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Abstract The authors present a preliminary theory of outcome-based learning under uncertainty. 
We created this theory by integrating social judgment theory and signal detection theory using 
the system dynamics approach. This integration offers a unique framework to explore the 
fundamental mechanisms associated with learning dynamics using outcome feedback because it 
allows the decomposition of the judgment process and its resulting outcomes.  
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1 Introduction 

Learning in complex systems is an important area of scientific inquiry (Sterman 1994). It 
is especially difficult to learn in feedback-rich, uncertain environments. Learning from outcomes 
has received attention in the human judgment literature (Klayman 1988b, 1984). Studies on 
probability learning in laboratory settings have documented individuals’ difficulties learning 
probabilistic relationships from outcome feedback (Klayman 1988a). However, there is also 
research that has shown that individuals seem to learn adequately about probabilistic 
relationships from outcome feedback in real-life situations (Hammond 1996). This divergence of 
findings suggests that the existing models of learning have limited applicability. Scholars have 
tried to address these limitations by building simple dynamic models which appear to explain 
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intermediate-term behavior better than long-term behavior (see Roth and Erev 1995; Funke 
2001). Our model is further attempt to improve the explanatory power of learning models of this 
sort. 

Learning in complex systems is often embedded in a selection-detection-action process. 
This process involves the identification of same-class elements in a mixed-class group and the 
decision to take action based on this identification. There are two important sources of error in 
this process, outcome decomposition and judgment. Although signal detection theory offers a 
process to understand uncertainty and to decompose outcome, it fails to address the mechanisms 
of judgment that lead to a particular selection. Social judgment theory, alternatively, offers a 
mechanism to decompose the judgment process that leads to detection, but fails to explore 
outcomes derived from decisions following the judgment. Integrating these theories may 
improve understanding of the selection-detection problem and associated learning dynamics in a 
holistic manner. 

We integrate Brunswik’s (1943; 1956) lens model of judgment analysis (Cooksey 1996; 
Hammond 1996) and signal detection theory (Egan 1975; Green and Swets 1966) using the 
system dynamics approach (Forrester 1961; Richardson and Pugh 1981; Sterman 2000) to 
understand the behavioral aspects of outcome-based learning in the selection-detection process.  

We are not interested in the identification of optimal feedback control for the decision 
threshold, because “the optimal rule can be rejected as a descriptive model of human 
performance based on past research” (Busemeyer and Myung 1992, p. 177). Similarly, Green 
and Swets (1966) have shown that “observer[s] tend[s] to avoid extreme criteria” in the case of 
moving thresholds even when an extreme movement is required to achieve optimal results. 

The impetus for this work has come from the 2004 Workshop of the Security Dynamics 
Network at Carnegie Mellon University in Pittsburgh, PA. This paper is a formal statement of 
the abstract decision model conceptualized at that meeting and related work. 

2 Theoretical Framework 

This section explains the basic tenets of the theories used in this integration effort: social 
judgment theory and signal detection theory. 

2.1 Social Judgment Theory 

Social judgment theory (SJT) comes from Egon Brunswik’s (1943; 1956) probabilistic 
functionalist psychology coupled with multiple correlation and regression-based statistical 
analyses (Hammond 1996; Hammond and Stewart 2001; Hammond et al. 1975). In his work, 
Brunswik’s (1956) main assumption is, “that the environment is, from the point of view of the 
organism, fundamentally probabilistic,” and, therefore, uncertain (Balzer, Doherty, and 
O'Connor 1989, p. 431). 

Decomposition of judgment is one important aspect of SJT. It is the identification of the 
main elements of the judgment process and the analysis of their interactions. According to SJT, 
judgment tasks comprise information cues, organizing principles of information integration, 
relative weights of information cues, and distinct functional forms that relate information cues 
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with judgment. Social judgment theory uses the lens model proposed by Brunswik (1956) to 
represent the relationships between information cues, the phenomenon being judged (distal 
variable), and the judgment (see Figure 1). At the center of the lens model, information cues are 
represented by circles and identifiers (in Figure 1, see 1X … 5X ) that form a vector of information 
available to the judge. Curved lines connecting the cue circles represent the correlations, , that 
potentially exist between pairs of cues. The left side of the model represents the focus of 
judgment, that is, the environment ( ). 
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Figure 1. The Lens Model. 

Information cues, when combined in a specific way, are predictors of the distal variable. 
In SJT, the most common way to model the environment is to use a weighted additive linear 
combination of the information cues complemented by bias and error parameters. The lens 
model, “embodies a truism that in order for a person to be able to predict some external criterion, 
that external criterion itself must be predictable,” (Balzer, Doherty, and O'Connor 1989, p. 410). 
Equations 1 and 2 represent the general model for both the environment and the judge: 

Y Y e
∧

= +  (1) 
   where 
Y  is the distal variable or the judgment of the distal variable ( sY or  in Figure 1), eY

Y
∧

 is an estimate of Y , and  
e  is an indicator of the inherent unpredictability of the environment or is the degree of 

the judge’s reliability. 

1 1 2 2 3 3 4 4 5 5Y b X b X b X b X b X k
∧

= + + + + +  (2) 

   where 

Y
∧

 is an estimate of Y ,  
nb  is the weight of information cue n on the distal variable or the judgment, 

nX  is the information cue n, and 
k  is a bias term. 



Integrating Judgment and Outcome Decomposition: Exploring Outcome-based Learning Dynamics   4 

 

2.2 Signal Detection Theory 

In detection systems, the decision-making process includes the comparison of the current 
status of indicators with thresholds that determine the preferred course of actions. The use of 
thresholds represents a simple decision rule that determines how the stimulus space is 
partitioned. This approach is also known as the cutoff rule. For an exploration of how decision 
rules are selected see Busemeyer and Myung (1992). The threshold model of decision making is 
well known in basic and applied research on decision making (Jones and Ryan 1997; Hammond 
1996, 2000; Mumpower, Nath, and Stewart 2002). Signal detection theory is useful when 
decision outcomes depend on discrete events (Swets 1973; Swets, Dawes, and Monahan 2000; 
Hammond et al. 1992). 

One area for the application of SDT is the detection of potential attacks on computer 
systems in an environment of uncertain information. Figure 2 represents a detection problem 
related to the identification of attack events. The X axis represents the probability that an unusual 
or suspicious event is the result of an attack. This probability may be an indicator produced by an 
automated system or an individual’s subjective judgment based on observations of system 
activity. The bell-shaped curve on the left represents the distribution of that indicator for non-
attack events. The bell-shaped curve on the right represents the distribution for attack events. The 
areas are not necessarily proportional to the probabilities of these events. The decision threshold 
line represents the point at which the decision maker decides to treat the event as an attack. Four 
possible outcomes can occur depending on the decision maker’s action. Two of these 
outcomes—unrecognized attacks and normal events identified as attacks—are errors (see shaded 
areas in Figure 2). The decomposition of outcomes into four categories—true positives, true 
negatives, false positives, and false negatives—allows for the creation of an outcome-based 
feedback mechanism that can inform detection processes in the future. See Erev (1998; 1995) for 
studies that have examined SDT empirically as a behavioral theory. 
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Figure 2. Signal Detection Theory. 
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2.3 System Dynamics 

System dynamics is a type of computer simulation. System dynamics uses ordinary 
differential equations to create computer simulations that provide endogenous explanations for 
feedback behavior exhibited by systems (Forrester 1961; Richardson and Pugh 1981; Sterman 
2000). Scholars have used system dynamics for theory integration efforts. Studies of this sort that 
use system dynamics are varied and diverse, including financial theory (Imai 1972), human 
resources theory on job security (Repenning 2000), service operations (Oliva 1996), and firm 
survival (Scholl 2002). 

Using system dynamics as architecture to link SDT and SJT provides two benefits. First, 
system dynamics supports explicit feedback from prior system states to current ones. In our 
model, we use this type of feedback to capture the learning process. In addition, system 
dynamics allows us to model how cue weights shift based on outcomes because it allows 
nonlinear and accumulating effects to be represented. 

3 Judgment and Decision-Making Model 

The model presented in this paper has three basic mechanisms—judgment, decision 
making, and threshold modification (based on outcome identification and use). Figure 3 is a 
schematic of the model structure. There are four categories of outcomes: true positives, true 
negatives, false positives, and false negatives. 
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Figure 3. Simplified Model Structure 

3.1 Structure of the Model 

We model judgment and decision-making processes as a modified version of the lens model 
framework and a threshold-based decision process. In the model, we use a three-cue structure 
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(Information Cue 1, Information Cue 2, and Information Cue 3) to identify the behavior of the 
distal variable (the phenomenon to be detected). Information cues are variables that identify 
relevant aspects of certain phenomena. The three cues are formulated as stochastic variables. The 
statistical characterization of the descriptors of the distal variable is identical for the three cues. 
The cues follow a truncated normal distribution that varies between –3 and +3 centered on 0 with 
a standard deviation of 1. The distal variable is also determined by an error term that captures its 
inherent unpredictability. In the case of a perfectly predictable environment, the associated error 
term is 0. 

Attacks are determined by comparing the value of the distal variable with the criterion 
threshold: the definition of what constitutes an attack. When the distal variable is greater than or 
equal to the criterion threshold ( ), an attack is created. The criterion threshold may be 
altered to adjust the number of attacks generated from the random cues. 

CTh

1 if 
0 otherwise.

eY CT
E

>⎧
= ⎨
⎩

 (3) 

Where 
 
E  is a binary variable indicating the occurrence, or not, of an attack, 

eY  is the Distal Variable in the form of Equation 2, and 
CTh  is the Criterion Threshold [ 3 3CTh− ≤ ≤ + ]. 
 
In the model, judges do not have access to the true descriptors of the distal variable. 

Information acquisition is represented by the introduction of a modified set of information 
cues—Knowledge about Information Cue—that captures the reliability of the information 
acquisition process by incorporating measurement error. Judges generate their judgments based 
on whatever knowledge they are able to acquire related to the true descriptors of the distal 
variable. If measurement error is zero, the reliability of information acquisition is 100%, 
representing the case of perfect information in the judgment process. The judge model also 
depends on a parameter that captures judge bias, and on a parameter that captures judge 
reliability (modeled as a stochastic variable). 

 
When the judgment of the distal variable sY  is equal to or greater than the corresponding 

decision threshold , an action DTh A  is launched as a response to the identification of an attack. 
In this sense, the judgment process begins with an evaluation of cues. After the judged result is 
compared to a predefined decision threshold, a decision to act, or not, is made. Judgments are 
precedents to decisions. Decisions are made based on both the outcome of the judgment process 
and the judges’ definition of what constitutes an attack. Through the decomposition of the 
judgment process and of the threshold-based decision mechanism, different sources of error can 
be identified: poor judgment capability and poor decision-threshold setting. Equation 4 shows 
the decision-threshold model for determination of action. 
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h1 if 
0 otherwise.

sY DT
A

>⎧
= ⎨
⎩

 (4) 

   Where 
 
A  is a binary variable indicating the occurrence, or not, of an action, 

sY  is the Judgment of the Distal Variable, and 
DTh  is the Decision Threshold [ 3 3DTh− ≤ ≤ + ]. 
 
Outcomes, the results of actions, are modeled using a binary formulation in which “1” is 

assigned if the conditions for that type of outcome are met and “0” is assigned otherwise. Four 
types of outcomes are possible: true positives ( 1E A 1= ∧ = ), true negatives ( ), 
false positives ( ), and false negatives (

0 0E A= ∧ =
0 1E A= ∧ = 1 0E A= ∧ = ). 

Social judgment theory (Hammond 1996, 2000; Hammond et al. 1992) distinguishes 
between feedback from knowledge of the results of actions (outcome feedback) and from 
knowledge of cognitive mechanisms that created those results (cognitive feedback). In the 
model, outcome feedback is used to modify the decision threshold as a result of the relative 
influence of the four types of outcomes generated in the decision process. 

Each type of outcome has a different relative influence on the position of the decision 
threshold. The distribution of outcomes, however, is a function of the level of the decision 
threshold. Thus, modifications to the decision threshold change the distribution of the outcomes 
that are being used to modify the threshold. This situation can lead to the identification and 
adoption of an optimal decision threshold or to the adoption of a suboptimal decision threshold. 
The final decision threshold is a function of the updating mechanism and of the payoff matrix 
associated with the different types of outcomes. We use a simplified version of Erev’s (1998) 
cutoff reinforcement learning model and a modified version of the Erev et al. (1995) outcome 
payoff matrix in our model. We use a simplified version of Erev’s (1998) cutoff reinforcement 
model to represent a reactive detection process that is influenced by outcomes as soon as they are 
perceived. Equations 5 and 6 show the model for the decision threshold. 

 

0( ) tDTh DThCh dt DTh= +∫  
(5) 

   Where 
 
DTh  is the Decision Threshold, 
DThCh  is the Change to the Decision Threshold, and 

0tDTh  is the value of Decision Threshold at time zero (in this case, 0). 
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1 if 

0 otherwise.

i ii
PIO O

MinDTh DTh MaxDthDThCh τ
=

⎧ ⋅
⎪ < <= ⎨
⎪
⎩

∑

 

(5) 

   Where 
 
DThCh  is the Change to the Decision Threshold, 

iPIO  is the Payoff Influence of Outcome “i,” 

iO  is the Outcome “i,” 
τ  is the average time to change the decision threshold,  
MinDTh  is the minimum level of the decision threshold (in this case -3), 
MaxDTh  is the maximum level of  the decision threshold (in this case +3), and 
DTh  is the Decision Threshold [ MinDTh DTh MaxDTh≤ ≤ ]. 

3.2 Numerical Simulations 

The model is parameterized to create two base runs (fixed base, dynamic base) in which 
cautious judges select a conservative decision threshold and apply it consistently as a decision 
policy over time. In these runs, the judges have neither perfect information (measurement error 
exists) nor the optimal judgment weights. The judges have a fixed decision threshold set at 0 
standard deviations from the mean, and produce a selection rate of 50% as well as a degree of 
judgmental consistency sR  (see Stewart 2001) of 50%. The environment has a criterion threshold 
set at 1.2815 standard deviations from the mean of the cumulative probability distribution, a base 
rate of 10%, and a degree of predictability eR  (see Stewart 2001) of 80%. With this 
parameterization, the judges are 36.8% accurate in getting the optimal cue weights. 

In the fixed-base run, there is no outcome feedback present and all judgments are 
compared to the same decision threshold of 0. 100 weeks of transactions are simulated, and of 
the 40 events generated, the judges are able to correctly identify 26, yielding an accuracy of 
judgment (also called sensitivity) of 65% (measured as the percentage of events correctly 
detected of the total number of events). The judges generate 216 actions (190 false positives, and 
26 true positives) and 204 total errors (190 false positives and 14 false negatives). Most of these 
errors are not problematic (the false positives), but the 14 false negatives can have tremendous 
consequences if they are attacks. These numerical results suggest that there is a more suitable 
decision-threshold level that reduces the total number of errors. To find this decision threshold 
we also simulate a dynamic decision threshold. 

In the dynamic-base run, the judges start the judgment and decision-making processes 
with a decision threshold of 0 and adjust it over time. Knowledge from past outcomes drives this 
adjustment process. The introduction of outcome feedback and the consequent dynamic decision 
threshold yields a higher accuracy of judgment (77.50%) than in the fixed-base run. The judges 
are able to correctly identify 31 of the 40 simulated attacks by generating 274 actions (58 actions 
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more than in the fixed-base run). Of the 274 actions, the judges make 243 errors (false positives), 
allowing 252 total errors to be produced (including 9 false negatives). 

To continue exploring the parameter space, four additional scenarios are simulated— 
with both fixed and dynamic decision thresholds. See Table 1 for the results of all the simulation 
runs. 

 
• Perfect Information. By eliminating measurement error of information cues, this set of 

runs simulates the availability of perfect information for the judges. 
• Perfect Weights. The degree of fit of the judges’ model to the optimal cue weights is 

100%. 
• Consistent Judge. The degree of judgmental consistency is set to 100%. 
• Combined. This set of runs includes all the changes of the previous runs, simulating a 

perfect judge who has access to perfect information and who has perfect knowledge of 
the true weights for the predictors of the distal variable. The environment, however, 
remains 80% predictable, not 100%. 
 
Under the conditions of perfect information, using a fixed threshold yields a sensitivity of 

50% (which matches the selection rate), while, with a dynamic threshold, the sensitivity grows to 
77.5%. The introduction of perfect information produces a marginally negative impact on 
outcomes, at least in this region of the parameter space, compared to the base run (see Table 1). 
The consistent, perfectly reliable judges, trigger fewer detection actions and fewer total errors, 
yielding a similar accuracy of judgment (55% and 77.5%). In these runs, improvement comes 
from the increased reliability of judgments, which creates more consistent judgment patterns, and 
thus, more true positives. The assumption of very consistent judges is more realistic than that of 
judges with perfect information. 

Simulating the introduction of optimal weights is akin to saying that the relationship of 
the information cues and the distal variable is knowable. These simulations show that accuracy 
of judgment improves from 65% to 75% with fixed thresholds and from 77.5% to 85% with 
dynamic thresholds. Additionally, the number of false negatives decreases. 
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Table 1. Numerical Simulation Output 
Fixed Dynamic Fixed Dynamic Fixed Dynamic Fixed Dynamic

Fixed Dynamic Perfect 
Info

Perfect 
Info

Perfect 
Weights

Perfect 
Weights

Consistent 
Judge

Consistent 
Judge Combined Combined

True Positives 26 31 20 31 30 34 22 31 39 37
False Negatives 14 9 20 9 10 6 18 9 1 3
False Positives 190 243 193 269 179 226 168 229 162 170
True Negatives 169 116 166 90 180 133 191 130 197 189

Events (TP + FN) 40 40 40 40 40 40 40 40 40 40
Actions (TP + FP) 216 274 213 300 209 260 190 260 201 207
Number of Errors (FP + FN) 204 252 213 278 189 232 186 238 163 173
Non-Events (TN+FP) 359 359 359 359 359 359 359 359 359 359

Total Judgments 399 399 399 399 399 399 399 399 399 399
Sensitivity (TP/Total Events) 65.00% 77.50% 50.00% 77.50% 75.00% 85.00% 55.00% 77.50% 97.50% 92.50%
Specificity (TN/Total Non-Events) 47.08% 32.31% 46.24% 25.07% 50.14% 37.05% 53.20% 36.21% 54.87% 52.65%

Asymmetrical Payoff Structure
True Positives 0
False Negatives (10)
False Positives (1)
True Negatives 0  

 
In the combined simulation runs there is perfect information and there are perfectly 

reliable judges with perfect knowledge of the optimal cue weights. These runs generate an 
accuracy of judgment of 97.5% in the fixed run and 92.5% in the dynamic run, with the correct 
identification of 39 and 37 of the 40 generated attacks, respectively. The difference between the 
two cases is worth exploring to see if it is due to chance or structural components. This result is 
interesting because the inherent predictability of the environment is 80%. However, even under 
these benign conditions, the total number of actions and errors generated is very large (201 and 
207, and 163 and 173, respectively). Although almost all errors are false positives, these are 
errors nonetheless. 

The simulated detection process does not efficiently define a threshold that could 
eliminate errors, even when it detects events efficiently (sensitivity of 97.5% and 92.5% in the 
combined case). 

4 Conclusions and Future Research 

Incorporating judgment decomposition and outcome decomposition in a dynamic 
framework holds promise to enhance understanding of the judgment-decision-action process. 
The approach taken in this research has a number of opportunities and problems associated with 
it. Theory integration is a delicate enterprise, with potential yield for understanding the 
mechanisms present in detection processes. The research presented here still requires refinement 
of the model’s structure and exploration of current decision threshold–adjustment behavioral 
theories (Erev 1998; see Erev et al. 1995). Additionally, data must be collected to identify 
descriptive time-series data to continue with the process of confidence building. Although “all 
models are wrong,” as Sterman (2002) claims, the creation of an integrated model of judgment 
and decision making for detection problems like the one presented here can aid in the 
understanding of the implications and complications of these processes in complex situations.  
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