SMILE and XMILE: A Common Language and Interchange

Format for System Dynamics
Karim Chichakly
isee systems, inc.
31 Old Etna Road, Suite 9N
Lebanon, NH 03766
(603) 448-4990/FAX: (603) 448-4992
kchichakly@iseesys.com

Abstract

Proposed four years ago, SMILE has made minimagrpss toward a full-fledged
specification that System Dynamics software vendmans use to interchange models.
This paper attempts to move the development ostidwedard one step further with a draft
specification of both the language that needs tante¥changed (SMILE) and an XML
format for that language (XMILE). Central to th&ceess of this standard is the idea of
three increasing levels of compliance, only thedsiMevel (interchange of equations)
being required of all vendors.

Keywords: Model Interchange, SMILE, XMILE, XML, Sigem Dynamics Language

Background

In the Spring 2003 System Dynamics Society nevesiefim Hines proposed that there
be a common interchange format for system dynamicslels. Magne Myrtveit
originally proposed such an idea at the 1995 ISI€ Jim hoped to revive interest in the
idea and chose the name SMILE (Simulation Mode¢rbftange LanguagE) to keep
people lighthearted. The benefits Jim proposdldeatime were:

» Sharing of models can lead to greater increasesnoivledge and sharing of
ideas.

* On-line repositories could be built to facilitagatning.

* Open standards lead to better acceptance in laayeorations as it minimizes
their risk with specific vendors.

* It spurs innovation by allowing non-vendors to depeadd-ons.

To this formidable list, | would add:

» It allows the creation of a historical record ofpontant works that everyone has
access to.

* It allows vendors to expand their market base bexauddenly their unique
features (and let's be honest — each of the thregrplayers has unique
competencies) are available to all system dynammdelers.

Vedat Diker and Robert Allen later presented agrost the 2005 ISDC that proposed a
working group be formed and that XML be the workiagguage for the standard.

At the first meeting of the Information Science S#Bthe 2006 ISDE | suggested
breaking the problem into two pieces: the languageintend to interchange and the
interchange format. The first section of this doemt, on SMILE (Systems Modellng
LanguagE), proposes to begin the process of dociimgetihe base set of functionality
that we want from a system dynamics modeling laggua The second section on
XMILE addresses the XML-based interchange form#s standards, these are two
separate documents.

SMILE Specification

1.0 Basic Functionality

It is safe to say that the minimal useful languagéset would include most of the
capabilities of DYNAMO. After all, it was the firsystem dynamics modeling language
and many of the DYNAMO models that have been writigpresent some of the seminal
work in the field. Given this premise, we can lmegiith the basic building blocks
available in DYNAMO: stocks (“levels” in DYNAMO)flows (“rates” in DYNAMO),
auxiliaries, and table functions.

1.1 Stocks

Stocks represent things that accumulate in theesysfTheir value must be set at the start
of the simulation with an initial value. The imitivalue can be either a constant or an
expression. In the case of an expression, theeviauevaluated only once, at the
beginning of the simulation, to initialize the stoc

During the course of the simulation, the value dftack can only be changed by its
inflows and outflows. In general, a stock is ewddd by adding the sum of its inflows
minus the sum of its outflows, all times DT, andliag that to the value of the stock
during the previous DT.

A sample DYNAMO stock specification appears below.

L POP.K = POP.J + DT*(BIRTHS.JK — DEATHS.JK)
N POP =100

The L line defines the stock equation in termst®tturrent value (.K), its previous value
(.J), and the previous flow values (.JK). Themeldefines the stocks initial value.

! As an aside, Len Malczynski presented a papérea2®06 conference that explained why the software
vendors may never adopt such a standard. Thig mfie start of an effort to prove him wrong.

2 DT stands for “delta time.” Since these are tivased simulations, DT is the increment of time bein
used to advance through the model. It needs smadl enough to achieve accurate calculation result

SMILE and XMILE 2 K. Chichakly © 2007

Stocks in SMILE are unconstrained other than byr timflows or outflows. Vendor-
specific features such as Non-negativity, whichvengs a stock from taking on negative
values, are not (directly) supported. Likewisecks can only by modified by their
inflows and outflows. Therefore, the equation ehways be inferred from the list of
flows and is never explicitly written (as it is DYNAMO). The form of all stock
equations (using DYNAMO syntax) is:

L S.K =S.J + DT*(<sum of inflows> — <sum of outflo wSs>)
No other stock formulation is supported in SMILE.
1.2 Flows

Flows represent rates of change of the stocks.y €tha be defined using any algebraic
equation (including a constant value) or by usiriglde function.

During the course of a simulation, a flow’s valgeevaluated each DT based on the
current state of the system. A sample DYNAMO flgpecification appears below.

R BIRTHS.KL = BR*POP.K

This equation defines the current value of birthgerms of the birth rate (BR) and the
current population.

Flows in SMILE are unconstrained other than byrteguation. Vendor-specific features
such as Uniflows, which prevent a flow from takimgp negative values, are not
supported.

1.3 Auxiliaries

Auxiliaries allow the isolation of any algebraicnfttion that is used. They can both
clarify a model and factor out important or repdatalculations. They are defined using
any algebraic expression (including a constantefakr a table function.

During the course of a simulation, an auxiliary&ue is evaluated each DT based on the
current state of the system. A sample DYNAMO aaxyl specification appears below.

A BR.K =0.1*FAM.K

This equation defines the birth rate in terms & thase birth rate (0.1) and a food
availability multiplier.

¥ DYNAMO explicitly separated the definition of anstant from that of an algebraic expression. The
distinction was necessary as auxiliaries requined K suffix, while constants did not.

SMILE and XMILE 3 K. Chichakly © 2007

1.4 Graphical Functions

Graphical functions are alternately called lookupdtions and table functions. They
represent a functional mapping between two vargabléfhe domain is consistently
referred to ag and the range is consistently referred tg.as

Since every modern program displays table functamngraphs, and most allow the users
to edit the functions by drawing the graph, themieplogy used here is “graphical
functions.”

Although some vendors support arbitrary setxof)¢pairs, DYNAMO only supported a
fixed increment fox. This is what this standard supports.

A sample DYNAMO table function appears below.

A FAM.K = TABLE(FAMT, FOOD K, 0, 1, .1)
T FAMT = 0/.3/.55/.7/.83/.9/.95/.98/.99/.995/1

The table lookup function defines thevalues (FAMT), the input (oK) variable
(FOOD.K), the bounds or (0 to 1) and the-increment (0.1). Note that the supported
functionality requires a fixed-increment. XMILE has a representation for arloytre,
y)-pairs, but they are not part of the languagee gitaph of this function appears below.

The above is a continuous graphical function. rinegliate values are calculated with
linear interpolation between the intermediate IintSMILE also supports discrete
graphical functions, which use the value associatighl the next lowex-coordinate for
intermediate values (also called a step-wise fongti The last two points of a discrete
graphical function must have the sayreoordinate.

1.5 Groups

Groups (aka sectors) were not supported by DYNAM{@wever, they are an important
feature for building large models. Groups are wiskir collecting related model entities
in one place. Some programs allow these sepateto be simulated separately.

SMILE and XMILE 4 K. Chichakly © 2007

Every group has a unigue name and documentatibrmay have other information
related to its display, but that is not part of &I

2.0 General Conventions

All statements and constants follow US English @mions. So built-in functions are in
English, operators are based on the Roman chasetteand constants have US English
delimiters (that is, a period is used for a decipwht).

Variable names, comments, and embedded text mimcakzed.
2.1 Constants

As mentioned, constants follow US English convergioAll constants are floating point
numbers in decimal. They can begin with eitherggt or a decimal point. There can be
any number of digits before or after the decimahpdut must contain at least one digit.
A decimal point is not required. The number campgonal followed by an “E” (or “e”)
and a signed integer constant. The “E” is usedhasthand for scientific notation and
represents “times ten to the power of”.

Although the number of digits is not explicitly tested, only so many digits of precision

are retained by each vendor’s program. Howevanhaus in all programs should have
at least the precision of IEEE single-precisiorafiog point numbers. The same applies
for the exponent.

Constants, like variables, can be modified by dpesa including unary plus and unary
minus. Thus, it is possible to enter negative tants also.

In BNF,

constant:= { [digit]+[[digit]*] | [digit]* [digit]+ }[{ E |& [{ + | [digit]*
digit::={0|1|2|3]4]5|6]|7|8]9}

Note the leading sign+{ |-} is not explicitly included as expressions hanithlis.
Sample constants: 0 -1 375 14, 6e5 8.123e-10
2.2 ldentifiers

Identifiers are used throughout a model to identifyious things. The most obvious
names are given to variables. However, nameslsoegaven to units, subscripts, groups
(or sectors), and models (described below). Mdsthese identifiers will appear in

equations (the group name is perhaps the only éecgpand as such need to follow
certain rules to allow for well-formed expressions.

SMILE and XMILE 5 K. Chichakly © 2007

Due to differences in different vendors’ produatss a challenge to a set of rules that
works for everyone. The approach taken here gefome a basic set of rules and then
allow escape conventions to handle other cases.

As a basic premise, it is fair to say that ideatsi should not be defined such that they
could make expressions ambiguous. By this ruleers¢ characters that are used as
operator expressions and delimiters can be immegiailed out. These include:

<>+ ==() [1{}
Since we propose to use braces { } for in-line cants, these also need to be ruled out.

We also need to rule out starting characters tteat cause confusion. For example, we
cannot start an identifier with a digit as thath®w constants begin. Some languages
restrict what an identifier can start with, ratliesn ruling things out. Java, for example,

states that an identifier can only begin with &eletan underscore, or a dollar sign. This
is, unfortunately, over-restrictive for our use,v&s want user to be able to localize their
names. In this case, we may want to focus on ddjtianal unary operators that have

not yet been covered, specifically !, #, and &.

Finally, white space is used by parsers to breatokens. Thus, spaces cannot appear in
identifiers. The standard approach is to replgEeass with underscores internally, but
then change them back to spaces for display outdidguations.

There is an unresolved issue around the use ofnré¢tw’, not \n’) in variable names.
Some products allow it and others do not. It ishpps safest to allow it with the
understanding that the standard mapping will mép &n underscore.

For products that allow these characters in idensif there needs to be a way of
delimiting the additional characters. In VenSior, éxample, spaces and other characters
are allowed as long as the entire identifier iguotes (thus identifiers in VenSim cannot
have quotes in them). This approach is also takerscripting shells. In most
programming languages, there is an escape chathatetauses the next character to be
taken out literally (rather than interpreted). dh of the C-derived languages, this
character is backslash. It is proposed here tbtt tmethods be supported as ways of
delimiting illegal characters. Double-quotes vii# used to delimit entire “identifiers”
while the backslash \ will be used to delimit sengharacters. This necessarily means
that double-quotes in variable names always neée telimited \” (whether in quote or
not) and that backslash needs to be delimited &nwiot in quotes.

For products that cannot support other charactergdentifiers, there must also be
mappings to characters they allow. For exampleymewould generally be mapped to
underscore. The exact definition of these mappisgeft for XMILE (but they will
likely be defined using an XSLT provided by the@fie vendor).

Note that identifiers araot case-sensitive and that all built-in function namaperator
names, and statement keywords are reserved.

SMILE and XMILE 6 K. Chichakly © 2007

Sample identifiers: Cash_Balance draining wom_ipligt

3.0 Expressions
Equations are defined using expressions. The sshpkpression is just a constant.

Expressions are infix (e.g., algebraic), followthg general rules of algebraic precedence
(parenthesis, exponents, multiplication and divisiand addition and subtraction).
Unfortunately, our set of operators is much ricllean basic algebra, so we have to
account for functions, unary operators, and retati@perators. In general, the rules or
precedence and associativity (the order of comjpmawhen operators have the same
precedence) follow the established rules of theeivdd languages.

3.1 Operators

The following table lists the supported operatorpiecedence order. All but the unary
operators have left-to-right associativity (rightleft is the only thing that makes sense
for unary operators).

[] Subscripts

() Parentheses

A Exponentiation

+—-NOT Unary operators positive, negative, argical not

*[% Multiplication, division, modulo [should thibe included?]
+— Addition, subtraction

<<=>>= Relational operators

== Equality operators (in mathematics, != isat&nal)

AND Logical and

OR Logical or

Note the logical, relational, and equality operatare all defined to return zero (0) if the
result is false and one (1) if the result is true.

Sample expressions: a*b (x <5) AND (y >=3) 8)
3.2 Structured Statements
One control structure statement is supported:

if conditionthen expressiorelseexpression

whereconditionis an expression that evaluates to true or falsef¢llow the convention
of C that all non-zero values are true, while zerfalse). Generally, this is an expression
involving the logical, relational, and equality ogtors.

Note that many vendors implement this in the DYNAM&nd original FORTRAN)
fashion, i.e., as a built-in function:

SMILE and XMILE 7 K. Chichakly © 2007

if_then_elsdcondition then-expressiqgrelse-expressign

This makes the language a little easier to parseisaa supported alternative (while the
former is generally considered easier to compreheNdte DYNAMO implemented this
functionality with theCLIP function.

3.3 In-line Comments

Comments are provided to include explanatory test is ignored by the computer.
Comment are delimited by braces { } and can be udetl anywhere within an
expression. This functionality allows the moddiertemporarily turn off parts of an
equation or to comment the separate parts of a leoxnmigrmulation.

Sample comments: a*b { take product of a and bc}{+and add c }
3.4 Documentation

Each variable has its own documentation, which islack of text unrelated to the
equation. Each vendor has their own way to entuchentation, some within
expressions. XMILE define how documentation igexto

3.5 Units

Each variable has its own set of units. Each vehads their own way to enter units,
some within expressions. XMILE defines how units stored.

Each model has a defined unit of time. The preaefiunits are:

ns nanoseconds
us microseconds
ms milliseconds
S seconds

min minutes

hr hours

day days

wk weeks

mo months

gtr quarters

yr years

time unspecified time units

In general, units should be abbreviated to thetepted forms, e.g., “mi” for miles, “Ib”
for pounds, “km” for kilometers, “kg” for kilogramsetc. Unit specifications are
expressions in their own right. They are, howekestricted to the operations *, *, and /.

SMILE and XMILE 8 K. Chichakly © 2007

4.0 Built-in Functions

Certain built-in functions must be relied upon asrall systems. This section strives to
define the minimum set of built-in functions thaush be supported, along with their
parameters. The mechanism for defining vendoripduiilt-ins is also described.

4.1 Mathematical Functions

ABS: absolute value (magnitude) of a number
Parameters: 1: the number to take the absolute vl
Range: [0[])

Example: abs(Balance)

ARCTAN: arctangent of a number

Parameters: 1. the number to take the arctangent o
Range: (U2, 2)

Example: arctan(x)

COsS: cosine of an angle in radians

Parameters: 1: the number to take the cosine of
Range: [-1, 1]

Example: cos(angle)

EXP: value ok raised to the given power
Parameters: 1: the power en

Range: E5,0)

Example: exp(x)

INT: next integer less than or equal to the gimamber
Parameters: 1: the number to find next lowesgertef
Range: (£1,00); note negative fractional numbers increase innitade
Example: int(x)

LN: natural (base) logarithm of the given number
Parameters: 1. the number to find the naturalritga of
Range: [@,]); note domain is (QJ)

Example: In(x)

LOG10: base-10 logarithm of the given number
Parameters: 1: the number to find the base-1Gitbgaof
Range: [@;]); note domain is (Q])

Example: log10(x)

MAX: larger of two numbers

Parameters: 2: the numbers to compare

Example: max(X, y)

SMILE and XMILE 9 K. Chichakly © 2007

MIN:
Parameters:
Example:

MOD:

Parameters:
Range:

Example:

Pl
Parameters:
Example:

SIN:
Parameters:
Range:
Example:

SQRT:
Parameters:
Range:
Example:

TAN:
Parameters:

Range:
Example:

smaller of two numbers
2: the numbers to compare
min(x, y)
remainder of dividing two numbers
Mathematical definition: a = INT(a/b)*b + MOD(h)
2:d{vidend divisor); divisor# 0
[Odivisor) if divisor> 0
(-divisor, 0] if divisor< 0
mod(month, 12)

value offt, the ratio of a circle’s circumference to its deter
none
pi

sine of an angle in radians

1: the number to take the sine of
['11 1]
sin(angle)

square root of a positive number
1. the number to take the squareofoot
[0[]); note domain is the same

sqrt(x)

tangent of an angle in radians

1. the number to take the tangent of
undefined for odd multiples af/2

E.0)

tan(angle)

4 .2 Statistical Functions

EXPRND:
Parameters:

Example:

NORMAL:
Parameters:

Example:

RANDOM:
Parameters:

Example:

SMILE and XMILE

Sample a value from an Exponential distrdou

1 or 2 mearj, seed) O < seed <
If seedis provided, the sequence of numbers will alwaysdentical
exprnd(8) samples from an exponentiafidigion with mean 8

32,768

Sample a value from a Normal distribution
2 or 3: mean standard deviatioh seed) 0 < seed < 32,768
If seedis provided, the sequence of numbers will alwaysdentical
normal(100, 5) samples fré¥(iL00, 5)

Sample a value from a uniform distribution

2 or 3: minimum maximum, seed) 0 < seed < 32,768
If seedis provided, the sequence of numbers will alwaysdentical
random(1, 100) picks a random number katvieand 100

10 K. Chichakly © 2007

4.3 Delay Functions

DELAY:

Parameters:

Example:

DELAY1:

Parameters:

Example:

DELAY3:

Parameters:

Example:

DELAYN:

Parameters:

Example:

SMTH1:

Parameters:

Example:

SMTH3:

Parameters:

Example:

SMTHN:

Parameters:

Example:

infinite-order material delay of the inputifthe requested fixed time

2 or 3: input, delay timé, initial valug])
If initial valueis not provided, the initial value afput will be used
delay(orders, 5)
first-order material delay of the input ftre requested fixed time

2 or 3: input, delay timé, initial valug])
If initial valueis not provided, the initial value afput will be used
delayl(orders, 5)
third-order material delay of the input ftirve requested fixed time

2 or 3: input, delay timé, initial valug])
If initial value is not provided, the initial value afput will be used
delay3(orders, 5)

Nth-order material delay of the input fdre requested fixed time
3 or 4 input, delay time, b initial valug])

If initial value is not provided, the initial value afput will be used
delayn(orders, 5, 10) delays orders usib@ order material delay

1st-order exponential smooth of the inputtfe requested time

2 or 3: input, averaging timg initial value))
If initial valueis not provided, the initial value afput will be used
smth1(Quality, 5)
3rd-order exponential smooth of the inputtfee requested time

2 or 3: input, averaging timg initial value))
If initial value is not provided, the initial value afput will be used
smth3(Quality, 5)

Nth-order exponential smooth of the inputtfee requested time
3 or 4 input, averaging time n[, initial valu€])

If initial value is not provided, the initial value afput will be used
smthn(Quality, 5, 10) performs &"dder smooth

4.4 Test Input Functions

PULSE: Generate a one-DT wide pulse at the givan ti
Parameters: 2 or 3m@gnitudefirst timd, intervall)
Withoutinterval, the PULSE is generated only once
Example: pulse(20, 12, 5) generates a pulse of #tha 12, 17, 22, etc.
RAMP: Generate a linearly increasing value oveetinith the given slope
Parameters: 2:slope start timg; begin in-/de-creasing atart time
Example: ramp(2, 5) generates a ramp of slope by at time 5
SMILE and XMILE 11 K. Chichakly © 2007

STEP: Generate a step increase (or decrease) givéim time
Parameters: 2:hgight start timg; step up/down atart time
Example: step(6, 3) steps from O to 6 at time 8 &ays there)

4.5 Time Functions

DT: value of DT, the integration step
Parameters: none
Example: dt

STARTTIME: starting time of the simulation
Parameters: none
Example: starttime

STOPTIME: ending time of the simulation
Parameters: none

Example: stoptime

TIME: current time of the simulation
Parameters: none

Example: time

4.6 Miscellaneous Functions

IF_THEN_ELSE Select one of two values based on a condition
Parameters: 3:cOndition true value false valug
If conditionis non-zero, it is true; otherwise, it is false

Example: if_then_else(x < 3, -4, 11) will be -4is 3 and 11 otherwise
INIT: initial value (value at STARTTIME) of a vable

Parameters: 1: the number to get the initial value

Example: init(Balance)

4.7 Defining Unsupported Built-ins

There must be a way for vendors to specify theatfmer of both their own functions and
the functions of other vendor that their users wisluse. In the latter case, these can
clearly map to either their own functions or to BIILE functions (preferred when no
translation is given for a vendor’s function). &tlg, vendor-specific function names
would be prefixed by a vendor identifier to avoidnflicting names between both
different vendors and SMILE.

As a simple example, let us say that vendor A dmédhave a LOG10 built-in, but has a
general (any base) LOG built-in. That vendor stidben be able to map any LOG10(x)
function to LOG(x, 10) when the file is read-in.orversely, if the vendor wishes to use
their general LOG function within SMILE, they shdube able to provide a translation
that maps LOG(x, y) to LN(x)/LN(y) (change of basemula — LOG10 works just as

well).

SMILE and XMILE 12 K. Chichakly © 2007

The first kind of translation, from SMILE functiorte the vendor’s functions, could be
handled either by the vendor as the file is readirthrough an XSLT translator. The
macro functionality described below would also Harttlis (they would create a macro
for a SMILE function).

The second kind of translation, mapping unsuppoitedtions in the file to SMILE, is
the main focus of this section. Every unsuppolteiit-in that a vendor wants to appear
within a SMILE file needs to be defined in a SMlbacro. The macros may appear in
the same file as the model or in a separate fiteis, however, more likely that each
vendor will provide their own file of macros to uséh their models.

Macros can also be used to implement complicatéidrpsuch as stock non-negativity
and uniflows. It would, of course, be necessargdd an additional function call to the
[out]flow equation to achieve this.

Macros can use all of the syntax of SMILE to achiéweir result (it goes without saying
that SMILE implementations must support macros)he Bimplest kind of macro is
simply an expression using existing (including tlglb macros) functions and operators.
The change of base formula above is a good example.

More complicated macros can define stocks, flowsd, @uxiliaries to do their work. This
would be the approach, for example, to implemerstireoth function if one did not
already exist.

The name of the macro is the same as the name=diitittion. In addition, variable
numbers of arguments are not supported, but the saactro can be defined multiple
times with a different number of arguments. Indeethacro can have the same name as
a SMILE function, providing it uses a different niien of arguments. Finally, the names
of any variables (including parameter identifiedtefined within a macro are local to that
macro alone and will not conflict with any nameshi either the model or other
macros.

There are also various unsupported options (venthrsalso add their own) for building
blocks. One way to handle these would be to ddfimié-in macros that are used to
envelope an object’'s equation. Non-negative fl¢galsa uniflows), for example, could
have their equations wrapped in a built-in macad tnplements MAX(<flow value>, 0).

Ideally, macros would support these options withHmaiing to change the equations. For
the simple cases, such as non-negative flows,dimat can mimic the built-in macros.
However, more complicated options require greatppsert. For example, non-negative
stocks implement the non-negative logic in the lIstooutflows not in the stock itself.
Furthermore, each outflow needs not only its owluesabut the stock’s value, and the
sum of the values of every higher-priority flow (i, yes, the stock could find for it).

SMILE therefore supportsptions with macrdilters. The filters run after the object’s
value has been computed. If several filters asxled, they would run in the order they
appear in the options list. A basic filter wouldly affect the given object, and so is
passed just the object itself. More complicatdigrs affect inflows or outflows of the

SMILE and XMILE 13 K. Chichakly © 2007

object and need to be invoked for those inflowsutflows and not for the object. They
then need to be passed the affected flow, the gteek, and the sum of the inflows or
outflows already evaluated (or perhaps both).

The exact format of macros is left to the XMILE daowent.

5.0 Simulation Specifications

Every SMILE model must specify the start time of gimulation, the stop time of the
simulation, DT, and the units of time.

By default, the integration method is Euler’s, btlier methods are supported as follows:

SMILE Name Integration Method

Euler Euler's method

RK2 Runge-Kutta 2

RK4 Runge-Kutta 4

RK_Var Runge-Kutta Variable Step Size (optional)
Gear Gear algorithm (optional)

Additional integration methods can be supportedooglly. In these cases, a supported
fallback method should be also provided, for exampGear, RK4”. This means that
Gear should be used if the product supports ihefdtise, use RK4.

The language also supports an optional pause alter8y default, a model runs to
completion (from STARTTIME to STOPTIME). If, howex, the pause interval is
specified, the model will pause at all times thattech STARTTIME + interval*N; N > 0.
Products are free to ignore this specification héyt do not support this mode of
operation.

6.0 Optional Functionality

It is expected that compliant products will implerhéhe language thus far described in
its entirety. There are, however, a number ofuiest that are left to each vendor’s
discretion as to whether or not to support. Thaeenot intended to be vendor-specific
features, but common features that lighter packaggseither not support, or support in
part. These features include conveyors, queues/sarand hierarchical models.

6.1 Conveyors

A conveyor conceptually works like the real thin@bjects get on at one end and some
time later (the length of the conveyor), they td#ll. Some things can leak out (fall off!)
of a conveyor partway, so there is also a leakbmye. f In addition, the conveyor has a
variable speed control, so you can change theharfigime something stays on it.

SMILE and XMILE 14 K. Chichakly © 2007

Note this behavior means a conveyor can have at twosoutflows. If there is only one
outflow, it must be the stuff coming off the end thie conveyor. If there are two
outflows, the first is always the conveyor’s outpwhile the second is the conveyor’s
leakage.

6.2 Queues

Queues are first-in, first-out objects that tracidividual batches that enter them
(otherwise, they'd just be stocks). The first baitc is the first batch to leave. Queues
are important when it is necessary to track batcreshen there are input constraints
downstream that force the queue outflow to zero é@ample a capacity issue on a
conveyor).

6.3 Arrays

Arrays add depth to a model in up to N dimensioRsoducts that support arrays offer
different values of N.

Arrays are defined with dimension names. Each wadimmension also has a name for
each of its indices. For example, a two dimendianay of location vs. product could
have a dimension called “location” with three irelic'‘Boston”, “Chicago”, “LA”, and
another dimension called “product” with four indic&lresses”, “blouses”, “skirts”, and
“pants”. If we are looking at sales, we might haverariable sales[location, product]
which has elements sales[Boston, dresses], salsg[Boblouses], etc. Note that both
dimension names and subscript names are identifi&sgbscripts also appear within
square brackets with each index separated by a eonfrays are stored in row-major
order, which may only be an issue when lookingadia dets.

Some programs do not allow the subscript indicdsdware text) to be numbers (just as
other identifiers cannot be numbers), while otltersallow them to be numbers, but still
treat them as textual labels. This will need t@tddressed.

6.4 Hierarchy

“Hierarchical models” is really a misnomer. Thati@es explained here could be used to
set up a hierarchical system, but by no means teég used in that way. What this
section supports is the idea of independent moasdep (for lack of a better word)
interacting with each other in some way (i.e., Bitamodel inputs and outputs). These
pieces may or may not have separate simulationfgaions, though this does not make
a lot of sense unless the pieces are arrangedrdherally. The semantics of any
differences will eventually be described here.

The most relevant issue for SMILE is how these alisfe model pieces communicate
with each other. It is necessary for each of thmsees to be uniquely named. It is then
possible for any object to reference any otherailgeross the entire model, by using the
name of the model piece followed by a period aredrthme of the entity. Note this, in

effect, introduces separate namespaces for edble aiodel pieces. For example, if | am

SMILE and XMILE 15 K. Chichakly © 2007

in a model called “finance” and | need the varialdgpenditures” from the model
“marketing”, | could reference it as “marketing.exylitures”.

XMILE Specification

1.0 XMILE Standard Levels

The interchange format is built in three layersliéchcompliance leve)s Each level
builds upon the prior level in a way that allowsgnams that only support the lowest
level to still read files generated at the highegel. The compliance levels are:

1: Simulation
2: Display
3: Interface

As engineers, perhaps we should give them mordicngames, such as “Level 307.43b”
or “Subset g”, but | think “Level 1 compliance”ssifficiently obscure already.

The first layer, Simulation, is the minimal levetaded for compliance. We intend for
everyone to support this layer. This represenlyg thve underlying equations of a model
in SMILE. If we wished to have an unstructured tiexmat, this could be accomplished
by using a variant of DYNAMO or MDL. It represerttse basic information necessary
to simulate the model (we could also name it thedtigns layer).

The second layer, Display, adds the informationeasary to both display and edit the
stock-flow diagram of the model. We hope everyaiiealso implement this layer.

The third layer, Interface, adds layout informatinacessary for management flight
simulators, i.e., user interfaces on top of modeRhis layer also includes all output
devices, such as graphs and tables, so it is |&edyyone will support part of this.

2.0 Overall Architecture

A XMILE file begins with a header that identifieeet vendor, program, and version
number that created the file. It also includesinfation about advanced features used in
the model, such as arrays (with the number of dsioers) or conveyors, so programs
that do not support the higher-order SMILE funcéilbly can find out right off and tell
the user.

SMILE and XMILE 16 K. Chichakly © 2007

The file is conceptually broken into three secti¢im®ugh, in practice, these pieces are
interwoven):

e Model
* Presentation
* Widgets

Any data from simulation runs is kept separate ftbra information about the structure
of the model. It is still on the table whethereparate data layer should be included to
support the display of graphs and tables when tbdemis opened (it is likely that we
will need to support some data interchange).

Although sections include room for vendor-spec#xtensions, it is recommended to
tread lightly in this area.

2.1 Model

The model section corresponds exactly to the Simamldevel. It conforms to SMILE
and contains all the information necessary to sateuthe model.

2.2 Presentation

The presentation section is necessary to supperDisplay level, but it is not restricted
to that level. Presentation involves all aspedtsdi@mwing an object, including its
position, its color, its font, its relative sizéce

Presentation information is hierarchical in the samay cascading style sheet and XML
style sheets are. Global styles can be defineth(as “all stocks are blue”) and can then
be overridden at any level. The presentation médron is stored in XSL format.

Note that this is used Wyoththe Display and Interface levels.
2.3 Widgets

Widgets are the objects used in the model to stpperuse of the model, such as graphs,
tables, sliders, knobs, etc. As such, widgetsédivirely in the Interface level.

This section of the file defines the specific witgéeing used with their necessary
parameters, but not their presentation. For exeyra entry may describe a slider as
controlling a specific model variable with a givexmge and increment.

SMILE and XMILE 17 K. Chichakly © 2007

3.0 XMILE Headers
The entire XMILE file is enclosed within<xmile> tag as follows:

<xmile xmIns="http://www.systemdynamics.org/XMILE">
</xmile>

This is followed by the header. The header costamportant information about the
origin of the model. Some of this information exjuired, but other pieces are optional.
The XML tag for the header iheader> . The required pieces are:

e XMILE version: <xmile_version> w/version number

* XMILE compliance level:<xmile_level> w/level number

e SMILE version: <smile_version> w/version number

* SMILE optional features used in modeismile_options> (defined below)

* Vendor name:<vendor> w/company name

* Product namexproduct> w/product name

* Product version<version> wj/version number

» Language code (for variable names and commentsg 80 639-1; must use
639-2 if language missing from 639-1 — e.g., Haagii <lang> w/code

Optional pieces include:

 Model name: <name> w/name
* Model caption:<caption> w/caption
* Picture of the model in JPG, GIF, TIF, or PNG formeaview> w/filename

or <view type="jpg"> w/picture data
* Author name:<author> w/author name
e Company namexaffiliation> w/company name

* Client name:<client> wi/client name

» Copyright notice:<copyright> w/copyright information

» Contact information (e-mail, phone, mailing addressb site — user-defined):
<contact> w/contact information [perhaps separate out eJmail

* Date created<created> w/’'mm/dd/yyyy hh:mm xm”, where “x” is “a” or “p”
(leading zeroes suppressed)
» Date modified:<modified> w/date as above

SMILE and XMILE 18 K. Chichakly © 2007

3.1 SMILE Options

SMILE options is a list of optional functionalitysed in the model file. The available
options are:

<uses_conveyor/>
<uses_queue/>

<uses_arrays> N</uses_arrays> , whereN is the number of dimensions used
<uses_hierarchy/>

3.2 Style Information

Every XMILE file can include some style informatiom set default options. Being style
information, this mostly belongs to the Presentatgection (which affects both the
Display and Interface layers). However, it is giessible to set default styles for Model
and Widget sections, for example, all stocks aremegative.

The style information for the entire model immedigtfollows the header. Note that the
style information can be repeated in each Modeti@edo override specific global
defaults (note it is also legitimate for it to orlgpear in Model sections that need it).

It is presently thought that the style informatigii match the CSS format and keywords
(augmented). However, it is not envisioned thaséhwill be changed externally and
they are within an XML file. Therefore, it is molikely they will appear in XML using
the same tags that are used in the objects theesselWvhis section will assume the latter
in its discussion.

The style block begins with thestyle> tag. Within this block, any known object can
have its attributes set globally (but overriddewgalty) using its own modifier tags.
Global settings that apply to everything that hgsgicular tag can be set at the model
level. For example, the following sets the fortlglly to 12 pt and Tahoma (or failing
Tahoma, a sans serif font), the background to whitd the color of objects to blue:

<model>
12 pt Tahoma, sans-serif
<background>white</background>
<color>blue</color>

</model>

These changes can also be applied directly to shjeq.,
<connector>

<color>magenta</color>
</connector>

As already stated, these settings can also betfreriviodel section:

<stock>
<options>

SMILE and XMILE 19 K. Chichakly © 2007

<non_negative/>
</options>
</stock>
<flow>
<options>
<non_negative/>
</options>
</flow>

In this particular case, where the same optioreiaghapplied to all objects that accept it
(stocks and flows are the only objects that camdwe-negative), it would be better to
apply that option to the model.

3.3 Simulation Specifications

Every XMILE file with a Model section must contaat least one set of simulation
specifications, as required in the SMILE languag@é&e simulation specifications for the
entire model appear immediately after the stylermfation (if present, otherwise after
the header). This set must always be presente that the simulation specifications can
be repeated in each Model section to override Speagibbal defaults. Great care must
be taken in these situations, as outlined in théLEMiocument.

The simulation specifications block begins with tiag <simspecs> . The following
properties are required:

» Step size:<dt> wl/value

e Unit of time: <time_units> wW/SMILE code
o Start time:<start> w/time

» Stop time: <stop> w/time (after start time)

Optional properties:

e Integration method<method> w/SMILE code (default: Euler’s)
* Pause interval<pause> w/interval (default: infinity — can be ignored)

All of the optional properties define default sedis that are to be used if the property is
not included.

4.0 Level 1: Simulation

The simulation layer supports all of the featuréshe SMILE language, in the required
formats. The simulation specifications block hikealy been described and, along with
the header and style blocks, is part of this lev€he meat of this layer is within the
model block. Note that there can be many modelkslo

Each model block uses the XML tagnodel>. The model block must begin with a
<name> field. In most models, this will be empty (i.ecpame/>). However, if

SMILE and XMILE 20 K. Chichakly © 2007

uses_hierarchy is set, the name is required (in this case, théeincontents can be in
a separate file referenced through a URL path).

As mentioned above, the model block can includéeeitor both of the style and
simulation specs blocks, overriding only thoseisg#t that are desired. These blocks
should appear just after the name block.

Finally, the model building blocks (stocks, floves)d auxiliaries) defined by SMILE are
listed in any order (except those within groups napgpear within that group’s block).

4.1 Building Block Properties

All building blocks can have the following propedi

* Name: <name> w/valid identifier

» Equation: <eqn> wi/valid expression in a CDATA section (unless ¢ang
e Units: <units> wi/valid units

» Documentation:<doc> w/block of text

* Options block:<options> w/block specific options

Of these, the name and the equation are requirad building blocks. In addition, the
name must be unique across the model block. Btock, the equation is for the stock’s
initial value, rather than for the stock itself.

Flows and auxiliaries can also be defined as gcabtiunctions. This is done using a
<gf> block, as shown below.

<gf>
<xscale>0,0.5</xscale> <l-- min and max -->
<yscale>0,1</yscale> <!-- min and max -->
<pts>0.05,0.1,0.2,0.25,0.3,0.33</pts>

</gf>

As can be seen, the bounds of the x and y scategi\an, followed by a set gfvalues
(tagged<pts>). The (fixed) increment along theaxis is determined by dividing the
length of thex-scale by the number of points.

Alternatively, though not guaranteed to be undedib the x-increment is not constant,
the entire graphical function can be defined asréed (byx) series of X, y)-pairs. A
representation equivalent to the above graphigadtfan is shown below.

<gf>
<yscale>0,1</yscale> <!-- min and max -->
<pts>0,0.05;0.1,0.1;0.2,0.2;0.3,0.25;0.4,0.3;0.5,0 .33</pts>
</gf>

SMILE and XMILE 21 K. Chichakly © 2007

Note the x-scale is now inferred from the bounds of the giyayints. In either
formulation, they-scale only needs to be included if the desiredesddfers from the
minimum and maximumg-values in the set of points.

Graphical functions have one option:

<discrete/>

When this is set, no interpolation is done betwpemts. Instead, the data values
represent a step-wise function where the stepsraiceachx-coordinate. Necessarily,
the last point must equal the second to last poimg should be enforced if it is not the
case).

4.2 Stocks

The minimum requirement for a stock is name, atiainvalue, and a set of flows. Rather
than write a stock equation, SMILE mandates thatclassify the flows that affect the
stock as either inflows or outflows (the classifioca is based on the direction of flow
when the flow rates are positive —negative inflots flow outward while negative

outflows do flow inward). The basic stock defiaitiis shown below with sample values.

<stock>
<name>Motivation</name>
<eqn>100</eqn>
<inflows>increasing</inflows>
<outflows>decreasing</outflows>
</stock>

Note again that the equation is for the stock’s§ahivalue only. If the equation is not
constant, the initial values of the included vakeabwill be used to calculate the stock’s
initial value.

There need not be a list of inflows or outflowd.there are multiple inflows, they are
listed separated by commas (egnflows>inl,in2</inflows>). If the order of
input is important (inflow priority), it is takerotbe the order they appear in this comma-
separated list. Multiple outflows also appear sajgal by commas. The order that they
appear in this list is their outflow priority, ihat is important. l.e., material from the
stock is first given to the first flow on this listf there is still something in the stock, the
second flow gets some of it. This example assutina@sthe stock in question cannot
become negative (for example, Inventory).

The options for a stock are:
<conveyor>5</conveyor> <!-- number is length of con veyor -->
<queue/>

<non_negative/>

Note that non-negative is not supported by SMILEThe flag exists partly for
documentation, partly to allow a vendor to invoke naacro to implement the

SMILE and XMILE 22 K. Chichakly © 2007

functionality. If this property has been set & thobal level, it can be turned off locally
with <non_negative>false</non_negative>

The conveyor option includes the conveyor's len@gthnsit time). This can be an
equation if the conveyor’s length varies.cdihveyor is included, there can be no more
than two outflows. The first outflow in the outfis list isby definitionthe conveyor
outflow, while the second is the leakage outflodther conveyor options are:

<capacity>20</capacity> <!-- maximum allowed on con veyor -->
<in_limit>5</in_limit> <!-- most that can be taken from q -->
<batch_integrity/> <!l-- maintain g batches -->

The last option is only available when there isweuwg directly upstream from the
conveyor (equivalent to “one at a time and donlit dgatches”, without it we have “as
much as possible and split batches” — think abdwdther split batches ever wants to be
off). Thein_limit is only needed when either there is a queue thrapsstream from
the conveyor, or there are several inflows to tbeveyor (in which case the limit is
applied in priority order). The latter case mayt be supported as it can easily be
reformulated in the same was as non-negativity.

Queues do not have any options. However, theftooud have a priority order and can
have the<overflow/> option set (on all but the first).

See the SMILE document for further details.
4.3 Flows

A flow requires a name and an equatidn. the case of conveyor and queue outflows,
there is no equation (the conveyor and queue dhge). The conveyor leakage flow,
however, does have an equation for its leakagdidrac The basic flow definition is
shown below with sample values.

<flow>

<name>increasing</name>

<egn> <![CDATA[rewards*reward_multiplier]]></eqn>
</flow>

The options for a flow are:

<non_negative/>
<overflow/>

The first is used to document a uniflow, while #ezond is only used for queue outflows
(see stocks above). While it is tempting to addmel queue outflows, conveyor outflows,
and leakage outflows with special tags, these grehdir nature already defined by the
stocks that use them. There is no need to repsanformation here.

SMILE and XMILE 23 K. Chichakly © 2007

4.4 Auxiliaries

Auxiliaries, like flows, also require a name and equation. The basic auxiliary
definition is shown below with sample values.

<aux>
<name>reward_multiplier</name>
<eqn>0.15</eqn>

</aux>

This particular auxiliary is a constant (i.e., @p@nds on no other variables and its value
does not change).

4.5 Groups

Groups require a name and may have documentafiie.<group> tag surrounds the
entities in that group. The block must begin whle name and any documentation, as
shown below.

<group>
<name>Financial_Sector</name>
<doc>
The operation of the Finance department is modele din
this sector.
</doc>
<stock>

</stock>
<flow>

</flow>
</g.r-<')up>
All of the objects within a group belong to thabgp.
4.6 Built-in Function Translation Macros

SMILE provides for translation of unrecognized binls into SMILE (or anything else,
for that matter). There is also mechanism to @efiracros to implement non-standard
building-block macros.

Macros live outside of all other blocks (and mayttoe only thing in a file other than its
header). The set of macros is tagged with<imacros> tag. Within this block is a
series of macros, identified by their owmacro> tag (note that macros for options,
when they exist, will likely use a different tagEach macro begins with its name and
parameters. It must also have an equation thateteits value, as shown below.

<macro>
<name>LOG(X, Y)</name>

SMILE and XMILE 24 K. Chichakly © 2007

<egn> <!/[CDATA[LN(X)/LN(Y) J]></egn>
</macro>

This form is useful when functions can be direaiypresented by existing built-ins.

However, sometimes extra variables (stocks, floassiliaries) are needed. In these
cases, the extra variables must also be definethéirsame way they are defined in the
model). This is shown below.

<macro>
<name>SMOOTH1(input, averaging_time)</name>
<eqn>Smooth_of Input</egn>
<stock>
<name>Smooth_of Input</name>
<egn>input</egn>
<inflows>change_in_smooth</inflows>
</stock>
<flow>
<name>change_in_smooth</name>
<eqgn> <![CDATA[(input — Smooth_of_Input)/averaging_time]]></eqn>
</flow>
</macro>

This is identical to the SMTH1 function without tlogtional third parameter (which
would replace the initial value equation of Smoath Input if it were given), so this is a
trivial example (i.e., the equation could just BMdTH1(input, averaging_time) to do the
same thing). However, it clearly demonstrates ghaererality and applicability of this
mechanism.

Note that any stocks that are defined within a manust have their own instances for
each use of that macro which persist across thelation. That is to say, if this
SMOOTHL1 function is used five times in a model,réhenust also be five copies of the
stock Smooth_of Input, one for each use. Useosidland auxiliaries do not require this
(auxiliaries, in particular, are useful to simplthye equation into meaningful pieces).

Here is a simple (i.e., self-contained) optionefilt This implements non-negativity for
flows (i.e., makes them uniflows).

<option_filter>
<flow>
<name>non_negative(flow, value)</name>
<egn> <![CDATA[IF value THEN MAX(flow, 0) ELSE flow]]></egn>
<[/flow>
</option_filter>

The name of the macro is the same as the optiore rzam it is passed the value of the
object calculated without the option, as well as ¢halue of the option (true: 1, false: 0).
The result replaces the object’s value.

Because options are shared by different objectsneesl a way to distinguish between
the different object types. This is done by uding correct tag for the object inside the

SMILE and XMILE 25 K. Chichakly © 2007

macro (“<flow>" is used above to show this is awloption macro). Optional
parameters can then be added to the type in amj@ement more sophisticated macros
(shown below).

Here’s an attempt at implementing the non-negaiptéon for stocks.

<option_filter>
<stock applyto="outflows”>
<name>non_negative(flow, value, stock, outflow_su m)</name>
<eqn> <I[CDATA]
IF value
THEN MAX(stock/DT — outflow_sum, flow)
ELSE flow
]></eqn>
</stock>
</option_filter>

This concept is a little more complicated. Here ave clearly talking about the non-
negative option of the stock. But we are now usheppplyto modifier to tell us this
option changes the stock’s outflows, not the sitsekf.

This also changes the parameters a bit. Becausarsvenodifying a flow, the first
parameter is that flow value, not the stock. Hosvewe also include the stock. Finally,
because we are looking at the stock’s outflows, alg® pass in the sum of all the
outflows already calculated this time step (i.dl.,tlrose with higher priority than the
passed flow). The same sort of thing would happem operated on the inflows instead
(except the sum of inflows already calculated wdagdpassed instead). It is possible that
in these cases, we should pass both the sum dnitven inflows and the sum of the
known outflows.

Further examples are needed to test this thearyany event, this requires more complex
support from the macro interpreter of the host paoy

The existence of the above macro does not ruleanather macro that operates on the
stock instead of its outflows. Such a macro wawdthave thepplyto option. This is
necessary for options that affect both the objeul #hose that are upstream or
downstream from them.

5.0 Level 2: Display

The display layer supports presentation and eduiin§MILE objects. Since this layer
affects all objects, the display properties arerspersed throughout the model.

Each display block uses the XML tadisplay> . Within the block any display aspects

can be specified (or overridden). There are ddfaefaults for all of these settings. In
addition, the global or model style sheets can ghahe defaults. Note that the display

SMILE and XMILE 26 K. Chichakly © 2007

tag is not explicitly required in a style sheeteasrything except model options refer to
presentation.

There is usually onedisplay> block nested one level inside tRenodel> that
describes objects required to properly render todeh

5.1 Display Properties

The following display properties are defined fdr@kesentation objects (including Level
3). Note that not all of them are available fdroddjects.

* Position: <pos> with “x,y " [required]

» Name position:<name_pos> wi/top , bottom , left ,right , center with
optional offset [defaultbottom , except for stocks which defaulttup]

» Background color:<background> w/valid CSS color only [defaultwhite]
specific objects can also specify images

» Color: <color> wl/valid CSS color [defaultblack]

* Font: with CSS conventions, restricted to style, weigite, family;

weight can be@ormal orbold only [default: 9 pt sans-serif]
* Text alignment:<text-align> with CSS conventions [defaulteft]
» Text decoration:<text-decoration> with none orunderline only [default: none]

* Border: <border> with CSS conventions [defaulthin solid]
» Padding for borderxpadding> with CSS conventions, length only [defaultpx]
» Drawing Order:<z-index> with CSS conventions [defaults to order in file]

All objects require a position, so there is no d#éfa Unless otherwise specified, the
position is the center point of the object.

Drawing order may not be supported in all prograasssome programs define very
specific drawing orders. These programs are nbt kevel 2-compliant, but can work
towards compliance over time.

5.2 Display Properties for SMILE Objects

Some of the SMILE objects require special displeypprties. At present, only the flow
and the group have their own properties.

5.2.1 Flow Display Properties

The position of a flow is not the center of the gbdex path taken by the flow, but rather
the center of the intersection of the flow valvel &me pipe.

SMILE and XMILE 27 K. Chichakly © 2007

A flow is typically drawn through a series of pendecular bends. Each endpoint and
bend can be described by one point. These pometsnacessary to draw the flow
correctly, so the flow requires one additional thgpproperty,<cpts> , that gives the
flow’s points in order from the start of the flow its end.

<cpts>290,107;335,107</cpts>

This is a simple horizontal flow that only hastig endpoints. If clouds are explicitly
specified, it is not strictly required that simglews include their endpoints as they can
be inferred from the flow’s center and connectiottsis, however, recommended if you
desire a faithful reproduction of the flow.

Some programs use curved flows instead. Theseagnsgalso have control points that
could be presumably be manipulated to approximiageperpendicular bend behavior
supported by this standard.

5.2.2 Group Display Properties

Groups can be used to collect related model objegsther. As such, they can have
both borders and background images. They also taavadditional control properties:

<show_name/> <!-- default: true -->
<show_image/> <l-- default: false (no image) or tr ue -->

The first makes the name is visible, presumablgionear the border. The second makes
the image (if any) visible, obscuring the contesftthe group. Note that even without an
image, the contents should be hidden (sleow_image = hide contents).

The position of a group is its top-left corner, itstcenter. Resizable objects (including
text annotAations, graphics frames, and buttongkgllire their size to be defined with an
(h, v)-pair.

<size>500,400</size>
5.3 Display Objects

Several objects outside SMILE are available atdisplay level. In particular, objects to
support the graphical representation of the modelreeeded. These include clouds,
connectors, and aliases (or ghosts).

5.3.1 Unique IDs

Display objects do not generally have names orathgr way to refer to them. For this
reason, every display object includes a unique tijgmy number. These numbers
should be unique within each object type, but ateumique across all objects. They are
defined using theuid> tag followed by the identifying number. Everyplasy object
must have a unique ID.

“ h represents the horizontal width, whileepresents the vertical height, of the object

SMILE and XMILE 28 K. Chichakly © 2007

5.3.2 Clouds

Clouds represent the sources and sinks of thersyste., the model boundary. Each
cloud is associated with a flow and is classifiesdeither a source (at flow's starting
point) or a sink (at flow’s ending point).

Some might argue that a cloud is not really its abrect, but the representation of an
unattached flow end. However, clouds can have tven positions (relative to the flow,
of course) and their own color. One can even imagiocumentation for a cloud, though
this is not presently available in any program.

The basic cloud definition is shown below with séenmlues.

<cloud>
<uid>2</uid>
<p0s>116,50</pos>
<sink>out</sink>
</cloud>

If the cloud is a source (rather than a sink),<beurce> tag is used. The position is
absolute on the model space, not relative to the.flIThis means clouds could drift quite
far away from their flows; it is recommended tHa position get reset if it doesn’t make
sense when the model is read. Note that displayackeristics (e.g., color) can be
changed directly within this block.

Finally, not all programs support clouds as th@nabjects. If no cloud appears in the
model for a given flow, it is reasonable (indeestjuired) to create one.

5.3.3 Connectors

Algebraic calculations are represented in a sttmk-tliagram with connectors between
the model elements. Each connector always goesebat two entities, which are
identified by name or type and unique ID. The basinnector definition is shown below
with sample values.

<connector>
<uid>3</uid>
<from>Inspect</from>
<to>out</to>
<po0s>283,85</pos>

</connector>

The from andto properties identify the objects the connector gbewveen (and its
direction). If either object is a display objeetg., an alias, the type of object and its
unique ID would appear instead of its name. Thosil look like this:

<from><alias>3</alias></from> <!-- Inspect -->

An XML comment with the entity name is not requiredt helps anyone reading the file.

SMILE and XMILE 29 K. Chichakly © 2007

The position of the connector is the center ofsteting point, i.e., where it attaches to
the from object. Some programs allow both ends to be othett. In these cases, a
<to_pos> tag should be included. Other programs may haulipte points defined
along the way. In this case, usems> tag, following the same rules as the flow (see
above). Be aware, though, that the only infornmatiequired by this standard is the
single starting position.

5.3.4 Aliases

An alias (aka ghost) is a second image of an objged to avoid crossed connectors or to
communicate across groups or models. The aliasaijypappears in the same form (or a
close approximation) as the original, has the saame, but appears differently in some
way. Aliases may also have different display httteés, such as nhame position and color.

All aliases require a reference back to the origisametimes called the parent). The
basic alias definition is shown below with sampééues.

<alias>
<uid>3</uid>
<of>Inspect</of>
<p0s>385,153</pos>
</alias>

As shown, thecof> tag is used to identify which object this is thiesof. Note that if
the given object were in another model, the nameldvbave to be fully qualified with
the model name, e.@A.Inspect

6.0 Level 3: Interface

The interface layer supports widgets on the surfscthe stock-flow diagram or on a
separate page. It includes both the definitiortholse widgets and their presentation.
Because widgets do not require simulation, they afgpear within the display block.

The objects defined by this layer include all af thput devices (sliders, knobs, switches,
numeric inputs, graphical inputs), output deviagshs, tables, numeric displays, status
indicators, loops), annotation devices (text bloaksphics frame), and control devices
(buttons). [This leaves the process frame and lednitbws/connectors out of it — maybe
the loop should be left out as well.]

There is still some question about where graphs perthaps, tables belong. No question
they are display objects of some sort and aretbetthe interface. But DYNAMO did
include plot commands with scaling. And the modehot very useful without at least
graphs. On the one hand, it seems inconsistgmittthem on the Simulation layer (and
into SMILE). On the other hand, everyone shouldi@ve to become level-3 compliant
just for graphs. A reasonable compromise woultblqgut them on the display level.

SMILE and XMILE 30 K. Chichakly © 2007

References

Diker VG, Allen RB. 2005. XMILE: Towards an XML latchange Language for System
Dynamics ModelsSystem Dynamics Revi@i(4), 351-359.

Hines J. 2003. A SMILE for System Dynami&ystem Dynamics Newsletfie(1): 1, 5-
6.

iThink/STELLA 9 Technical Documentati@®06. isee systems: Lebanon, NH.

Vensim Version 5 User’s Guid2006. Ventana Systems: Harvard, MA.

W3C. CSS 2.1 Specification. http://www.w3.org/ TREXS. [6 November 2006]

W3C. XML 1.1, second ed. http://www.w3.0rg/TR/20RE&/LC-xmI11-20060816 [29

September 2006]

SMILE and XMILE 31 K. Chichakly © 2007

