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A Systems Theory of Small-Cell Lung Cancer

Background

Cancer is a problem that has long been wrought over by philosopher and biologist alike. It 
provides a tremendous insight into the diversity of complex phenomena, into the ontogeny of order, 
into the deepest deterministic principles of life itself. Here we try to sketch dynamically the emergence 
of  such  a  metastatic  and  invasive  process,  tying  together  chemical,  molecular,  and  physiological 
insights to more clearly define the problem. We follow the progression of small-cell lung cancer in a 
population of brachial lung cells – tracing the molecular, cellular, and systems etiology of this complex 
disease.

Defining the Cancer Biological System

Cancer  is  a  multifaceted  disease  that  manifests  on  different  levels.  On  one  hand,  it  is  a 
molecular disease -- radical oxide particles undermining the nucleotide regulatory codes of individual 
cells. On the other hand, it is a social disease of a cell population – one group of cells has become 
unruly, growing and dividing rapidly in a distinctly hostile fashion. Yet another hand presents the 
compromise of an organ system, the disease state undermining an essential physiological function. A 
final hand completes the symmetry, revealing cancer to be a recapitulation of an earlier developmental 
phase, a paradoxical retracing of ontogeny.

Cancer is a molecular disease caused by a variety of 
chemical  agents.  These  carcinogens  are  usually 
mutagens  that  induce  changes  in  DNA  or  RNA, 
changes which then alter the regulatory and functional 
characteristics of the code to induce drastic behavioral 
changes at the cellular level. Chemical mutations tend 
to  distribute  randomly  across  exposed  (actively 
transcribed/regulatory)  regions  of  the  genome  and 
while most mutations are harmless, the few that affect 
cell-cycle checkpoints can prove fatal to the local cell 
cooperative.  Cell-cycle  mutants  can  become 
proliferative, breaking free of the cellular matrix and 
compromising  systems level  goals.  (Hanahan et  al.) 
Cancer,  then,  becomes  a  social  disease  of  a  cell 
population. 

Cancer is a disease of an organ system. A human 
composed of eyes, noses, mouths, hearts, and lungs is 
necessarily  an ordered systems of different  types of 
cells and tissues. This order arises from the ontogeny 

of development. All tissue and systems arise from pluripotent stem cells, who based on extracellular 
cues, commit to ever more limited and specialized fates. The cell maintains a population of stem cells 
in any given tissue that replicate and differentiate when the organ is damaged. Progenitors give rise to 
committed cells which in turn give rise to terminally differentiated cells that can no longer divide and 
who  are  locked  into  functional  roles  through  epigenetic  means.  In  cancer,  this  developmental 
progression is upset and progenitor and committed cells break free of their fate programming to pursue 

Figure 1: Commonly acquired and often necessary 
characteristics of cancer cells. (Hanahan et al.)



their own replicative agendas. (Werner et al., Warburton et al.)

The first attempts at a systems model of cancer was undertaken by Barry Richmond in 1977. He 
developed a model and a structural theory that intergrated much of the available information then. It is 
well past time for an update, though, as the past 25 years have brought unparallel discoveries in this 
field on the molecular, cellular, and physiological levels. We strive, as he did to develop a thorough 
understanding of the cancer problem and try to find a modeling approach that captures the complex 
behaviours  associated  with  cancer  while  remaining  simple  enough  to  be  useful  as  a  tool  for 
understanding the disease process.

The Story of Small-Cell Lung Cancer

There  are  many  different  types  of  cancer, 
usually named by and taking on characteristics of the 
tissue  in  which  it  arises.   Lymphomas  affect  the 
lymph nodes, melanomas affect melanocytes in the 
skin, and carcinomas afflict the epithelial cells that 
line  tissue  surfaces.  In  addition,  tumors  are 
heterogenous,  polyclonal  (having  different  genetic 
strains)  tissues  composed  of  cells  with  many 
different  mutations  and  functional  changes. 
(Hanahan et al.) When it comes to modelling cancer, 
it would be better to focus on a specific type, thus 
avoiding reckoning with the many unrelated parallel 
and  even  opposing  pathways  that  produce  the 
phenotype.  Instead,  we  draw  our  attention  to  a 
particular  cause  and  effect  relationship  in  a  well-
studied  but  incompletely  understood  system  of 
cancer. 

Small-cell lung cancer is a carcinoma of the 
epithelial  cells  lining  the  bronchi  (see  figure). 
Though  it  accounts  for  less  than  20% of  all  lung 
cancers, small-cell (or oat-cell) carcinoma is the one 
most strongly associated with smoking. The small-
cell moniker arises from the fact that these fast proliferating tumor cells are small and oval with a high 
chromatin concentration. Small-cell lung cancers are also among the fastest to metastasize to distal 
locations and are even known to produce ectopic neuroendocrine effects.  (Jackman et al., Kotton et al.) 

Unlike most cancers where the causes of malignancy are mostly uncorrelated with behaviour or 
exposure, small-cell lung cancer has been tied firmly to smoking. Besides the usual slew of carcinogens 
known to transform cells into cancers, bronchial epithelial progenitors also have a close relationship 
with nicotine. During the growth of the embryonic lung, epithelial progenitors express neuromedin and 
gastrin-releasing peptide (GRP) receptors. Activation of these receptors by their targets stimulates lung 
stem cell proliferation. It turns out that elevated nicotine concentration induces expression of GRP and 
neuromedin receptors producing a sort of developmental regression. When other cell-cycle checks are 
similarly broken and tissue repair mechanisms induce stem cell proliferation to replace epithelial cells 
damaged by smoking, this autocrine growth loop can produce and explosive expansion of the cancer 
cell population. (Seigfried et al., Werner et al., Wistuba et al.)

Figure 2: Schematic view of the bronchi, revealing epithelial  
cells where lung carcinomas arise. 

http://www.patient.co.uk/showdoc/21692519/



Developing A Structural Model

In this phase of our project, we strive to develop a structural understanding of cancer dynamics. 
We trace the genesis of cancer in a microcosm of lung tissue following the different cell types, their 
developmental progression, replication, mutation and death. We try to determine the simplest structures 
that can accurately simulate cell metabolic processes and the impact of blood supply requirements on 
growth and death. We examine the impact of smoking – it's toxic effects on tissue, it's induction of 
endocrine factors and it's effect on mutagenesis. Finally, we trace the developmental process of tissue 
repair following progenitor cells as they divide and differentiate highlighting the impetus they provide 
for proliferative processes like the ones operating in cancer.

Tissue Cell Populations

Figure 3: Tissue cell populations represented as stocks with flows into their normal and cancerous developmental fates.

We  model  the  lung  cell  populations  as  a  developmental  progression.  There  is  a  pool  of 
pluripotent progenitor stem cells at the top of the developmental potential hill. As fully differentiated 
cells at the bottom of the potential are depleted by death or tissue damage, these progenitors progress 
into successively more committed cell types. Each of these developmental progressions has it's own 



rate that is dependent on the total number of differentiated cells that need to be replaced and on other 
factors such as nutrient availability and cellular toxicity. Progenitor and differentiated cells are born  as 
a continuous adjustment to an ideal target population of each cell type (Ideal Progenitor Cell Count and 
Ideal Differentiated Cell  Count)  and die according to their respective lifespans.  Divisions rates for 
progenitor and cancer cells are additionally affected by the levels of extracellular mitotic signals. They 
produce exponential  increases  in  cell  division rates  on  an  order  corresponding to  the population's 
responsiveness to such mitotic stimuli.

A cell in any of the undifferentiated stages has a probability of becoming cancerous with stem 
cells being the most likely to transform, committed progenitors being less likely, fully committed cells 
even less likely, and differentiated cells being unable to transition. The probability of transitioning 
normal cells  into cancerous cells is also influenced by the mutagenesis  rates,  which in this  model 
corresponds to inhaled smoke exposure. 



Metabolism

A key component of any realistic biological model is a representation of metabolism – the 
energetics  of  cellular  life  in  terms  of  nutrition 
waste. We use some of the insights and techniques 
developed by Richmond to formulate a very simple 
representation  of  cellular  metabolism.  In  this 
representation, Nutrients and Metabolic Wastes are 
stocks. The nutritional inflow and waste outflow are 
dependent  on  the  size  of  the  local  blood  supply 
while nutrition consumption and waste  generation 
are based on the cell's given metabolic rate. 

The structure of this metabolic formulation reflects Richmond's hierarchy of cellular needs and 
bears out the simple assumption that food and waste clearance are the most basic and most essential 
processes of cellular life. We design the model such that nutritional shortages and toxic metabolic 
waste accumulation (relative to normally tolerated amounts) act to slow the growth and division of any 
cellular population, produce cause angiogenic factor production in the cell neighborhood, and in the 
case of progenitor cells even works to slow their differentiation rates. 

Figure 5: Structure of progenitor cell metabolism and waste elimination.

Figure 4: Richmond's hierarchy of cellular needs.



Separately  formulating  a  parallel  structure  for  each  of  our  three  major  cell  populations 
(progenitor,  differentiated,  and cancer),  we manage to  independently  and symmetrically  assess  the 
metabolic status of each.

Figure 6: Metabolism of the Differentiated Cells

Figure 7: Metabolism of the Tumor Cells



The effects of metabolic deficiencies on population parameters are formulated as lookup tables. 
There are basically two types of lookup tables we formulate in this sufficiency model. The first is a 
exponential decay effect on carcinogenesis rates and angiogenic factor production for each cell type, 
or time to replace progenitor cells and its value drops from an arbitrarily large value at 0 sufficiency to 
a normal value of  1 for sufficiency equal or greater than 1 (Figure 8). The second is a logarithmic 
growth effect on cell lifetimes or fractional nicotine clearance rates and its value increases from a 
minimum of 0 at 0 sufficiency to a maximum of 1 at sufficiency greater than or equal 1 (Figure 9). 

Figure 9: Effect of Nutritional Sufficiency on Cancer Cell  
Lifetimes is formulated as a logarithmically increasing function

Figure 8: Effect of Nutritional Sufficiency on Differentiation times is  
formulated as a exponentially decaying function



Blood Supply

Figure 8: Blood Supply Sector

Blood supply is modelled as a stock that can grow to a maximum capacity for the given tissue 
microcosm. The growth rate is determined by the growth level indicated by the total angiogenic signals 
from the cancer and differentiated cells, and limited by a maximum fractional and maximum total 
blood supply growth rate. The average blood available per cell is simple division of blood units by 
number of cells.

Angiogenic signals are produced by tumor and differentiated cells in response to nutritional 
insufficiency or waste clearance insufficiency. The dominant signal from either nutritional insuffiency 
or waste clearance insufficiency is then multiplied by the number of cells in each population to 
simulate the diffusive effect of the angiogenic signal – the more cells putting out the signal, the 
stronger the indicated growth in blood supply will be.  



Differentiation, Division and Death

Figure 11: Differentiation Rates

Differentiation rates (Figure 11) are computed in terms of making up a deficit of differentiated 
cells. We take the difference between the ideal number of differentiated cells and existing or currently 
differentiating cells and have progenitors transition into the first  differentiation step at this desired 
commitment rate as long as it's less than the maximum commitment rate allowed. Commitment 2 and 
Terminal Differentiation simply take the cells from the previous step into the next state in the given 
time. 

Division  is  tabulated in  terms of  making up a  deficit  of  progenitor  cells  and  calculating a 
doubling time for cancerous cells. Both rates are affected by systemic adjustments for the mitotic signal 
level, by their own responsiveness to these signals, and by metabolic adjustments to their division rates. 
In the case of cancer cells, the nicotine concentration can have an effect on their responsiveness to 
mitotic signals.



Figure 12: Division Rates



Figure 13: Damage and Death

Tissue damage is calculated simply as a global adjustment of cell lifespans based on a fractional 
damage rate based on the cigarette consumption rate.  Metabolic sufficiency is accounted for each of 
the cell types and the lifetimes are correspondingly adjusted from their normal values. For cancer cells, 
we have a peculiar feedback process where the number of cancer cells increases the probability of long-
lived mutants in the population which would drive up the average cancer cell lifetime.



Mitotic Signals

Tissue repair pathways as well as several cancer pathways induce extracellular mitotic signals. 
These diffusive signals permeate the local cell neighborhood and trigger mitosis in all responsive cells. 
We model these extracellular mitotic signals as a stock that accumulates with repair signals or cancer 
processes and decays exponentially with a given signal lifetime.

Smoking
We model smoking as a constant accumulation process of nicotine and a constant exposure to 

other  toxic  substances  whose  magnitude  depends  on  the  effect  of  one  cigarette  and  the  number 
cigarretes  consumed  per  day.  The  model  here  posits  four  parallel  processes  with  which  smoking 
interferes.  Firstly,  smoking  and  the  free  radical  particles  inhaled  with  cigarettes  increases  the 
mutagenesis rate in the local tissues. Next, both this free radical load and the drying effect of hot smoke 
in lung tissue contribute to the metabolic load of the lung's epithelial cells. Third, these same factors 
also  direct  kill  a  small  portion  of  epithelial  cells.  Finally,  smoking  slowly  increases  nicotine 
concentration, especially in the lungs and peripheral vasculature.

The second half of our smoking sector captures the effect of this nicotine dependent autocrine 
growth loop in small-cell lung cancer. In this view, nicotine accumulation in the local tissue results 
from intensive smoking and from reduced elimination rates (associated with rapidly expanding cancers 
that can never maintain a sufficient blood supply). Elevated nicotine concentration induces expression 
of growth factor receptors which make the cancerous cells more responsive to mitogenic signals and 
accelerate the disease progression. This process is captured in the Effect of Nicotine Conc on Cancer 
Cell Mitotic Response.

Figure 14: Effect of Smoking on Small Cell Carcinogenesis Figure 15: Effect of Toxic Smoking Byproducts on Waste 
Removal Needs



The way in which smoking affects carcinogenesis rates has not been explicitly studied but we 
can use a study that associated levels of cigarette consumption with risk of developing small cell lung 
cancer to derive an empirical estimate of these effects. Barbone et al have studied this and published 
comparative  odds  ratios  of  small  cell  lung  cancer  development  given  cigarette  consumption.  We 
incorporate this into our model as the Effect of Smoking on Small Cell Carcinogenesis. 

Figure 16: Smoking Effects



Mutagenesis, Rebellion and Death

While random mutations, the rate of which climbs drastically with carcinogen exposure from 
tobacco, are the cause of cancer initiation, once a cancer population exists, it becomes an organism in 
it's  own right  pursuing and independent  proliferative course of  action.  Cancer  cells  tend to divide 
without waiting for the normal error-proofing steps undertaken by normal cells. This rapid proliferative 
phase is characterized by a high mutation rate. It is in the mutants that arise here that cancers find their 
modes  of  terminating  the  host.  Mutations  that  invoke  senesence  and  resistance  to  environmental 
stresses are added to the tumor's repertoire of cells, along with ones that allow bloodstream or immune 
invasion. Collectively, these phenomena serve to increase the tumor's robustness increasing the average 
cancer cell lifespan and making therapeutic intervention ever more difficult. 

Figure 17: Cancer Cell Lifetimes - Relation to Tumor Size and Robustness



Simulation Runs
In this draft of the structural cancer model we try to recreate the well-established quantitative 

correspondence between smoking and small-cell lung cancer. By varying cigarette consumption, we 
find that we can affect the probability of cancer onset in the twenty years of the the simulation run. As 
expected, we find exponential increases in cancer populations once the founding cells encounter the 
necessary proliferative stimulus. In some exceptionally intense smokers, we find that the cancer has 
multiplied  to  the  point  where  the  normal  cell  and  progenitor  cell  populations  have  crashed  after 
stretching the blood supply to the limit. We wind up, in these most successful cases, with a bona-fide 
tumor – a clump of cells in exponential growth phase actively recruiting it's own blood supply and 
causing havoc in the surrounding tissue.

We run the model with daily cigarette consumptions of 0, 20, 40, 60, and 80 per day and then 
examine the system and state variables. We find that the 20 per day smokers are slowly increasing their 
cumulative risk of developing a metastasis over the course of the 10 years and that the other smokers 
show differing  onsets  and  initial  progressions  for  an  invasive  tumor  that  changes  the  local  tissue 
composition.

We vary the number of cigarettes consumed per day from 0 to 100, measuring the sensitivity of 
the  tumor  development  process  to  this  parameter.  Graphs  and  tables  of  key  variables  from  the 
sensitivity and regular runs follow the short summary below.

Summary of Model Behavior

 At some critical threshold value of cigarette comsumption between 20 and 40 per day, we can 
see a transition from a simple probability of tumor development to a non-zero tumor cell population. In 
the 20 cigarettes per day run, we are left with a greater risk of developing cancer –it transitions from 
the 3.95e-29 that comes with normal aging given our model to 2.50e-26, a value indicating a cancer 
risk more than 1000 times higher in the given tissue. 

In  the  consumption  value  range  that  develops  a  growing  tumor,  we  find  that  the  cancer 
population grows exponentially at first expanding into any available free blood supply capacity and by 
replacing peripheral cells (specifically differentiated cells) that have a shorter lifespan and therefore 
lower population expansion rate. Once the replacement processes and the equilibration of populations 
based on birth and death rates is done, the tumor population grows linearly as the blood supply finishes 
expanding at the maximum allowed rate. All of this behaviour is in line with what little is known about 
the initial growth phases of a primary tumor – that it will expand based on it's indicated population 
growth rate (difference between division and death rates) until it  reaches the resource limit for the 
tissue, and that it will then grow based on it's angiogenic ability and the local tissue angiogenic rate 
maxima  until  it  reaches  the  maximum  blood  supply  capacity  for  the  locality.  Further  growth  is 
dependent on ability to grow and invade into the surrounding periphery.

The tumor population is growing even as it's  starving and though initially cells are drifting 
towards compensating for the nicotine and toxic waste clearance load by increasing blood supply, the 
development of even one tumor cell soon leads to explosive tumor growth irrelevant of the metabolic 
checks  on its  growth.  This process of  growing in  toxic  surroundings  also gives  the tumor cells  a 
competitive edge in replacing the differentiated cells surrounding them.



Dependence of Model on Tumor Size Parameter

The trickiest parameter to estimate here is the probability that a growing tumor colony will 
develop the long-lived phenotype that lets them outlive and thereby replace the differentiated cells in 
the local tissue. Given that we don't explicitly model invasive metastatic features or active immune 
response in tumor cells, tumor replaces healthy tissue in a replacement process where a resource (blood 
supply) slot opened by a dying differentiated cell is filled by a much longer lived tumor cell. The 
lifetime of the tumor cell in this case is decided mainly by the probability of developing cell-death 
evasion mutations in a subpopulation of tumor cells which eventually leads to replacement of the entire 
tumor population by cells  that on average live longer  and expand into differentiated cell  resource 
supply. The difference between division and death is the key determining factor here and a longer lived 
population has no trouble maintaining a growth rate that far exceeds the death rate.

Figure 18: Dependence of Division to Death Ratio on Cancer Cell Lifetime 
and in turn on Probability of More Robust Cancer Cells Arising

The green run in the figure above uses a Probability of Robust Cells Arising that's 10 times 
lower than the original value. It shows a tumor population that has trouble expanding into differentiated 
cells showing a profile more indicative of a benign and growth-limited tumor type.



The Effect of Smoking on Carcinogenesis

Cigarette Consumption 
(number/day)

Cancerous Cells (cells after 20 
years)

Differentiated 
Cells (cells after 

20 years)

Years To Develop 
Cancer

0 3.95e-29 9.09e+05 >20

20 (1 pack/day) 2.50e-26 9.09e+05 >20

40 (2 packs/day) 6.49e+06 3.42e+04 ~10

60 (3 packs/day) 6.46e+06 3.17e+04 ~5

80 (4 packs/day) 6.47e+06 3.16e+04 ~3

Table 1: Cigarette Consumption as it affects normal tissue and tumour populations.

Figure 19: Cancerous Cells as Smoking varied 0-100.

Figure 20: Blood Supply as Smoking varied 0-100.
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Looking at the above graphs, the primary insight we gain is that tumor development progresses 
initially as an exponential  process where tumor cells are first  growing to the excess blood supply 
capacity of the local tissue, then competing with the differentiated cell population as the blood supply 
and number of cells is grown up linearly (based on the limits to blood supply growth), and finally 
replacing differentiated cells as long lived variants increase tumor robustness. The differentiated cells 
are  unable  to  survive  as  well  given  the  comparative fitness  of  tumor  cells  in  the  resource  scarce 
scenario and have a crash in their lifetimes that leads to a population collapse (graphs below). 

We have recapitulated these basic relationships found in small-cell lung cancer and validated 
the correspondence between smoking and carcinogenesis in our model. We've developed the structural 
relationships between population parameters, metabolic, and angiogenic processes. We've rebuilt Barry 
Richmond's first model of cancer progression to reflect the new understanding of tumorigenesis as a 
probabilistic process and the new insights we have into tumor biology in terms comparative lifecycles 
and growth parameters. In the end, we've constructed the base framework for thinking about small cell 
lung cancer as a system process, which with some evidence gathering and pathological work on the 
population growth structure of these tumors, should be an effective tool for studying the the disease.

Figure 21: Comparison of Cancer and Diff Cell Lifetimes at Cig40
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Supplementary Graphs

Figure 23: Cause Trace of Diff Cell Lifetimes
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Figure 22: Cause Trace of Cancer Cell Lifetime
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Figure 24: Progenitor Cells as Smoking varied 0-100.

Figure 25: Differentiated Cells as Smoking varied 0-100.
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Figure 27: Average Blood Available Per Cell as Smoking varied 0-100.
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Figure 26: Tumor Waste Clearance Sufficiency as Smoking varied 0-100.
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Figure 28: Tumor Nutritional Sufficiency as Smoking varied 0-100.
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