Customer Acquisition Dynamics

“Getting Started with STELLA and iThink” Workshop
International System Dynamics Conference
August 2, 2007

Presented by:
Karim Chichakly
Paul Gisborne
Joanne Egner
Customer Model 1
(Reinforcing Loop)

Customers(t) = Customers(t - dt) + (Customer_Recruitment) * dt
INIT Customers = 100

INFLOWS:
Customer_Recruitment = Marketing_Spend*Productivity
Marketing_Spend = Revenue*Marketing_Spend_Fraction
Marketing_Spend_Fraction = 0.08
Productivity = 0.05
Revenue = Customers*Revenue_per_Customer
Revenue_per_Customer = 50
Customer Model 2
(Reinforcing Loop with Balancing Loop)

\[
\text{Customers}(t) = \text{Customers}(t - dt) + (\text{Customer_Recruitment}) \times dt
\]
INIT Customers = 100

INFLOWS:
\[
\text{Customer_Recruitment} = \text{Marketing_Spend} \times \text{Productivity}
\]

\[
\text{Potential_Customers}(t) = \text{Potential_Customers}(t - dt) + (- \text{Customer_Recruitment}) \times dt
\]
INIT Potential_Customers = 900

OUTFLOWS:
\[
\text{Customer_Recruitment} = \text{Marketing_Spend} \times \text{Productivity}
\]
\[
\text{Marketing_Spend} = \text{Revenue} \times \text{Marketing_Spend_Fraction}
\]
\[
\text{Marketing_Spend_Fraction} = 0.08
\]
\[
\text{Productivity} = 0.05
\]
\[
\text{Revenue} = \text{Customers} \times \text{Revenue_per_Customer}
\]
\[
\text{Revenue_per_Customer} = 50
\]
Customer Model 3
(Introducing a Market Saturation Effect)

\[\text{Customers}(t) = \text{Customers}(t - dt) + (\text{Customer_Recruitment}) \times dt \]
INIT Customers = 100

INFLOWS:
Customer_Recruitment = Marketing_Spend*Productivity

\[\text{Potential_Customers}(t) = \text{Potential_Customers}(t - dt) + (- \text{Customer_Recruitment}) \times dt \]
INIT Potential_Customers = 900

OUTFLOWS:
Customer_Recruitment = Marketing_Spend*Productivity
Eff ect on Productivity = Potential_Customers/INIT(Potential_Customers)
Marketing_Spend = Revenue*Marketing_Spend_Fraction
Marketing_Spend_Fraction = 0.08
Productivity = 0.05*Eff ect on Productivity
Revenue = Customers*Revenue_per_Customer
Revenue_per_Customer = 50
Customer Model 4
(Introducing another loop - Customer Loss)

Customers(t) = Customers(t - dt) + (Customer__Recruitment - Customer_Loss) * dt
INIT Customers = 100
INFLOWS:
Customer__Recruitment = Marketing_Spend*Productivity
OUTFLOWS:
Customer_Loss = Customers*Ave_Customer_Loss
Lost__Customers(t) = Lost__Customers(t - dt) + (Customer_Loss) * dt
INIT Lost__Customers = 0
INFLOWS:
Customer_Loss = Customers*Ave_Customer_Loss
Potential__Customers(t) = Potential__Customers(t - dt) + (- Customer__Recruitment) * dt
INIT Potential__Customers = 900
OUTFLOWS:
Customer__Recruitment = Marketing_Spend*Productivity
Ave_Customer_Loss = 0.05
Effect_on__Productivity = Potential__Customers/INIT(Potential__Customers)
Marketing_Spend = Revenue*Marketing_Spend_Fraction
Marketing_Spend_Fraction = 0.08
Productivity = 0.05*Effect_on__Productivity
Revenue = Customers*Revenue_per_Customer
Revenue_per_Customer = 50