Their model considers a smooth decrease in tleeafasales as for any usual
Bass model diffusion curve. However, figure 23 shalat at quarter 23, the first
derivative of sales (thousands/quarter?) of 4k DRAbMrted to drop during three
quarters more drastically than anticipated by thedel. This dramatic behavior is also
evident for 16k DRAM at quarter 37.

2204

200+

1804

5
o

<R

<

1404

UNIT SHIPMENTS
(thousands)

120 —— PREDICTED

16K v

64K
256K

100

B4 +

TIME
(1=Ist QUARTER 1974)

Figure 22: Classical model fitted to sales of saste DRAM generations (Norton and Bass, 1987)
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Figure 23: 4k DRAM — Missing the drop in the fidgrivative of actual sales (Norton and Bass, 1987)

Our model’s explanation is that a substitutivepdoccurs when technology 1
overtakes technology. As illustrated by figure 24, our model replicatibe same
phenomenon for the first derivative of sales aeoled in figure 23.
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Trajectories
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1/1/1975 1/1/2380 1/1/1985

Figure 24: Our model: Structural evidence of stinstie drop (sales and first derivative of sales)

Historical data

To investigate this hypothesis, we turn, like arand Bass, to the historical
data of performance, price and sales for the ssoeegenerations of DRAM since
1974. We obtained secondary data from Semico Rds@ardhe performance, price,
and sales evolution for DRAM devices for the perl®¥4-2004.

Our theoretical framework assumes that the detigimcess of innovation
adoption is based on expected utility. Given th& rof memory devices in the
computing power of computers, we assume that theevfanction for these devices is
uniattribute in memory size. Moreover, we assuna¢ the expected utility function for
these devices is a linear function of performance. (memory size). Thus, we
operationalize the UPR evolution by computing thefqenance/price ratio of the
successive DRAM generations. Annex 2 shows theugieol of the Mbits/$ for each
generation of DRAM for the period covered. Anneal&o identifies the time at which
the trajectory of technology+ 1 overtakes the trajectory of technologyFor example,
we can see that after taking the lead of Mbits/$9i9, the 16k devices were overtaken
by the 64k generation in 1983.
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Annex 3 shows that the life cycles of all the gatiens exhibit at sudden
decrease that could not be matched by a smootlshafie life cycle from a classical
model. We compute the first differences in saled, & in figure 23 and figure 24,
identifies the time at which the drop occurred. [€aB shows that over the ten
generational changes, a substitutive drop occunmieg times when generation
overtook generation+1. The only exception is the substitutive drop of #v 1M that
occurred in 1991-1992, while the overtaking hadpesed in 1990-1991. We have no
contextual data to explain this delay.

Overtaking Mbits/$ | Substitutive Drop
1

1978 -1979
1982 - 1983
1984 - 1985
1988 - 1989
1990 - 1991
1995 - 1996
1997 - 1998
2000 - 2001
2001 - 2002
2004 - 2005

NI I IR

[ N N N =1 I

e

Table 2: Relationship between performance / priegtaking and substitutive drops

6 Exploring technological and social dynamics

By accounting for the interdependencies betweehni@ogical developments
and market heterogeneity, our model’s structurdicaies dynamics not accessible to
classical models of diffusion. Therefore, we furtbgplore the capacity of the model to
handle other dynamics induced by technological kigweent or the social topology.

Sailing ship effect

As Rosenberg noted, the emergence of a compedaimology is often a more
effective agent in generating performance improvesié an existing technology than
the more diffuse pressures of intra-industry coitipet (Rosenberg, 1976). This
defensive surge allows to maintain a performancaatdge over the new technology.
However, the usual effect of such advances is dolypostpone the dominant
technology’s displacement (Smith, 1992). This phemoon is usually described by
presenting the surge in the performance trajectbuy; data are rarely provided to
substantiate the delayed substitution.

One of the most famous example of this phenomeaaahe introduction of
extremely fast Clipper ships in 1845 when sailihgps were being threatened by the
substitution from steam boats. We collected histridatd, presented in figure 25,
which show that these Clipper ships induced a 30syalelay in the substitution
process. In 1875, improvements in steam and ste&ing technologies (compound
engine, open-hearth furnaces, etc..) resumed thstiguion dynamics.

2 U.S Bureau of the Census. (Carter, Gartner, Haines, Olmstead, Sutch angjM/r2004).

20



0.

0.

0.

0.

0.

0.

0.

0.

0.

94

8

74

6

5 4

44

3

24

14

19293»
1935 §
1940
1946
1952
1958
1964

1797
1803
1809
1815 3
1821 J
1827 1
1833
1839
1845 -
1923 3

o > B = S o B B S s B = ST S B
LYoo rL®R 2P dd
A A A A A A A A A A A A

[—#—sail —#—Power — —expected — = delayed |

Figure 25: Example of sailing ship substitution HiB@ ships vs. Power (1797 — 1964)

We use our system dynamics model to explore thestdution dynamics
induced by such a defensive surge in technologiediormance. We set up the model
so that that, ceteris paribus, the emergence dfntdogy N+1 triggers a surge of
performance from technology, as illustrated by figure 26.
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404
0+
2001
1001

0

N+1

Defensive surge of
performance from

technology M

Mormal S-curve for
technology M

1
1
1
-+

| I I + + ] I I ; I |
1

1/4/2008 1010 1/1/2018 1/1/2020
Figure 26: Model configuration for a technologidafensive surge

Figure 27 presents the fractional base for eadimtdogy (normalized by total
market size) generated by our model under thesdittmms. We can see that because

our model ope
adoption decis

rationalizes the link between techyyltvajectories and the innovation
ion process, it can generate a dglaybstitution similar to the pattern

observed in the historical data of marine cargo.

«——— Defensive surge of N

Reference Mode for N+1

Delay

1/1/2005 1/1/2010 1/1/2015 1/1/2020

Figure 27: Simulation of a sailing ship substitatmattern
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Accounting for social dynamics

In our model, the requirement distribution is adesed normally distributed
across the market population. We have assumedhbaiarameters of this distribution

(u.,o?) are fixed. Our discussion has so far focusecherlink between technological

evolution and substitution dynamics through the traitribute expected utility
framework. However, consumers’ requirement thredhare not static and evolve
alongside their experience of and familiarity wélparticular technological paradigm.
The implications are that any estimation of paramsetwill be fit for a period of time

only. In the model, theu, and g2 could be considered dynamics but a valid struttura

explanation could be difficult to construct. In tggstem dynamics model, Lyneis has
modeled an exponential customer requirement ti@gand has derived conclusions
with regards to either technology push or markdéitgynamics (Lyneis, 1993).

The importance weightsy, of technological attributes are also consideocbet
fixed over the entire time period. However, it isar that very strong social dynamics
are at work here. Mary Tripsas has proposed a weeyesting concept of preference
trajectories and has shown that preference disuatigs could trigger technological
change (Tripsas, 2005). These importance weighikl@so be linked to requirement
thresholds. These thresholds could also be driyetechnological improvements; this
should be considered when studying substitutiores mng time periods.

In our framework the utility derived from a techogy n+1 is based on the
perception of attribute levels and each technoleggvaluated independently. However,
Pistorius and Utterback have illustrated that theray exist multiple modes of
interaction between technologies. To account fehseffects our model would need to
integrate the value of the installed base of teldgyo<n+1 into the utility function of
technologyn+1, such as in the classical case of network extiiggl Schilling has
shown how companies could try to influence the oareys’ perception of the installed
base to artificially increase the perceived util{§chilling, 2003) and lead to a self
fulfilling prophecy.

We have assumed that upgrading consumers will lgough the same
information gathering process before adopting aaneyeneration of technology. This
in fact assumes that there is no familiarity effectd that for each generation there is a
knowledge or know-how switching cost that increattes perceived risk of adoption.
We could easily assume that even though a techyole®gdisruptive in terms of
industrial dynamics, its diffusion among consumersuld profit from familiarity
acquired with previous technology. One such exangplthe diffusion of Internet in
France which occurred later but quicker, maybe bszdhe Minitel had been widely
used and had developed familiarity with accessistadt services over a server. This is
an occurrence of a prey-predator scenario baséanaiharity in the Pistorius-Utterback
framework. This familiarity could be integratedandur model by changing the critical
amount of informatiori” required for an upgrade. Hence depending on tiezaiction
mode, one could change the distribution parameter for upgrading as a functbthe
installed base of the previous technology.

Another assumption was that there was no forgettlaring the process of
gathering information for each technological innowa, i.e. % > 0. Therefore, all

the information gathered for a generatiowill still be available even if the market is
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now dealing with generationt+5. A forgetting flow could be added to the stock of
collected information.

Other important assumptions were made with regé&wdthe communication
patterns and the topology of the social systemdificeal models consider a fully
interconnected system with a rather uniform viewour model, this assumption was
also made in that the information streams fromedéht segments were flowing across
the entire system and increased the amount of mEbon available about a given
technology. It is not evident that the informatgenerated in a niche market may reach
the followers into the main market. Rather, it lee®n often observed that a radical
technology often emerges outside an industry andnwhhas sufficiently evolved it
reaches the shores of an unaware industry. Our Imoale easily explore the
implications of these communications interconnexdioby crossing the flow of
information generated by respective groups intaks®f collected information. This is
done by changing thd parameter of technologyinto a flexible A; ; wherei and]

are subscripts of the social group of the emitted aeceptor of word of mouth
respectively. This allows to account for the effe€ opinion leadership and the
relevance of information (Dattee and Weil, 2005).

7 Conclusion

Our model’s structure embeds a broader theorefiaalework which accounts
for the interactions between technological evohlytimarket adoption, and some social
dynamics. The system dynamics methodology allowbuitd upon several advanced
diffusion models. These models have powerful themak foundations but their
analytical formulations impose solvability constitai and restrict their scope.
Moreover, our model offers theoretical bases am@rcformulation for some of the
dynamics that were aggregated into generic coefftsi by previous system dynamics
models (Kabir, Sharif et al., 1981; Lyneis, 1993llikg, 1996; Maier, 1998).

Our system dynamics model considers the heterdgermd the market
population (innovators, followers, niche), the imabon decision process based on
expected utility (distribution of UPR requirementf)e reduction of perceived risk of
adoption through collecting information, plus rem@vand upgrading. Our model's
structure — multistage, multi innovation, restrittendividual parameter, dynamic
potential — is capable of generating both diffusaoil substitution dynamics.

The link between technological evolution and madkgamics has allowed to
identify what we call substitutive drops. The sitbhsibn dynamics between competing
technologies generate life cycles with “Sydney apahape. When a new technology
n+1 emerges in the market, it does not offer the Ipestormance, utility or price
among all the alternatives. But when it does seradtvolving along its trajectory, a
sudden drop is visible in the sales of technologyhese dynamics were substantiated
by historical data for the successive generatiéi3AM devices from 1974 to 2004.

By broadening the scope of analysis and bringingetteer various theories of
technological change, our model can explore mormeptex dynamics. Sterman insists
that the goal of modeling is to expand the bounddrgur models so that more and
more of the unexplained variation in the behavioa system is resolved into the theory
(Sterman, 2000, p. 363). We showed that our maalelreplicate a delayed substitution
induced by a defensive surge of the dominant tdolgyp these are the classical
dynamics of the “sailing ship effect”.
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The model can thus be used to explore the substitatynamics induced by
relaxing some of the classical underlying assumgtiqtiming of emergence,
performance limit, social topology, etc.). Thisoals exploring the capability of the
generic model to generate various patterns of gutieh. According to Sterman, “this
kind of family member test is particularly helpfwhen the class of systems the model
addresses includes a wide range of different pettef behavior [...] the more diverse
the instances of a system a model can represenimtre general the theory it
embodies” (Sterman, 2000 p. 881).
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Annex 1: System Dynamics simulation model
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Annex 2: Evolution of Mbits/$ for the DRAM generatis (1974-2004)

16k 64k | 256Kbit | 1Mbit | 4Mbit | 16Mbit | 64Mbit | 128Mbit | 256Mbit | 512Mbit

Mbit per $ 4k 1Gbit 2Gbit
1974 0,00016
1975 0,00052
1976 0,00087 0,00030
1977 0,00142 0,00069 Keys:
1978 0,00218 0,00173 0,00036 Leading Phase
1979 0,00204 0,00272 0,00054 Substitution Phase
1980 0,00209 0,00342 0,00101
1981 0,00257 0,00769 0,00456
1982 0,00194 0,01348 0,01142 0,00152
1983 0,00138 0,01532 0,01686 0,00363
1984 0,00128 0,01456 0,02049 0,01206
1985 0,00096 0,01206 0,05795 0,06687 0,00591
1986 0,06297 0,11709 0,04019
1987 0,05884 0,10378 0,05645
1988 0,04305 0,06612 0,06206 0,01473
1989 0,03842 0,06768 0,07729 0,03241
1990 0,04526 0,10847 0,16203 0,11680
1991 0,04424 0,14900 0,22389 0,24212 0,05488
1992 0,05022 0,16120 0,30148 0,34145 0,12082
1993 0,15574 0,29700 0,31869 0,20439
1994 0,14222 0,24776 0,32044 0,28497 0,13333
1995 0,11692 0,24867 0,31095 0,30161 0,15371
1996 0,20558 0,31847 0,70024 1,03534 0,63611
1997 0,52845 1,46517 2,45000 1,88823 0,23742
1998 0,65677 1,61493 5,86942 6,67883 2,82513 0,53149
1999 0,68629 1,40899 4,86182 8,41668 6,74712 3,21147
2000 0,66667 1,15499 4,08402 9,60535 9,69289 5,53647
2001 2,34343 10,62183 31,25490 43,73359 31,28189
2002 3,20430 15,64694 41,64881 35,61440 39,18557 1,43284
2003 3,51745 14,09115 42,14909 49,75299 57,15269 4,75093
2004 14,15581 30,23843 45,58645 57,86258 49,65588 6,34218
2005 13,35441 43,98579 63,22857 79,22405 95,92399 49,83965
2006 13,55932 64,64646 84,76821 89,82456 130,61224 88,49588 6,18716
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Units (Millions)

Annex 3: Shipments of successive generations of MIR2974-2008 forecast)

DRAM Units Shipments
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