A Comparison of Petri Net and System Dynamics Approaches
for Moddling Dynamic Feedback Systems

Jim Duggan,

Department of Information Technology,
Nationd Universty of Irdand, Gaway,
Galway,

Irdland.

Phone 353-91-493336
Emall: [im.duggan@nuigalway.ie

Abstract

Petri nets are a vaduable tool that can be used to smulate workflow sysems. They ae
based on a daetrandtion agpproech, and in common with discrete event sSmulation,
events can be scheduled to fire at different time intervas. This is in contrest to the stock
and flow approach of Sysem Dynamics, where workflows are aggregated and date
trandtions moddled continuoudy through sats of integrd equaions This paper continues
a theme explored a the Boston 2005 conference, where a paper was presented that
identified a common sSmulation problem, and presented solutions usng both discrete
event smulation and sysem dynamics. The benefit of this approach is that it can provide
moddles from diffeeet methodologicd worldviews indghts into how common
problems may be addressed. The problem approached here is a one-actor modd of the
Beer Game. Two modds ae devdoped, detaled experimentation is peformed, and
overd| results and conclusions presented.

Introduction

A dmuldion is “the imitation of the operation of a red-world process or sysem over
time” and involves “the generdion of an atifidd higory of a sysem, and the
observation of tha atificd hisory to draw inferences concerning the operding
characteridics of the red sysgem” (Banks et. d 1999). Smulation is used to assst
decison makers cope with red-world complexity, and to inform design deciSons in
advance of implementations that involve dgnificant commitments of resources. This red
world complexity has often been caegorised into two varieties (Senge 1990): detail
complexity and dynamic complexity. Sterman (2000) comments that detall complexity is
dependent on the number of components in a system, or the number of combinations one
must condder in ariving @& a dedson. An example of this could be the problem of
optimaly scheduling an arlineés flights and crew. Such a task has a high levd of
combinatorid complexity, and advanced optimisation dgorithms may be desgned to find
the best solution out of a huge range of possble dternatives. Dynamic complexity, which
IS present in many naurd and human sysems, is determined by the causd rdationships
positive and negative feedbacks, and time ddays in a given sysem, and can give rise to
unexpected and counter-intuitive behaviowrs ~ The Bear Didribution Game (Sterman
1989) is a good example of how dynamic complexity can arise as a result of agent

interactions.

Hidoricdly, the discrete-event smulaion (DES) and sysem dynamics (SD) agpproaches
have deveoped as two separate and digtinct fields. Morecroft et. a. (2005) acknowledge
that while it is gpparent that mogt andysts opt for the method with which they are mogt
familiar, there “gppear to be very few dudies that compare SD and DES let done give
guidance on which gpproach might be mogt appropriate in different circumstances”
Work that has compared both gpproaches indudes Bralsord and Hilton (2000), where
the man differences highlighted indude the observation that for DES, objects in the
sysem are diginct entities, whereas for SD such entities are aggregated into a population
and trested like a continuous quantity. In addition, for a discrete modd date changes
occur a discrete pointsin time, while state changes in SD occur continuoudy.

Lane (2000) adds to our underganding of these differences by highlighting that the DES
goproach is andytic, where the emphasis is on detal complexity, while the SD gpproach
is holidic, with an emphads on dynamic complexity. He adso comments that — on the
rexlution of modds — DES focuses on individud entities, attributes decisons and events,
while SD concentrates on homogenisad entities, continuous policy pressures and
emergent behaviour. A further useful diginction offered here is tha while SD focuses on
draegic problems, DES — perhgos because of its primary focus on detall complexity — is
targeted more a operationd problems.

While the god of each smuldion gpproach is broadly smilar — each is intended to help
decison makers draw inferences from a sysem’'s “atificia hisory”, dealy, as wdl as
highlighting the differences and gmilarities between them, Morecroft e. d. (2005) pose
what is arguably the mogt chalenging question of all, namdy: “which should be used in a

specific circumstance?”’

The god of this paper is to address this question, not in a direct way, but by providing the
reeder with a widdy-known and undertood modd that is built usng both DES and SD.
The DES approech is based on timed Petri nets which retan dl the necessary
characteridics for discrete event Smulation, indluding randomness of events, modeling
of individud entities an event cdendar and the moddling of workflow, decisons and
operationd condraints. The further advantage of usng Petri nets is tha, like system
dynamics, they have an underlying rigorous mathemetica bass, and saverd of ther key
concepts map on well to stock and flow representations.

The modd developed is a dngle-actor model of the beer game, which is a draightforward
modd, and has the welcome benefit of replicating key behaviours associaed with
sydems tha exhibit dynamic complexity. It is anticipated that by providing the reader
with these two complimentary modds, dong with obsarvations and results, they will be
in a podtion to better answer the quedtion, as posed a last years conference, which
technigue should be used in a specific circumstance.

Overview of Petri Nets

Petri nets were origindly developed to modd causd rdaionships between asynchronous
components of a computer sysem. They ae dso widdy used for moddling workflow
systems. A Petri net is made up of five ements (Bauer et. d. 1991):

1 A st of places (P). A place represents a system date, and the set of dl places
represents the overdl sysem date. From a sysem dynamics perspective,
places are closdy rdated to socks, as the set of stocks in a system dynamics
modd dso represents the overdl system date. Places are represented by
circlesin a Petri net diagram, and places contain tokens.

2 A st of trandtions (T). Trangtions are the actions that take place in a system,
and these ations cause a change in sysem dae by modifying the input
places, and changing the output places. At one levd, this is amilar to the role
played by flows in a sock and flov modd (the main difference is tha while
flows operate continuoudy, transtions occur a discrete and uneven time
intervals). Trangtions are represented by horizontd linesin a Petri net graph.

3 Aninput function (1), which contains the st of input places for atrangdtion.

4. An output function (O), which contans the set of output places for a

trangtion.

5 A &t of tokens Tokens represent entities that flow through the Petri net. For
exanple in a production-didribution scenario, tokens would represent
individud cusomer orders and aso resources used to add vaue to those
orders. Tokens resde in places, and are moved aound the Petri net as
trangtions are endbled and fire. Formaly, the assgnment of tokens in a Petri

net is known as its marking.

The following Petri net modd (figure 1) represents a cgpacity condrained order
processing function. There are two trangtions in the modd (table 1), and four places
(table 2).

P2
P1 P3 P4
OO0
T1 T2

Figure 1. Petri net graph of capacity-constrained order processing function

Number | Name Input Places Output Places
1 Start Processing Order P1, P2 P3
2 Finish Processing Order P3 P2, P4

Table 1: Petri net trangtions, with input and output places

Number | Name Represents | Initial Sate
1 Orders Queuing Orders 1
2 Avallable Operators Operators 1
3 Orders Being Processed Orders 0
4 Orders Completed Orders 0

Table 2: Petri net places, with initial states

A Petri net graph models the sysem dructure, and aso indicates its Sate a a certan
moment in time. In figure 1, there are two trandtions, but in order for a trangtion to fire
(i.e an event is amulated), dl of its input places must have a least one token. This is a
useful property of Petri nets, because they can explicitly mode resource condraints and
0 a resource-condrained trandtion will not occur unless the resource in present. In this

case, an order will not gart unless (&) an order is in the queue (P1) and (b) an operator is
avalable (P2) to process this order. By adding more tokens to P2, the modd can be eesly
modified to add more cagpecity to the sysem.

A trandtion with a token in each of its input places will “firg’, and one token will be
removed from each of its input places, and a sngle token will be added to dl of its output
places. This is shown in figure 2, where P3 now has a token and each of the input places
(P1, P2) have one less token. Figure two now represents the new system date, where a

sngle order is being worked on, no operators ae avalable, and there are no outstanding
ordersin the queue.

P2
P1 P3 P4
O——0——O
I~
T1 T2

Figure 2: Petri net graph after T1fires

With a token now in place P3, and given that T2 only has one input place, it is now dear
that the next trandtion that is endbled to fire is T2 (Finish Processng Order). When T2
fires, it removes the token from place P3, and adds one to each of its output places,
namey P2 and P3. This new date is shown in figure 3, which indicates that the operator
is free agan to work on the next order, and that the number of orders completed in the
system isincremented by one.

P2

P1 P3 P4
O 1 O 1 @

T1 T2

Figure 3: Petri net graph after trandgtion two fires

While these Petri net modds are useful in terms of representing the cause and effect
rdaionships in the sysem, and dso dlowing the explicit moddling of resource
condraints, a potentid dravback — egpeddly if the problem doman is workflow in
savice or manufacturing industries — is that there is no concept of time in these models.
True, cause and effect are present, but the requirements of red-world smulation move
beyond this and in order for decison makes to gan maximum benefit from these
models, some condderation must be given for the passage of time. Namdy, how ae
event that are causdly related separated in time — S0, for example, in this case, how long
did atoken spend being processed.

Timed Petri nets were introduced to fulfil this requirement, and the mechanism employed
was gmilar to that used in conventiond discrete event Smulation. For timed Petri nets
for a trangtion to fire, not only mug it have a token in each of its input places, but it dso
must be scheduled to fire @ a given clock time. In this example, when an order arrives in
the sysem, two things would happen. Fird, a token would be placed in PL. Second, the
trandtion T1 would be scheduled to fire a the next dock time. The internd “cdlock” of
the smulation is dways forwarded to the time of the next scheduled trangtion, and
means tha — unlike the sysem dynamics goproach — time jumps forward in uneven
measures, and only needs to move on to the next Sgnificant event (see figure 4).

1 Exogenous Event: New Order 2. Get Next Transition from Calendar
- Place Token in P1 - Remove from calendar
- Schedule Tl @Time 1 - Fire transition
- Move tokens
- Schedule T2 @ Time =Time + 15

Event Calendar Event Calendar

| 71 | @TIME = 1 > | 12 | @TIME = 15

Figure 4: Using an event calendar to scheduletransitions

If it heppens that when a trangtion is scheduled but dl its input places do not have
tokens, then the trangtion will be rexheduled for the next dock time and this
rescheduling will continue until whatever resource is required has been freed up, and dl
the input places have a least one token. Usng timed Petri nets dso requires that the
cause and effect between trangtions must be explicitly defined, and dso the average
time, dong with the time distribution, needs to be specified.

In summary, Petri nets dlow a sysem to be moddled in terms of its dates and trangtions
between dates. Enhancing a Petri net with a timing mechanisn means tha timed Petri
nets can then be deployed as a distrete-event smulation gpproach, which engbles
decison mekes to modd workflows condrants and cdculate important timing
ddigics for each dmulaion run. An example of this will be described in the next
section, but before that, a brief summary of the wel-known sysem dynamics modd of
the sngle-actor beer game is presented.

The Single Actor Beer-Game Model

Typicdly, the beer game modd (Sterman 1989) comprises four man actors Retaler,
Wholeder, Didributor and Factory. However, the dynamics of continuous oscillation —
causd by the policy where the supply line is ignored — can be replicated with a sngle
actor (Sterman 2000). For the purposes of this pgper, and in order to smplify the modd
while retaning the ability to replicate key dynamics a dngle actor modd is used, and
thisis moddled using the standard stock and flow model, and a Petri-net based modd.

The Stock and Flow Model

<Orders Fulfilled>

SJppIy Lin X ock a ™
Retailer Upstream Arnvds Retailer Downstream
Shipments Shipments
mew Delay
Desired Supply
L|ne Desired Stock

Adjustment for Retailer Net Stock

Adjustment for
Stock

P4 Supply Line
\ Retaller SLAT
Sﬁ;‘éh e Retaler SAT
) z . Order LV .y
Retaler Upstream o AN Ouee g ray
Orders OrdersFulfilled Downstream
/' Orders
<Stock> /
EDO Error
Retailer EDO AT
Expected
Downstream
Orders Changein EDO

Figure4: Thesingleactor beer game

The man gocks in the sysem are the order queue (1), retaler's stock (2) and retalers
supply line (5). The decison maker's expectation for future demand is represented in (4),
and the net stock is the difference between (2) and (1). The initid vaue of dl stocks is
zero, in order to dign it fully with the initid state of the Petri net model.

(D Order Queue = INTEG(Downstream Orders - Orders Fulfilled , 0)
(@ Sock = INTEG(Arrivds - Retailer Downgream Shipments, 0)
@ Retaler Net Stock = Stock - Order Queue

(4 Expected Downgream Orders = INTEG(Changein EDO , 4)

B Supply Line= INTEG(Retaller Upgtream Shipments - Arrivas, 0)

Cugomer demand (6) is moddled — dong conventiond lines — as a sep function that
doubles after twenty five time units The order fulfilment rate (7) is condrained by the
amount of dock avalable and the net shipments from gtock (8) is the same as this order
fulfilment rate.

©6 Downgream Orders= 100 + step (100, 25)
(7 Orders Fulfilled = min (Order Queue, Stock)
(® Reaaler Downgream Shipments = Orders Fulfilled

Arrivds (9) to the sysem follow a fixed ddivery dday (3), and the desred sock leve
(11) is congant for 50 time units, and is arbitrarily increesed by 200 after that. The reason
for increesng the god is to provide an additiond “chdlenge’ for assessng the behaviour
of the Petri net modd.

(9 Arrivds=DELAY FXED (Retaler Upstream Shipments ,Delivery Delay , 0)
(10 Ddivery Dday =3
(11) Dedred Stock =400 + gtep (200, 50)

The adjusment for stock (12) is the difference between the god (11) and the current dae
(2), adjusted by the dtock adjusment time (13). The desred supply line (14) — which
represents the ided seady state number of orders in the supply line — is the product of the
deliver dday (10) and expected orders (4). The adjusment for the supply line is the
supply line god (14) minus the current supply line dae (5), adjusted by the supply line
adjusment time (17). A booleen vaiable, supply line vishility (16), is used switch this
adjugment on or off, depending on whether the decison maker is aware of dl feedbacks
operating in the sysem.

(120 Adjustment for Stock = (Desred Stock - Stock) / Retailer SAT

(13 Retaler SAT=3

(14 Desred Supply Line = Ddlivery Delay * Expected Downsgtream Orders

(25 Adjusment for Supply Line = Supply Line Vighility * ((Desred Supply Line -
Supply Line) / Retaller SLAT)

(26) Supply LineVighility =[0] 1]

(17 Retaler SLAT=3

Findly, the totd upstream orders (21) cannot be less than zero, and are the sum of the
adjusment for stock, supply line adjustment and expected downstream orders.

(18) EDO Error = Downstream Orders - Expected Downstream Orders

(199 Changein EDO = EDO Error / Retaller EDO AT

(0) Retdler EDOAT=1

(2) Realer Updream Ordas = max (0, Adjusgment for Stock + Adjusmert for
Supply Linet+ Expected Downstream Orders)

(22 Retaler Upstream Shipments = Retaller Upstream Orders

The Petri Net Model

The Petri net modd of the dngle-actor beer game is shown in figure 5. A number of
enhancements are made to the convention Petri net gpproach in that trangtions T8 and T9
ae specid trandtions that represent the reordering heurisic of the retaler, and the
exogenous event that creates cusomer demand. Trangtion T8, which is scheduled to fire
a the end of each day, uses the place vaues of P4, PS5 and P6 in order to cdculate the
correct amount to reorder. The heurigic used is exactly the same as tha specified in
equaion (21), and a flag can dso be st to dther activate or deactivate the supply line
vighility. Therefore the dashed lines represent the information feedback that dlows the
upply line and the stock to be controlled.

T1
I P2
(@ O——0O
—"“——
l"
T8
\~
e 1
~h
VS Seao.
D T i
TR e
P9 N P8
O—
|-
7)

Figure 5: Petri net model of single actor beer game

The full lig of trangtions is shown in table 3, dong with the average and standard
deviaion of the times (in minutes) between a “cause trandtion and an “effect”
trangtion. For the modd, because it is to be benchmarked agangt a standard stock and
flow modd, the dday time for shipment is kept a exactly three days with no variaion —
asisthe case with eguation (10) earlier. [A day is modeled as 480 minutes].

Number Trangtion Name Next Average Sandard
Trangtion Time Deviation
1 Wholesdler Start Order 2 20 2
2 Wholesder Finish Order 3 10 0
3 Ship From Wholesdler 4 1440 0
4 Stock Arrives & Retaller 5 15 7
5 Retaler Start Order 6 20 10
6 Retaler Finish Order 7 10 0
7 Ship From Retaller - - -
8 Fire Retailer Sock Heuristic 8 480 0]
9 Customer Demand Event 8 480 0

Table 3: Trangtionsfor the single-actor beer game

The places in the modd are shown in table 4. These represent the different Sates, and
some of them map directly onto the stocks preserted in the earlier modd. In cases where
there are no direct mappings, this reflects the finer level of granularity that is present in
the discrete-event modd, where times are dlocated for each processng step. However, it
is not expected that these dight varidions will sgnificantly effect the overdl behaviour
of the mode, because the reordering only occurs once at the end of each day.

Number Name Mapping to Stock and Flow M oddl
P1 Retailer Orders Queuing No direct mapping
P2 Retailer Orders Being Processed No direct mapping
P3 Retaller Orders Completed No direct mgpping
P4 Retaler Ordersin Trangt Supply Line (5)
P5 Retaller Stock on Hand Sock (2)
P6 Customer Orders Order Queue (2)
pP7 Customer Orders Being Processed No direct mapping
P8 Cusgtomer Orders Completed No direct mapping
P9 Totd Customer Orders Delivered No direct mapping

Table 4: Placesfor the single-actor beer game

Petri Net System Design

A purpose-built timed Petri net moddling sysem was deveoped, and the sngle actor
beer game modd congtructed with this The system is fully object-oriented’, written in
C#, and dl results are sored in a relationa database system, o that queries and Satigtics
can be generated after each smulation run. The main components are;

The Engine Sub-System, which contains an event ligt, cdendar and the agorithm

for executing dl pending trangtionsin the system.

The Modd Sub-System, which defines key Petri net concepts such as places,
trandtions and tokens and dso defines the linkages between these different
modd components. For example, it dlows places to be linked to trangtions, and
tokens to be added to places.

The Trandtion Rules Sub-System, which contains the logic needed to ded with
different kinds of trandtions that arise in a modeled sysem. For example, there is
a rule to ded with an exogenous event, a rule to modd how an agent controls
ther stock levels — as in the bear game modd, and rules to ded with more
Sandard Petri net trangtions.

The Utilittes Sub-Sydem which contains useful classes to generate random
normd variables and dso dasses that generate unique identification codes for

events and tokens.

The rddiond daabase — implemented in SQLServer — contains interlinked tables
induding:

Event (EventID, Name, ClockTime, DayNumber, EventTime)
BusinessObjectEvent(Event| D, BusinessObjectI D)
BusinessObject(BusinessObjectI D, Type)

SateHigory(Statel D, ClockTime, PlaceNumber, NumberTokens, StateTime)

! Over 40 independent classes, seven sub-systems and 10 relational database tables

14

These tables dlow dl events (which are in fact a record of a trangtion tha has fired) to
be linked to one or more business objects (for example, a cutomer order), so that a full
andyss can later be peformed on dl the smulaion data Furthermore, the StateHigtory
table (table 5) dlows sngpshots of the date to be recorded, and this is needed so that
cdculations such as exponentid average of orders can be caried out as pat of the stock
control heuridtic. It dso dlows a daly record of date data to be mantaned so that charts
and reports can be condructed after the sdmulation has completed. The Event,
BusinessObjectsEvent, and BusinessObject tables rdate individud events back to
business objects (where a business object can be an order or a resource). This enables full
tracesbility and provides the necessry timed data in order to cdculate overal throughput
and utilisation metrics

STATE HISTORY

ClockTime Place Tokens Day Time
0 5 0 11/01/2006 08:00:44
475 5 0 11/01/2006 15:55:50
955 5 0 12/01/2006 15:55:07
1435 5 0 13/01/2006 15:55:04
1915 5 0 16/01/2006 15:55:33
EVENTS
EventID Name ClockTime |DayNumber Day Time
EVENT.31LWIELY Retailer Start Order 18448 39 06/03/2006 11:28:36
EVENT.XNN2800E Retailer Finish Order 18461 39 06/03/2006 11:41:24
EVENT.AYNYL6YC Ship From Retailer 18482 39 06/03/2006 12:02:30

A

BUSINESS OBJECT EVENTS

EventID BusinessObjectID

EVENT.31LWIELY CUST.ORDER.010RCMYH

EVENT.AYNYL6YC JCUST.ORDER.010RCMYH

EVENT.XNN2800E |CUST.ORDER.010RCMYH
a

BUSINESS OBJECT

BusinessObjectID Type
CUST.ORDER.006R2YX0 Order
CUST.ORDER.O0OBBNLOJ Order
CUST.ORDER.QOITPC7T Order
»|CUST.ORDER.010RCMYH Order
CUST.ORDER.014BTHKS Order
CUST.ORDER.019NI3JG Order

Table5: Sample data from selected tables

Comparison of Approaches

In this section, the two approaches are compared. The fird comparison summarises
differences the modd building and execution tasks The second comparison shows the
results to a number of experiments.

Comparison of Model Building and Execution

Building the two modds resulted in the following obsarvations

1. The sysem dynamics model was essy to cregte, was able to accommodate al the
decison rules as equations, and was sraightforward and quick to run.

2. The Petri net modd was 80% draghtforward in terms of places, tokens and
trangtions. However, two specid trangtions had to be coded directly: one to
generae the cusomer demand, the other to generate the desired orders at the end
of each dmulated day. It seems unavoideble that some degree of computer coding
is needed in order to overlay decison heurisics on a Peri net modd. Also, a
goecid purpose dgorithm had to be written in order to cdculae the expected
orders vaue, which had been essly implemented usng a negative feedback
dructure in Venam (see Forrester 1961, pp 406-411 for detal on the rdationships
between exponential smoothing and information ddays).

3. For the Petri net system, a specid-purpose trangtion has to be written in order to
record the state of al places a the end of each day. This would not be needed in a
tool such as Venam, Sdla or Poweram, as the dae variables are automaticaly
recorded for eech solution intervd. Therefore, it was necessary to creste, and
populate, the table State History in the database.

4. For the Petri net system, it was necessary to create a relationd databese so thet dl
reults could be eesly andysed, and that detalled workflows of individud orders
through the sysem could be gathered. Of course, this level of detall on individud
orders was unavailable in conventiond system dynamics models,

5. The Petri net modd took dmos three minutes to run (generaling over 160,000
trangtions), while the Venam modd ran within an indant. While three minutes

seems within an acceptable range for andyss, if more advanced techniques such
as optimisation were to be conddered, then aty individud dmulaion run that
took more than a few seconds would become unatrective for detailed and
extensve policy andyss For example gendlic dgorithm-based optimisations
(Duggan 2005) often require up to 10,000 different Smuation runs

Experimental Results

The soope for expeaimentation with the two modds is quite large, and is Hill ongoing, but
someinitid results are now presented based on the following runs:

With supply line vighility:
0 Run both moddswith SAT (13) and SLAT (17) both equd to one.
0 Runboth moddswith SAT and SLAT both equd to three.
Without supply line vishility
0 Run both moddswith SAT (13) and SLAT (17) both equd to one.
0 Runboth moddswith SAT and SLAT both equd to three.

FHgure 6 summarisss the results for the firg run, where the supply line is taken into
account and dl adjusment times are equa to one. The daa charted is the inventory levd,
and there are no dgnificant differences except that inventory levels for the Petri net
modd dop to zero once during the “warmup’ phase of the modd, and agan around the
time when the demand doubles from 100 to 200. With the adjusment times increased
(figure 7), both models outputs are cdose, gpat from the initid phase and when the Step
function is activated for cusomer demand. On obsarvation, it seems that there is little
difference between the two modes, dthough this could be formdly quantified usng a

sum of squares measure.

17

Use Supply Line (AT=1)

—&— Petri Nets
—— Vensim

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

Figure 6: Plot of resultsfor experiment 1

Use Supply Line-AT =3

—&— Petri Nets
—— Vensim

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

Figure 7: Plot of resultsfor experiment 2

For the second st of experiments, the supply line vighility is deectivated. In the firg
case — figure 8, where the adjusment times are 1, while the behaviour from each modd is
dmilar (odllation), they are dightly aut of phase and the pesks of the Petri net modd
are dgnificantly higher. Further andlyss is needed to explore the contributing factors for

these differences.

Ignore Supply Line-AT=1

2500
2000
1500
—&— Petri Nets
—f—Vensim

1000

500

1 5 9 183 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 8 89 93 97 101

Figure 8: Plot of resultsfor experiment 3

Fndly, in figure 9, where the adjugment times are set a threg, a an early stage of the
smulaion the peeks in the Petri net modd are higher, dthough as time moves forward,
the behaviour of both models converges towards the revised stock god (600), and from

time 61 onwards, the results are virtudly indigtinguishable.

Ignore Supply Line - AT =3

800

. A a8

. i vd
iERYAY.

i
N

0 1EEAEN eSS TTTTTTT

LI L R R RN
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

Figure9: Plot of resultsfor experiment 4

In concduson, the closeness of modd outputs varies depending on whether the supply
line is vishle and adso is dependent on the adjugment times used. From a dynamic
behaviour viewpoint, the Petri net modd replications the dassc behaviours of osdllation
and god seeking behaviour, but further more detaled andyss is required to explan (1)
the differences in pesks when the supply line is switched off and (2) why the initial Stages
of the modds dso vary.

Conclusions

The god of this pgoer was to provide insghts into how DES and SD of how these
gpproaches can be used in a specific drcumdance. In particular, it set about to explore
whether Petri nets could replicate the dassc behaviour of the dandard system dynamics
models. To a large degree, this has been successfully verified with the results adthough
further work is needed to explore smdler vaiaions in the modd, and this work could
ds indude scding up the modd to the convertiond four-actor game. Furthermore, it is
hoped that this work can add to the wider discusson of where common ground can be
explored between the theory and prectice of discrete event dmulaion and system

dynamics
References

Banks, J Cason, JS, Neson, B.L. Nico, DM. 1999. Discrete-Event System
Smulation. Prentice Hall, Upper Saddle River, NJ.

Bauer, A, Bowden, R, Browne, J, Duggan, J, and Lyons G. Shop Floor Control Systems:
From Design to Implementation. Chapman and Hall.

Braldord, SC. and Hilton, N.A. 2000. “A Compaison of Discrele Event Smulation
and Sysgem Dynamics for Moddling Hedthcare Sysems” Proceedings of ORAHS
Glasgow Cdedonian Universty, pp. 18-3.

Duggan, J. 2005. "Using Multiple Objective Optimisation to Generate Policy Indghts for
Sysem Dynamics Modds™ 23rd International Conference of the Systems Dynamics
Society, Boston, July 2005.

Forrester, Jay W. 1961. Industrial Dynamics. Productivity Press, Portland, Oregon.

Lane, D.C. 2000. “You Jus Don't Undersand Me: Modes of Failure and Success in the
Discourse between Sysgem Dynamics and Discrete Event Smulation” LSE OR
Depatment Working Peper LSEOR 00-34, London School of Economics and Politicd

Science.

Morecroft, J and Robinson, S 2006, “Explaning Puzding Dynamics Compaing the
Use of Sysem Dynamics and Discrete Event Smulaion.” 23rd International Conference
of the Systems Dynamics Society, Bogton, July 2005.

Senge, PM. 1990. The Fifth Disciplinee The Art & Practice of The Learning
Organization. Doubleday, New Y ork.

Serman, JD. 1989. “Modding managerid behaviour: Misperceptions of feedback in a
dynamic decison making experiment.” Management Science. 35 (3), pp 321-339.

Serman, JD. 2000. Business Dynamics. Systems Thinking and Modeling for a Complex
World. McGraw Hill Higher Education.

