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Abstract 
 
This paper provides an overview of the literature in assessment of system dynamics (SD) models 
to substantiate a pragmatic framework intended to guide model testing, refinement and 
evaluation.  It recaps the predominant philosophy of science embraced in the field, and its 
implications for model validation.  It reviews tests for building confidence in SD models.  In this 
literature, SD is presented as a relatively uniform approach to dynamic modeling.  However, 
surveys of the field paint a different picture, containing surprisingly diverse forms of practice.  
We draw upon this breadth of existing practice to develop our framework.  We propose five 
components of practice: 1) system’s mapping, 2) quantitative modeling, 3) hypothesis testing, 4) 
uncertainty analysis, and 5) forecasting/optimization. In light of the proposed framework, we 
reclassify tests for assessment of dynamic models across these five practical categories.  We 
believe this is useful to tailor tests to specific modeling efforts, guide model testing in different 
phases of model development, and to help conduct partial assessments of levels of confidence. 
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Levels of Confidence in System Dynamics Modeling: 
A Pragmatic Approach to Assessment of Dynamic Models 
 

Introduction 
 
We desired guidelines for testing and building confidence in the range of models that we use to 
analyze interdependencies between critical infrastructures.  Our intent was to draw upon the field 
of system dynamics (SD) for existing guidelines developed for model testing and evaluation.  
Forrester & Senge (1980) proposed 17 tests organized in three broad categories: tests of model 
structure, of model behavior, and of policy implications.  Sterman (2000) revisited this work –
clustering some of the tests and eliminating the categories– and produced 12 tests.  Overall, there 
is a large degree of overlap, with the exception of tests of behavior prediction, dropped in 
Sterman’s overview, and a test added on integration error. 
 
However, we realized that our modeling approaches and objectives are diverse enough that not 
all of the tests proposed in the literature are applicable to each modeling project.  It seemed that 
it would be helpful to bin these tests to make it easier for our modelers to identify the best subset 
of tests for each project.  It is clear that the decision as to whether or not a particular test is 
appropriate should consider the assumed basis for model truth, or correctness.  We therefore 
examined the literatures concerning the scientific basis, and the breadth of SD modeling practice, 
to categorize model tests.  The result was a regrouping of the tests proposed by Forrester & 
Senge, and Sterman into five categories that are intended to represent separate components of 
modeling.  We think that this grouping will help guide the choice of appropriate tests on a case-
by-case basis. 

SD model testing and evaluation literature 
 
While we focused upon the seminal piece by Forrester & Senge, and on Sterman’s modern and 
thorough textbook, we acknowledge that the literature on SD model testing and evaluation is 
wide ranging, including many specific contributions (such as Mass & Senge 1980, Peterson 
1980, Tank-Nielson 1980), and other efforts to overview and discuss the tests comprehensively 
(such as Forrester 1961, Richardson & Pugh 1981, Barlas 1989, Ford 1999).  For practical 
reasons and because none of these other sources are as comprehensive, we focused primarily 
upon the first two.  In our paper we also indicate some examples of new developments in the 
field which are not yet incorporated into any comprehensive overview. 
 
We perceive the organizing structure that we seek to develop here as more practically useful than 
the early framework adopted by Forrester & Senge (1980), also discussed in Barlas (1996), and 
later apparently dropped by Sterman (2000).  Finding some structure to organize and discuss 
model testing and evaluation is an important issue, particularly to communicate the “know-how” 
to novice modelers, and (at least for our purposes) to develop testing protocols and standards.  
This effort seems useful to the SD field in general, as communicated to us by one of the leading 
figures in the field: 
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I’ve always been worried that Forrester’s list of 17 tests is so daunting that maybe 
lots of folks never use any of it, thinking that if you are going Forrester’s route 
you have to go all the way.  So your parsing of the tests is going to prove useful, I 
think, provided it’s possible to say it all concisely and invitingly.  (Professor 
George P. Richardson, personal communication, 11/30/2005) 

 
Others attempted to approach this issue pragmatically.  For example, Wakeland and Hoarfrost 
(2005) examined the portfolio of tests looking for cost/benefit measures of test usefulness.  They 
found that contrary to its popularity, sensitivity analysis yielded relatively low benefit and high 
cost, if compared to structure assessment, dimensional consistency and boundary adequacy.  
However, they acknowledged that their measures were somewhat subjective, and that the results 
could vary considerably from model to model.  More importantly, we fear that such an approach 
would induce a “check-list” type behavior, leading practitioners to focus upon checking off 
quickly as many as possible boxes with minimum effort.  On the other hand, we would like to 
arrive at an organizing framework that is theoretically sound and practically useful, yet explicitly 
recognizes that what tests are done, and how much testing is done, is contingent upon the context 
of the modeling effort.  While the idea of using the portfolio of tests “intelligently” is obviously 
not new, we find that none of the existing frameworks convey explicitly how to do this.  Without 
it, we are left with the quandary: “I cannot give you a recipe on how to test your model, but I’ll 
tell you if your model is valid when I look at what you’ve done.” 

Method 
 
We followed a five-step process: 
 

1. We grounded our research upon epistemological studies of SD theory and practice, 
basing our conceptual framework upon Barlas & Carpenter (1990) and Lane (2001).  We 
tentatively established an axis of Liberty vs. Constraint in SD modeling and simulation.  
This axis serves to differentiate different components of modeling along an ordinal scale 
ranging left to right from loosely constrained to highly constrained modeling efforts; 

 
2. We used expert judgment to identify five components of modeling based upon observed 

practice.  While the literature was informative, we based this step essentially upon the 
experience of modelers of different background working within our organization.  The 
authors, then, articulated a summary description of the essence of each component, and 
decided the order of the components in the scale established in step 1; 

 
3. We analyzed the content of tests for building confidence in SD models.  Two formally 

trained SD modelers, one within our organization and the other an outsider, undertook the 
task of specifying 24 distinct tests working from Forrester & Senge’s 17 and Sterman’s 
12; 

 
4. The same two modelers discussed and agreed upon how to cluster the 24 tests in each of 

the five components, and ranked them within each component, thus also determining 
which tests could be considered basic, intermediate, and advanced; 
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5. We sought peer review of the results by sharing and discussing our findings with 
distinguished members of the SD Society.  Their criticism, comments, and suggestions 
for future steps in this research are noted in this paper. 

 

The field’s epistemological standing and breadth 
 
Barlas & Carpenter (1990) reviewed the philosophical roots of model validation, tracing the 
historical development of the different theories of knowledge, and found two opposing 
philosophies of science.  One paradigm, originated with Descartes’ Rationalism (1596-1650) and 
Locke’s Empiricism (1632-1704), guided the major epistemological theories of the sixteenth 
through the nineteenth centuries.  This traditional logical/empiricist philosophy of science 
assumes that knowledge is an objective representation of reality and that theory justification can 
be an objective, formal process (pp. 148-149). 
 
A different paradigm emerged building upon criticism dating back to Hegel’s Coherence Theory 
(1770-1831) and Dewey’s Pragmatism (1859-1952), who articulated that knowledge is socially 
justified belief, rather than a product of mirroring nature and, thus, socially, culturally, and 
historically dependent.  But, it was only in the second half of the 20th Century that this 
perspective flourished.  In “The Structure of Scientific Revolutions” (1962), Kuhn argued that 
scientific progress is not directed toward an objective and absolute “truth” but simply toward 
“successful creative work.”  Also, Sellers (1963) proposed that knowledge acquisition is holistic 
rather than atomistic.  These alternative perspectives led to an opposing philosophy of science 
denominated relativist/holistic (Barlas & Carpenter, pp. 152, and 155-157). 
 
In their assessment, Barlas & Carpenter concluded that the field of system dynamics is more 
closely associated with the relativist/holistic viewpoint, than that of the logical/empiricist 
epistemological tradition.  This is reflected both in its manifested standing, and in criticism 
presented by others more closely associated with a traditionalist perspective.  Forrester’s early 
work (1961, 1971) embraced the relativist approach (i) proposing that the validity of a model 
cannot be discussed absent of its purpose, (ii) accepting “qualitative” model validation, and (iii) 
interpreting “data” in a broad sense, including non-numerical and verbal information, and mental 
data bases.  From an empiricist standpoint, his critics objected profusely and were quick to label 
the approach as subjective (Ansoff and Slevin 1968), and summarized it as “measurement 
without data” (Nordhaus 1973). 
 
Barlas & Carpenter focused upon the core philosophy of the field, grounded in a feedback-rich, 
insight-driven, problem-focused approach to system dynamics modeling.  They cite original 
methodological texts and refer to classic models such as World Dynamics (Forrester 1961, 1971; 
Legasto et al. 1980; Randers 1980-A; Richardson and Pugh 1981).  In principle, and in practice, 
they concluded that system dynamics is a scientific method according to the standards placed by 
the relativist/holistic philosophy of science (p. 163): 
 

Real-life experience has taught most system dynamics practitioners that models 
are inherently incomplete, relative, and partly subjective, and that model validity 
means usefulness with respect to a purpose.  But, at the same time, many 
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practitioners unaware of the recent relativist philosophical developments would 
think that their own view of model validity is not truly scientific.  Thus, many 
practitioners, while experiencing that validation is bound to be relative, 
semiformal, and conversational process, at the same time see this as a weakness 
of their modeling effort… System dynamics practitioners do not have to be 
apologetic for not meeting a utopian [logical/empiricist] criterion of scientific 
inquiry.  [Added] 

 
 
However, a recent survey of system dynamics practice (Lane 2001) demonstrated that the field is 
not as uniform as the core philosophical description would characterize it.  Rather, Lane would 
denominate this characterization as “initial” or “broad” system dynamics, perhaps including the 
most recent text embraced by the core of the field (Sterman 2000).  But, SD practice has grown 
in different directions.  For example, “austere” SD places greater emphasis on deterministic, 
positivist and objectivist approaches including (p. 106): 1

 
• Micro world validation, in which emphasis is placed on quantitative data to 

test for behavior modification (Bakken et al. 1992); and 
• behavioral decision-making work (Sterman 1989; Kleinmuntz 1993) 

 
 
Lane’s research findings suggest that SD practice is not only growing towards the objective 
(logical/empiricist) end as discussed above, but also towards the subjective (relativist/holistic) 
viewpoint.  In fact, there are more new areas of practice toward the relativist/holistic side.  Some 
of these new forms of SD practice may be so far off towards the relativist/holistic side as to 
antagonize not only positivists but also mainstream system dynamicists. 
 
This tension is clearly observed in the field’s main journal (e.g., Richardson et al. 1994).  It is 
often translated into a debate between systems “thinking” and system “dynamics” (soft and hard 
approaches), or between “qualitative” and “quantitative” modeling.2  This debate was recently 
revisited in articles by Coyle (2000, 2001) and Homer & Oliva (2001).  While there is much 
agreement amongst practitioners sharing Forrester’s heritage, as indicated by Coyle (2001, p. 
357): 
 

                                                 
1 Lane’s analytical framework for mapping SD practice is not the same as that of Barlas & Carpenter’s.  Instead, he 
used Burrell and Morgan’s (1979) sociological approach, which in one dimension contrasts subjective and objective 
views of social science.  However, these frameworks are epistemologically similar.  They both describe a tension 
between two polar points, one which is humanistic and the other which is positivistic (Lane 2001, p. 102).  Burrell 
and Morgan’s framework deals not only with epistemology, but also with ontology, hermeneutics, and methodology: 

Epistemological issues concern the type of knowledge that can be obtained.  The 
positivist view is that causal laws perceivable by an objective observer may be deduced, 
whilst the humanistic stance sees knowledge as being concerned with the significance 
and meaning that humans ascribe to their actions, these being drawn out via the textual 
interpretation… (Lane 2001, pp. 101-102) 

2 While this debate has predominantly involved soft vs. hard, and qualitative vs. quantitative approaches, it also 
appears in the discussion of academic vs. professional work (Graham 2002). 
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Homer, Oliva and I are in agreement on several points: one cannot reliably predict 
dynamics by looking at a diagram, and properly quantified models are very useful 
in the right circumstances… that there may be cases when a diagram is all that is 
necessary or feasible… 

 
It seems also to be an agreement to disagree.  One side argues that “simulation [a more objective 
approach to practice] nearly always adds value, even in the face of significant uncertainties about 
data and the formulation of soft variables” (Homer & Oliva 2001, p. 347); while the other insists 
that “quantification may not ‘represent value for money’… even more concerning is… the risks 
associated with attempting to quantify multiple and poorly understood soft relationships are 
likely to outweigh whatever potential benefit there might be.” (Coyle 2001, p. 357)  This may 
indicate that there is a range of “accepted” modeling practice, even if not everyone is on board 
on what those practices are. 
 
While Barlas & Carpenter (1990) argue that the core practice of system dynamics bets fits into 
the relativist/holistic philosophy of scientific knowledge, other authors describe a modeling 
practice that sufficiently large that system dynamics modeling could also be considered to also fit 
into logical/empiricist tradition.  Model testing should, therefore, be able to accommodate a 
range in belief of what constitutes a correct model. 
 

Proposed grouping of model tests 
 
Given the wide range of objectives and approaches using system dynamics, it is clear that a 
testing plan can not be specified that fits all models.  Therefore we divided modeling practice 
into a number of components, each with associated testing requirements.  A model or modeling 
project could consist of one or more of these components. 

Components of Modeling 
 
We chose five components of models or modeling projects that can be combined to represent the 
full range of modeling approaches and objectives: 1) system’s mapping, 2) quantitative 
modeling, 3) hypothesis testing, 4) uncertainty analysis, and 5) forecasting/optimization.  This is 
not to say that these components exist in isolation, while in some cases that may be possible.  But 
in general any modeling effort will consist of a combination of these components centered upon 
a particular objective.  Table 1 contains a summary of the characterizations that follow: 
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Table 1.  Five components of modeling practice3

 
Loosely constrained                                                                      highly constrained 
◄────────────────────────────────────────────► 
 

System’s 
mapping 

Quantitative 
modeling 

Hypothesis-
testing 

Uncertainty 
analysis 

Forecasting and 
optimization 

Qualitative and 
inductive; involves 
drawing influence 
diagrams, CLDs, 
S&F diagrams, or 
any form of 
mapping or 
organization of the 
elements forming a 
system; attempts to 
get at the key 
causal 
interrelationships; 
focused upon 
identification of 
inter-organizational 
linkages and inter-
dependencies 

Quantitative and 
descriptive; 
involves 
formulation and 
simulation; largely 
system-focused; 
emphasizes S&F 
dynamics and the 
effects of delays; 
requires 
specification of the 
decision rules 
governing 
interrelationships; 
focused on 
representing and 
tracking 
consequences; 
sometimes rich in 
detail complexity 

Quantitative and 
deductive; 
requires stating a 
hypothesis that 
explains dynamic 
behavior from the 
causal structure of 
the system; largely 
problem focused; 
emphasizes 
feedback-rich 
dynamics, 
learning, and 
exploration of the 
effect of changes 
in system 
structure; focused 
upon 
understanding and 
insight 

Quantitative and 
exploratory; 
requires 
examining 
behavioral and 
quantitative 
sensitivity; 
emphasizes 
testing the 
robustness of the 
results produced 
from both 
quantitative 
modeling and 
hypothesis testing; 
focused upon 
uncertainty and 
risk, and 
identification of 
points of leverage 
for intervening in 
the system 

Quantitative and 
predictive; within 
the range of the 
parameter space 
specified in the 
model, attempts to 
shed light on 
future behavioral 
patterns and the 
cross-sectional 
quantitative values 
of variables of 
interest, or to 
suggest optimal or 
robust solutions 
that maximize or 
“satisfice” 
particular utility 
functions 

 

                                                 
3 To map these categories, we used an axis of Liberty vs. Constraint, which can be perceived as a common factor 
extracted from five dimensions: a) adoption of a divide and conquer analytical strategy (reductionism), whereby a 
complex set of facts, entities, phenomena, or structures is explained using a simpler set, such that when assembled, 
the small pieces explain the whole; b) knowledge is derived from reasoning (rationalism); c) knowledge is derived 
from observation and experience (objectivism/empiricism); d) reasoning from the general to the particular, 
combining thesis and antithesis in a dialectical process to produce a higher level of truth (synthesism); and e) amount 
of agreement upon problem definition and modeling objectives (monolithism).  The first three constraining factors 
were derived from Barlas & Carpenter (1990), and Lane (2001). The last two were borrowed from Zagonel’s (2002) 
distinction of models as “boundary objects” and “micro worlds.”  The specified “bins” are based upon a 
classification from observed modeling approaches and practices.  The five categories fall in this ordinal scale 
according to a subjective assessment of the degree of constraint imposed by a combination of the above-mentioned 
factors. 
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1. System’s mapping 
 

This area of practice is qualitative and inductive. 4  It involves drawing influence diagrams, 
causal-loop diagrams (CLDs), and stock-and-flow (S&F) diagrams, or any other form of 
mapping or organization of the elements forming a system.  Normally the map is focused upon 
an overriding typology or theme.   
 
Systems mapping in and of it self can be very useful.  It serves as a visual summary of a 
lengthier verbal or written discussion.  It organizes information.  If built collectively, it reflects a 
shared or sum of perspectives on the issue at hand.  If the framework is rich enough, it may yield 
preliminary dynamic insights.  For example, a stock-and-flow diagram helps to understand points 
of accumulation and intervention.  Alternatively, causal-loop diagrams begin to explore 
reinforcing and balancing feedback.  Delays can also be graphically displayed.  Maps facilitate 
the surfacing and clarification of assumptions, and thus can help with communication. 
 
System’s mapping has always been a part of system dynamics.  From the early days of Dynamo, 
S&F and CLDs were used in model conceptualization, and to communicate diagrammatically the 
structure of the computational model.  Richmond et al. (1987) and Richardson (1997) articulated 
“principles” behind such diagrams (unit consistency, accumulation, causality, etc.).  Morecroft 
(1982) contributed with the policy structure diagram, and Mashayeki (citation needed) with the 
sector diagram, implemented in iThinkTM for the purpose of higher-level mapping (Richmond 
1994). 
 
We believe there are numerous examples of modeling practice that focus more directly upon this 
facet of modeling.  We already mentioned Coyle’s (2000, 2001) regard for this component of 
practice.  Some new mapping approaches were developed outside of the field (Checkland 1981, 
Hodgson 1994, Eden 1994, Ackermann et al. 2004).  They are increasing being incorporated in 
areas of practice focused upon the other components (Vennix et al. 1990, Lane 1993, Andersen 
& Richardson 1997). 
 

2. Quantitative modeling 
 
Quantitative modeling involves formulation and simulation.  We differentiate this category from 
the next, hypothesis testing, because here the formulation effort is still (counter-intuitively) 

                                                 
4 The SD method includes both inductive and deductive logic.  Beveridge describes these two systems in the 
following manner: 

Logicians distinguish between inductive reasoning (from particular instances to general 
principles, from facts to theories) and deductive reasoning (from the general to the 
particular, applying theory to a particular case).  In induction one starts from observed 
data and develops a generalization that explains the relationships between the objects 
observed.  On the other hand, in deductive reasoning one starts from some general law 
and applies it to a particular instance. (In Babbie 1992, p. 49) 

Normally the qualitative steps of the SD method emphasize the induction process of model building.  This is a 
theory building process; the conceptual model is a representation of a theory regarding the causal relationships in the 
system.  Alternatively, the deduction process is captured in the quantitative steps.  This is a theory testing process; 
the formulated model is simulated, tested and evaluated in light of the hypothesized expectations, and tested against 
“known” aspects of the “real” system. 
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inductive, although it might best be characterized as “descriptive.”  This category is similar to 
the system’s mapping category in this respect.  While behavioral modes for key variables may be 
discussed both here and in system’s mapping, those may not be closely tied to structural 
relationships embedded in the system.  Quantitative modeling is focused upon understanding 
stock-and-flow structures and aging chains.  In general, it applies very well in the representation 
of quantifiable systems (physical, financial or otherwise).  It helps to understand mass balance, 
and to learn about key parameters, bottle necks, and decision points in the system.  Physical 
delays are also closely monitored in this category of practice. 
 
Warren’s approach (2002, 2004), as well as the gist of group model building work (Richardson 
& Andersen 1995, Vennix 1996), appear to be centered in this modeling component.  They are 
more akin to a hypothesis-generating approach than to a hypothesis-testing approach.  But, in our 
view, they serve to bridge an important gap between system’s mapping and hypothesis testing, 
often stepping in both these other components simultaneously.  As stated by Warren (2005): 
 

Important implications from this perspective include the unavoidable causal 
ambiguity caused by accumulating resources, and the value of explicit and 
quantitative examination of resource development prior to investigating feedback 
structures. [Emphasis added] 

 
3. Hypothesis testing 

 
Hypothesis-testing modeling is problem focused, as opposed to system focused.  It is 
parsimonious, as defined by the required elements needed to address the dynamic problem.  The 
system structure is aggregated as much as possible, and detail complexity is avoided.  This type 
of modeling tacitly assumes that there is agreement on the relevant question/issue that needs to 
be addressed, and sometimes even on how the system is wired.  Key to hypothesis testing is a 
deductive procedure that tests if a specific feedback-rich structure is capable of explaining (in 
this case producing) a particular behavior (Forrester 1961).  This is the so-called dynamic 
hypothesis (Randers 1980-B).  Strictly speaking, the quantitative modeling effort does not begin 
until such a hypothesis is stated.  Model simulations are carried out after behavioral expectations 
are made explicit, and serve as tests of those hypotheses (Sterman 2000).5

 
“Initial” and “broad” system dynamics –as described in Lane (2001)-- focuses upon this category 
of practice, drawing upon the others to the extent that they may be helpful to build, test and 
evaluate a model and the insights derived from the work.  While using a system’s map or a 
formulated model, the goal/product is not the map or the model, but feedback-rich insights that 
result from understanding dynamic complexity in the system under study.  Many of the well-
known works in the field of SD emphasize this component of modeling which is central to 
system dynamics, positing applied contributions (e.g., Ford 1990, Homer 1992, Repenning 
2001), and educating on its philosophy and method (e.g., Richardson & Pugh 1981, Sterman 
2000). 
 

                                                 
5 Of course, the hypotheses evolve as things become clearer during the process of model building and testing.  It can 
be said that the whole process is geared towards formulating a more educated hypothesis, akin to producing a more 
relevant problem statement or asking a better research question. 
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Ariza & Graham (2002) go further and discuss every aspect of the modeling process a sequence 
of hypothesis testing procedures, including model conceptualization, and certainly model 
building, testing and calibration.  This is why we chose the more inclusive label of hypothesis 
testing for this component, as opposed to the more commonly used, dynamic-hypothesis testing. 
 

4. Uncertainty analysis 
 
In system dynamics, uncertainty analysis is often referred to as sensitivity analysis.  Normally, 
because of the resilience of complex feedback-rich systems, behavior sensitivity is assumed to 
happen rather infrequently.  However, it is necessary to build confidence in feedback-rich, 
problem-focused insights, by demonstrating that the behaviors of the variables of interest do not 
change significantly if parameters are varied within reasonable ranges, or even if marginal and 
justifiable changes in model boundary are made. 
 
Other forms of sensitivity are quantitative and policy sensitivity.  In system dynamics, 
quantitative sensitivity is rarely of concern, unless prediction or forecasting is involved, as 
described in the next category.  In general, system dynamics is advocated for its explanatory 
power and as a learning instrument, rather than a predictive or forecasting tool.  Still, tests for 
assessment of quantitative sensitivity do have the potential to identify areas for improvement in 
the modeling work, whether in terms of parameterization, level of aggregation or model 
boundary.  More often discrepancies are explained away as due to model boundary decisions that 
treated variables exogenously, disregarded seasonality in the behaviors, or assumed away 
stochastic components in the system.  Of course, these explanations are ultimately dependent 
upon problem definition and insights and recommendations.  Policy sensitivity is when 
recommendations for system’s improvement do not always hold, given the range in which 
parameters may vary. 
 
Tank-Nielsen (1980) provides an overview of the objectives in sensitivity analysis, types of 
model changes, and interpretation of model responses.  Clemson et al. (1995) discuss efficient 
methods for sensitivity analysis.  Moxnes (2005) explores the sensitivity of policy 
recommendations to uncertain assumptions in fishery models. 
 

5. Forecasting and optimization 
 
This last category has to do with predicting future patterns of behavior, changes in those patterns, 
and event prediction.  Also, it includes research questions that are aimed at finding optimal or 
robust solutions.6  As already stated, this falls outside of the main concern in system dynamics 
with learning, understanding, and explaining.  Nevertheless, this is an area of practice that is 
widely used in other modeling approaches, and it has been applied using system dynamics as 
well (Coyle 1985, Moxnes et al. 2001, Graham & Ariza 2003).  State of the art software offer 
capability for both sensitivity analysis and optimization (Eberlein & Peterson 1992).  Forecasting 

                                                 
6 Recently, practitioners focusing upon this component of modeling are looking to find “robust” solutions/policies 
rather than “optimal” ones.  Robust solutions are preferred when the time horizon is particularly long, when 
situations may change significantly over time, and flexibility is needed to adjust to a changing environment, or 
where there is deep uncertainty. (citations needed) 
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is just an extension where parameters are changed within reasonable ranges, in combination with 
implicit or explicit definitions of utility functions (e.g. the variable of interest that is forecasted), 
to either examine the possible results for a particular variable in a particular time, or to attempt to 
have this variable seek a particular goal.  Quantitative prediction is rarely an objective in system 
dynamics practice, but there is nothing really to prevent it from being done. 

Tests clustered into the five proposed components of modeling 
 
As a starting point, we aimed to classify the traditional tests discussed by Forrester & Senge and 
Sterman into one (and only one) of the components outlined above, as if there were some sort of 
orderly process to move from one component to another.  This limitation is addressed in the 
discussion.  We also refrained from describing the tests in detail.7  Table 2 serves as a summary 
display of the results.  The brief descriptions below were extracted from Sterman (2000), Table 
21-4, pp. 859-861.  Several of Sterman’s original tests were broken down into components to 
accommodate to the framework. 
 
SYSTEM’S MAPPING 
 

1. Face validity (structural assessment through deductive process) – Q: Is the model 
structure consistent with relevant descriptive knowledge of the system? 

2. Validity of decision rules (structural focus) – Q: Do the decision rules capture the 
behavior of the actors in the system? 

 
QUANTITATIVE MODELING 
 

3. Physical conservation – Q: Does the model conform to basic physical laws such as 
conservation laws? 

4. Dimensional consistency – Q: Is each equation dimensionally consistent without the use 
of parameters having no real world meaning? 

5. Integration error – Q: Are the results sensitive to the choice of time step or numerical 
integration method? 

6. Extreme conditions tests (equations focus) – Q: Does each equation make sense even 
when its inputs take on extreme conditions? 

7. Parameter assessment – Q: Do all parameters have real world counterparts? Are they 
consistent with relevant descriptive and numerical knowledge of the system? 

8. Basic-behaviors reproduction – Q: Does the model generate the various modes of 
behavior observed in the system? 

9. Endogenous behavior-reproduction tests – Q: Does the model pass behavioral 
reproduction tests without the aid of exogenous inputs driving the model in 
predetermined ways? 

10. Boundary adequacy tests (modes of behavior) – Q: Does the behavior of the model 
change significantly when boundary assumptions are relaxed? 

 

                                                 
7 More information is available in both Sterman, pp. 861-889, and Forrester & Senge (1980), pp. 212-226. 
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HYPOTHESIS TESTING 
 

11. Qualitative problem-behavior test – Q: Does the model qualitatively reproduce the 
behavior(s) of interest in the system? 

12. Boundary adequacy test (problem endogeneity) – Q: Are the important concepts for 
addressing the problem endogenous to the model? 

13. Validity of decision rules (policy focus) – Q: Do the decision rules capture the behaviors 
of the actors in the system? (policy focus) 

14. Assessment of surprise behaviors – Inspection for unusual, novel, unexpected or surprise 
behaviors. Q: Does the model generate previously unobserved or unrecognized behavior? 
Does the model successfully anticipate the response of the system to novel conditions? 

15. Behavior sensitivity analysis – Q: Do the modes of behavior generated by the model 
change significantly when assumptions about parameters, boundary, and aggregation are 
varied over the plausible range of uncertainty? 

16. Extreme conditions tests (model behaviors focus) – Q: Does the model respond plausibly 
when subjected to extreme policies, shocks, and parameters? 

17. Behavior anomaly tests (changed assumptions tests) – Q: Do anomalous behaviors result 
when assumptions of the model are changed or deleted? 

18. Family member (generalizability) – Ability to generalize. Q: Can the model generate the 
behavior observed in other instances of the same system? 

 
UNCERTAINTY ANALYSIS 
 

19. Quantitative sensitivity analysis – Q: Do the numerical values change significantly when 
assumptions about parameters, boundary, and aggregation are varied over the plausible 
range of uncertainty? 

20. Policy sensitivity analysis – Q: Do the policy implications change significantly when 
assumptions about parameters are varied over the plausible range of uncertainty? Is the 
level of aggregation appropriate? 

21. Boundary adequacy tests (policy implications) – Q: Do the policy recommendations 
change when the model boundary is extended? 

 
FORECASTING AND OPTIMIZATION 
 

22. Behavior correspondence – Q: Does the model quantitatively reproduce the behavior(s) 
of interest in the system? 

23. Behavior prediction – Pattern prediction, event prediction, shifting-mode prediction 
24. Changed-behavior prediction (prior to worry about number forecast; behavioral forecast) 

 
We deliberately left out, for now, tests of system improvement.  Some novel tests or approaches 
are listed in the discussion.  The above list and Table 2 are not intended as final, but rather as a 
rough cut at implementing our proposed classification scheme. 
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Table 2.  Twenty-four tests clustered into five components of modeling 
 

System's mapping Quantitative modeling Hypothesis testing Uncertainty analysis Forecasting & optimization

S #2a -- F&S Str #1a 1 - Face validity (structural assessment through deductive  process)
S #2b -- F&S Str #1b 2 - Validity of decision rules (structural  focus)

S #2c -- F&S Str #1c 3 - Physical conservation
S #3 -- F&S Str #5 4 - Dimensional consistency

S #6 5 - Integration error
S #5a -- F&S Str #3 6 - Extreme conditions tests (equations  focus)
S #4 -- F&S Str #2 7 - Parameter assessment

S #7a -- F&S Beh #1a 8 - Basic-behaviors reproduction
S #7 b-- F&S Beh #1b 9 - Endogenous  behavior-reproduction tests
S #1a -- F&S Beh #7 10 - Boundary adequacy tests (modes of behavior )

S #7c -- F&S Beh #1c 11 - Qualitative problem-behavior  test
S #1b -- F&S Str #4 12 - Boundary adequacy (problem endogeneity )
S #2d -- F&S Str #1d 13 - Validity of decision rules (policy  focus)
S #10 -- F&S Beh #5 14 - Assessment of surprise behaviors

S #11a -- F&S Beh #8 15 - Behavior  sensitivity analysis
Test categories: S #5b -- F&S Beh #6 16 - Extreme condition tests (model behaviors  focus)
Basic S #8 -- F&S Beh #3 17 - Behavior anomaly tests (changed assumptions  tests)
Intermediate S #9 -- F&S Beh #4 18 - Family member (generalizability)
Advanced Quantitative  sensitivity analysis - 19 S #11b -- F&S Beh #8

Policy  sensititivity analysis - 20 S #s 1+11c -- F&S Pol #4
Boundary adequacy (policy implications ) - 21 S #1c -- F&S Pol #3

Behavior correspondence - 22 S #7d -- F&S Beh #1d
Behavior prediction - 23 F&S Beh #2

Changed-behavior prediction - 24 F&S Pol #2

System's mapping Quantitative modeling Hypothesis testing Uncertainty analysis Forecasting & optimization

S - Sterman (2000); F&S - Forrester and Senge (1980); Str - Structure; Beh - Behavior; Pol - Policy implications  
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Discussion 
 
The proposed approach to assessment of dynamic models is aimed at guiding refinement efforts, 
and revealing confidence levels across areas of practice, possibly delineating a trajectory of 
confidence throughout model development.  While we think this attempt to add structure and 
guidance to model testing and evaluation can be helpful and useful, it needs some refinement. 
 
Preliminary reviews of our framework were favorable with respect to our purpose.  The specific 
components of modeling used did not resonate well to all audiences.  Specifically, the 
quantitative modeling and forecasting/optimization categories of practice appear to be 
particularly troublesome to modelers who embrace a traditionalist view of SD.  The reviewers 
questioned the form we chose to cluster the tests, each in a single category, and proposed 
changes discussed below.  They also suggested that we go beyond the two sources studied, and 
include novel tests and approaches.  We address the latter two points below. 

Do the components exist in isolation? 
 
Our initial attempt to cluster the tests into the components may have produced an artificial result, 
in which it might be interpreted that the components exist in isolation.  While this may be true, 
more often than not a modeling effort or project will encompass more than one component.  This 
begs the question whether we discuss (1) how one might move from one component to another, 
with many possibilities for beginning and end points, and steps along the way, or (2) revisiting 
the results to portray the relevance of each test vis-à-vis the components. 
 
In the former, for example, we could describe a modeling effort driven by a dynamic hypothesis, 
that moves into the mapping, quantitative, and uncertainty analysis components in a particular 
order or via iterations in the modeling process, but is centered in the hypothesis testing 
component, as described by Sterman (2000), Figures 3-1 and 3-2 (pages 87-105), or Richardson 
and Pugh (1980), Figure 1.11 (pages 15-17), among others.  Alternative approaches might 
deemphasize hypothesis testing, focusing primarily upon the system’s mapping component 
(Powell & Coyle 2002), or the quantitative modeling component (Richardson et al. 2004), to 
provide a couple of examples. 
 
An alternative path might be to attempt to create a matrix of tests and components that shows the 
relative relevance of each test for each component.  This solution would have to propose how 
important and useful each of the tests is for each component.  Thus, if the overall purpose of the 
modeling effort is forecasting, for example, how important is testing for face validity, compared 
with its relevance in a modeling effort that is primarily devoted to mapping a system and 
showing interdependencies amongst key stakeholders. 
 
From our organizational perspective and need, because most of our projects follow a particular 
path, the first alternative seems more attractive.  However, for the breadth of practice in the field, 
the second alternative may prove more useful.  We welcome other modelers’ feedback and 
reactions to our framework, preliminary clustering, and alternative future paths, as you think 
about how helpful this framework could be in your daily practice. 
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Adding novel tests and approaches 
 
A number of new tests not included in the early literature (Forrester & Senge 1980), and texts 
(Sterman 2000) exist, and would be worth including in future iterations of this framework.  The 
list below is illustrative but not comprehensive.  We try to provide at least one example of new 
development for each of the components: 
 

• Soft, qualitative deductive procedures used to validate system’s maps (e.g. Vennix 1990, 
Luna-Reyes & Andersen 2003) 

 
Group model building has additional issues with regard to testing and confidence.  For some 
models correctness can be defined quantitatively, but others correctness might mean including all 
viewpoints of stakeholders. 
 

• Reality checks (e.g. Peterson & Eberlein 1994) 
 
Vensim® has built-in features that automate checking model conformance against statements of 
“truth.”  We think that embedding these solidly held beliefs about the nature of reality in the 
model is particularly helpful to validate the quantitative model. 
 

• Automated procedures to corroborate or refute causal stories linking structure to behavior 
(e.g. Mojtahedzadeh et al. 2004, Oliva 2004) 

 
Using pathway participation metric (PPM), Digest detects and displays which feedback loops are 
most influential in explaining patterns of behavior in a model.  This and other promising 
approaches (based upon Eigenvalue analysis) can help test a modeler’s experiential 
understanding of the link between model structure and behaviors. 
 

• New methods designed to conduct sensitivity analysis (e.g. Ford & Flynn 2005) 
 
In the latest issue of the System Dynamics Review, a statistical screening approach is proposed to 
learn which of the many uncertain inputs to a model stand out as most influential. 
 

• New approaches to model calibration (e.g. Oliva 2003) 
 
Model structure analysis through graph theory uses partition heuristics and feedback structure 
decomposition to increase model confidence through careful calibration.  This development may 
be viewed as a stepping stone toward testing dynamic hypotheses.  But, in and of it self, it 
delineates a path toward automation of the calibration process, which is crucial to forecasting 
and optimization. 

Epilogue 
 
We believe this framework to be theoretically sound and practically useful to guide model testing 
in different phases of model development, and to conduct partial assessments of levels of 
confidence.  It can help negotiate project deliverables, reconciling client and modeler 
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expectations regarding level of effort involved to achieve a certain product, depending upon 
where the model stands.  It also creates a terminology to differentiate modeling products.  
However, we’ve only taken a first cut at reviewing and organizing the whole spectrum of model 
testing and evaluation procedures.  Future steps will include assessing the practical usefulness of 
adopting this framework in our daily work, as well as thinking about how to move forward.  
Your reactions and suggestions will help us refine and expand the proposed framework. 
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