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Abstract 
 

This paper compares methods for parameter estimation of diffusion models when seeking to extend 

these to service industry contexts from the traditional product focus.  In the marketing science and 

economics literature, parameter estimation is dominated by econometric methods.  This presents 

certain limitations as well as advantages compared to calibration in system dynamics modelling, 

which emphasises estimation of parameters by direct observation.  But this poses a problem for 

industry or market-level diffusion models where deriving aggregate parameters observationally is 

impractical, especially for launches of new products or services which lack direct market knowledge.  

One solution is to use judgemental bootstrapping, entailing the estimation of parameters from an 

expert’s forecast time series.  Models parameterised this way can then be used as a basis for simulated 

structural experiments of proposed market architectures. Some interim results from three service 

industry case studies are presented. 
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Introduction  
 

Two significant publications in the forecasting and marketing science fields have identified potential 

roles for system dynamics models that overlap with its more familiar modes of application.  In the first 

publication that reviews demand forecasting in the telecommunication industry, Fildes (2002) 

identified the potential of simulation methods to help to structure the complexity of drivers of the 

adoption process when related to modelling new product launch situations.  Standard forecasting 

methods typically employ price elasticity and econometric estimation for established markets, 
particularly for cross-sectional rather than longitudinal models.  In contrast, Fildes identifies system 

dynamics (and indeed it was the only simulation method cited) for its potential to explore new 

markets.  Beyond the normal use of system dynamics for policy modelling, he identifies an inherent 

applicability to forecasting applications, even though from its outset the system dynamics field has 

tended to eschew numerical forecasting in favour of behavioural prediction.  He cites Lyneis (2000) 

who endorses the power of system dynamics to provide better short and mid-term forecasts than 

regression or trend extrapolation models.
1
   

 

The second publication is also by Fildes (2003) and reviews a volume presenting the state of the art in 

new product diffusion models edited by well-established authors in quantitative marketing research, 

Mahajan et al (2000), updating a similar work by Mahajan and Wind (1986).  Fildes notes two serious 

weaknesses in the more recent volume, namely the nearly complete neglect of the topic of validation 

and the other omission which is “less important but, perhaps, more fundamental”: the failure to 

recognise that simulation models, usually using system dynamics, offer an alternative to Bass-type 

diffusion models.  He claims the first omission is important since there is limited evidence that 

                                                      
1
 An aversion to forecasting in the system dynamics field was present at its outset (Forrester, 1961, Appendix K).  

However, the usual definition of forecasting, ie “predicting system condition at some future time” is contrasted 

with utility of “predicting the direction and degree of influence on system behaviour as a result of changing 

policy” (Forrester, 1996, 2003).  Lyneis (2000) identifies that forecasting is both ubiquitous and necessary in 

business for estimating the approximate timing and impact of key business variables. 



diffusion models ‘work’ or have been widely used in commercial settings.  However, Mahajan et al 

(2000) do recognise that diffusion models can be used for analysing strategic decisions for product 

life-cycle dynamics and not just for pre-launch forecasting. 

 

Given that the authors cited above represent significant voices in the forecasting and marketing 

science fields, this seems to offer system dynamics significant potential for a greater presence and 

impact.  This is not to suggest that system dynamics has not been applied in those domains before; 

rather, there is a lack of awareness of what it has to offer, both in the area of strategy and policy for 

life-cycle analysis and in more detailed quantitative decision support roles.  The latter should not be 

unfruitful areas of application since Lyneis (2000), Winch (1993), Homer (1996), Graham and Ariza 

(2001), Graham (2002), Graham et al (2002) all make a strong case for the value of such models that 

are comprehensively numerically parameterised.  It is often detailed analysis that is influential in 

supporting major decisions.  However, in doing so, the case will need to be made that system 

dynamics can effectively address predictive validation from a forecasting perspective and parameter 

estimation from an econometric perspective.  Even though it will be highly beneficial to recognise the 
broader purview that system dynamics possesses in respect of model validation, there is no reason why 

these aspects cannot be encompassed. 

 

For example, as Fildes (2002) notes, if system dynamics models are to be used to support important 

policy decisions, for instance, to determine the balance between spend on  marketing spend as against 

capacity development, the neglect of predictive validation is “disingenuous”, as the timescales in 

diffusion processes are critical both for understanding and decision making.  

 

Thus there seems to be ample opportunity for system dynamics to be applied with some reward in new 

product diffusion dynamics, especially in successfully communicating its power in these different 

fields.  A particular opportunity, identified in this paper, is to examine the potential of applying 

diffusion models to service markets, where industry structure on the supply side is much more 

uncertain and complex but still requires significant investment or strategic co-ordination.  An example 

is in networked industries where there can be long value chains or important roles played by 

complementors, as identified in the case of investment decisions in vehicle telematics by General 

Motors (Barabba et al, 2002).  Another opportunity is the development of the idea of a continuum of 

models from forecasting to policy analysis, along which there will be differing criteria for model 

credibility and demonstration of fitness-for-purpose. 

 

A programme of research work is underway in which several of these issues are being addressed.  

However, as one starting point, a comparison of calibration of well-accepted models as against 

econometric estimation would be beneficial. 

 

Diffusion models 

 

There are two main traditions in for new product modelling: diffusion models which are typically used 

at an aggregate market level and conjoint-based or discrete choice models which are concerned with 
consumer choice at an individual level.  The tradeoffs between differing levels of aggregation are 

discussed below.  For the purposes of this paper, three widely accepted models of innovation diffusion 

demand are represented to represent the adoption of new products or technologies: the Bass, KS and 

EMM models.  This follows the results of Zettelmeyer and Stoneman (1993/2002), who found these 

models to be the be the best performing in an econometrically-oriented comparison in terms of fit 

against historic data. 

 

The standard Bass (1969) model defines the adoption rate by summing the diffusion from innovators 

and imitators.  Bass added the external effect of innovators from the work of Fourt and Woodlock 

(1960) to the representation of epidemic growth of imitators proposed by (Mansfield, 1961). 
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where N is the current number of adopters, m is the market potential (or addressable market size), and 

p and q are the coefficients of innovation and imitation respectively and are usually reported in the 

units of year
-1

. 
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To allow for a time-dependent variation of the addressable market size, m can be replaced by mt, 

where 

 tmmmt 00
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γ
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where γ is a growth parameter reflecting the percentage growth of the initial population m0 per time 

period.  Because the market size of some of the data tested was not constant, this modification was 

enabled for most subsequent models. 

 

The EMM model (Easingwood, Mahajan and Muller, 1983) is a modification of the Bass model and is 

also termed the Non-Uniform Influence (NUI) model that allows the strength of the imitation effect to 

vary with the proportion of adopters via the parameter σ, and thereby exert a time-dependent effect: 
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The KS model (Karshenas and Stoneman, 1992) was developed as an attempt to integrate the 

behavioural basis of models in the Economics literature with the focus on forecasting performance and 
the epidemic tradition evident in the Marketing literature.  It represents learning effects within the 

adopter population (and thus indirectly allows for some time-dependent behaviour) by splitting them 

into two groups, namely active and inactive adopters, ie those active in the imitation process and those 

who are not engaged in communicating to potential adopters.  In epidemic terms, these groups are 

termed the ‘infectives’ and the ‘recovered’ populations.  The rate of gain of the ‘recovered’ population 

is via the parameter α 
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The KS model is directly equivalent to the Susceptible-Infected-Recovered (SIR) model as widely 

used in the field of epidemiology. 

 

 

 



Estimation approaches 
 

The models above were all parameterised two approaches: econometric estimation and system 

dynamics calibration.  The former implies fitting a pre-specified model (often a single equation, 

although systems of equations can now be handled) to historic time series using analytical or 

numerical techniques, invariably involving matrix theory and matrix inversions.  Calibration is a 

somewhat broader term and implies that data may be derived from a variety of sources and brought to 

bear, as well as the possibility that structural changes to the equations may be made.  However, it still 

implies fitting against historic data. 

 

Econometric estimation from the adoption rate form of the equation with an additive error term; given 

the non-linearity of the models, Non-Linear Least Squares (NLS) estimation was used with the Eviews 

statistical/econometrics package.  NLS was proposed by Srinivasan and Mason (1986) as a way of 

overcoming several limitations of Ordinary Least Squares estimation (Mahajan et al, 1986).  

Maximum Likelihood Estimation has also been proposed (Schmittlein and Mahajan, 1982).  The 
limitations included a time interval bias from expressing a continuous differential equation in a 

discrete form (in equation (6), the approximation for dN/dt is evaluated at t whereas the right hand side 

is evaluated at t-1) and wrongly-signed values for p, q and m often arising from the quadratic equation 

solution.  Also, standard errors are not available for deriving t-statistics as is common in econometric 

estimation
2
.  Other techniques including simulataneous equation and stochastic models have been 

proposed in a more recent review by Putsis and Srinivasan (2000), although these authors admit that 

estimation errors may be swamped by specification errors.  This concern is reflected by the system 

dynamics method’s primary focus on structure. 

 

The equations must be estimated in their discrete analogue form unless they can be expressed in a 

closed-form analytical solution as a function of time.  This is only possible in the case of the Bass 

model.  More complex models like the KS and EMM models cannot be expressed analytically.  The 

discrete forms of the estimation equation are:  
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In the above equations, β represents a combination of exogenous economic variables, such as price, 

disposable income or interest rates that represent the the economic environment and act as modifiers to 

the take-up parameters p and q. 

 

Product diffusion data is more often published as monthly or annual sales data.  Sales data is often 

assumed to be synonymous with adoption data, but in reality sales data is often contaminated by repeat 

or replacement sales and often estimation studies are confined to the period of early sales only.  In 

contrast, penetration data are desirable as they are not contaminated this way.   In this case, since the 

discrete analogue estimation equations above (equations (6) to (8) require adoptions data (the flow 

rate), these must be derived from penetration data which can emphasise proportional measurement 

errors by differencing of large values over short time scales (eg monthly data). 

 

                                                      
2
 The t-statistic is not a reliable hypothesis test for the significance of model variables in the presence of 

measurement error (Mass and Senge, 1980; Sterman, 1984).  A way of dealing with measurement error is Full 

Information Maximum Likelihood with Optimal Filtering (Peterson, 1980) or, more simply, using the behaviour 

anomaly test to see whether unreasonable model behaviour results from assuming a zero value for the parameter 

(Sterman, 1984). 



System dynamics calibration allows more flexibility than the econometric procedures described above.  

First it allows the solution of the differential equations as a core part of its method and second, that 

means that any variable can be compared to data.  Oliva (2003) has reviewed the techniques available 

to calibrate whole models to data and categorised them as Model Reference Optimisation (Lyneis and 

Pugh, 1996) and Full Information Maximum Likelihood using Optimal Filtering (FIMLOF, Peterson, 

1980).  MRO typically uses some form of minimisation of weighted least squares of the residuals 

between the data and the simulation values. 

 

Generating a fit between data and a model is rather easy in the case of a monotonically rising sigmoid 

curve that is so typical of market penetration data.  Oliva (2003) warns that automated calibration 

procedures to achieve such fits can give practitioners false confidence in their models.  Indeed 

Sterman (1984) describes it as a weak test, although it is a necessary one, and is but one of the many 

other tests required to build confidence, and he presents as a modified list of tests from Forrester and 

Senge (1980). 

 

Aggregate vs individual-level models 
 

Diffusion models have traditionally been put forward to represent aggregate market response of the 

adoption of new products or technologies.  There are several ways of dealing with the limitations 

inherent in assuming aggregate behaviour.  Four different positions have been proposed in a typology 

of dynamic sales models by Roberts and Lattin (2000) are shown in Figure 1.   

 

 

Figure 1:  A typology of aggregation in models for sales of new products 

 

At the two extremes are aggregated market-level models and individual-level models.  Aggregate-level 
models have as their objective the understanding of overall market development and its response to 

managerial and environmental variables.  Individual-level models start from classical utility and 

attitude models from economics and psychology and attempt to represent changes in expected utility 

over time.  Discrete choice theory then provides a method to transform these utilities to probabilities of 

purchase and thus expected market shares.  Multi-state flow models and restricted-parameter 

individual models fall in the continuum between the two extremes of aggregation.  Multi-state models 

segment the market into a number of behavioural states and then observe the flows between them.  

System dynamics models fall more naturally into this category.  Restricted parameter individual 

models retain the richness and theoretical rigour of individual-level models but consumers are allowed 

to be heterogeneous only with respect to a small number of parameters.  

 



Parameter Estimation of Aggregate Diffusion Models for new products or services 

 

The system dynamics approach has emphasised the importance of estimating parameters from ‘below 

the level of aggregation’ (Graham, 1980), that is, from direct knowledge of parameters at a 

disaggregate level, such as interviews, direct observation, literature etc, rather than from historic time 

series.  All data sources are deemed relevant, whether from the mental, written or numerical databases 

(Forrester, 1980).   

 

However, when one cannot observe the parameters typically used in Bass-type models, or variants, the 

question remains how these models should be parameterised.  Several options are presented in Table 1. 

 
Table 1:  Approaches for parameterising models for new markets 

 Method Comments 

Judgment or observation based 

1 Informed guesstimate – update as necessary Useful as first-cut scenario testing 

2 
Expert judgement or direct observation of 

parameter values (‘below level of aggregation’ 

– Graham, 1980) 

 

At the extreme of disaggregation, using 

consumer choice theory such as conjoint 

analysis 

Require currency of observations or expert 

judgement for likely situation at operational 

level / decision points 

 

The reliability of upscaling from a small sample 

of customer survey results to the market level is 

a query 

Combined judgment and estimation 

3 
By estimation from expert judgement forecasts 

(judgmental bootstrapping from time series 

forecast data) 

Expert judgement forecasts used as a baseline 

for testing alternative scenarios, or to compare 

against published parameter values. †  ‡ 

Formal estimation approaches 

4 
By formal estimation from historic data for the 

application in question; possibly updating in the 

light of new data 

Past data may not be relevant for future – only 

relevant for established markets / situations 

where structural stability prevails.  † 

 

Bayesian or full-information methods such as 

Kalman Filtering to update with new data as it 

becomes available – relevant for ongoing 

planning eg for production management (peak 

sales/time to peak). 

5 
By using analogues (in the absence of historic 

data) – from published parameter values or by 

estimation from raw time series 

Validity or relevance of analogue?  Choose 

analogues at level of structure (ie expected 

market behaviour, not similarity of product / 

service)  †  ‡ 
† When estimating from existing data, for all logistic / S-growth penetration curves, need the point of 

inflection in the data to ensure the stability of estimates (Mahajan, Muller and Bass 1990) 
‡ Ideally, time series data will include the point of inflection 

 

Estimating parameters (p and q) from historic time-series of analogues products (or more simply, 

consulting published data where this has already been done) entails the question of how one chooses 

relevant analogues.  Similarity in expected market behaviour is a better basis for selecting an analogue 

than product similarities (Lilien et al, 2000) and Thomas (1985) suggests five criteria to determine 

suitability: environmental context, market structure, buyer behaviour, marketing-mix strategies and 

characteristics of the innovation. 

Market research can be done at the level of individual behaviour and aggregated across different 

groups which are deemed to be internally homogenous.  However the reliability of such extrapolation 

to the market level is questionable with small samples.  Whilst some variables are estimated at the 



individual level (eg strength of prior beliefs, utility of the innovation), others are calculated at the 

aggregate or segment level (eg factor scores, importance weights) (Roberts and Lattin, 2000). 

Regarding the approach 3 (estimation of parameters from expert judgement forecasts) in Table 1, this 

is clearly not an independently derived forecast to serve as a comparison against the expert judgement 

forecasts themselves, although the parameters derived from this process can be compared against 

published data to check they are within feasible ranges.  This is what would be required in any 

‘triangulation’ exercise, commonly used in industry for market forecasting, which collects several 

independently sourced forecasts from which an average will probably be taken, and any outlier 

forecasts may be discounted.   

 

Estimating parameters from expert judgement forecasts is called judgemental bootstrapping.  This is a 

procedure normally used on cross-sectional data to infer experts’ rules by induction to a mathematical 

model so as to make expert forecasting processes more reliable.  However, it is less commonly used on 

time series (Armstrong, 2001, p184) 

 

Diffusion of services compared with products 

 

The Bass-type diffusion models have almost entirely been applied to consumer products, whether high 

or low value.  The question is, how applicable are diffusion models to services or, at least, to services 

based on an installed (diffused) product base?  Service industries have several different characteristics, 

some of which are: 

 

• services diffuse in a layered adoption process in social context (ie a service often diffuses on 

top of an existing product or infrastructure) 

• complex and qualitative supply side factors are very important, such as multiple 

complementary services, customer service quality etc 

• continuous technical development takes place, more than in discrete products or their 

replacements 

 

The models tested below represent an effort to calibrate various diffusion models in technology 

service markets.  However, a fuller treatment of the supply-side structures and likely network effects is 

outside the scope of the current paper, although a diffusion model as a core component of larger 

models has been demonstrated (see eg the regulatory/competition model, Graham and Godfrey, 2005). 

 

Data used for calibration / estimation tests 

 
To assess the applicability of diffusion models to services, analogues which possessed sufficient data 

histories were sought.  In the context of exploring market situations where complementary services 

support an installed product base in the telecoms industry, wireless data services in the mobile 

telecoms were thought to be relevant as the environmental context and market structures are similar.  

The three analogues chosen are mobile phone diffusion in the UK (1984 – 2004), internet broadband 

diffusion in the UK (2001 – 2005) and the growth of the subscriber base for the “i-mode” mobile 

phone internet access service in Japan (1997 – 2005). 

 

However, it is noted that some services are actually service enablers rather than services per se, where 

the service is based on embedded hardware in a product.  Consequently, the development of 

broadband internet access, for which some monthly penetration and price data for the UK were 

available, was considered relevant.  The development of the i-mode by operator NTT Docomo was 
thought to be a relevant analogue in terms of the successful management of the complexity of the 

supply side.  The business strategy enabling i-mode’s success is claimed to be the symbiosis of the 

roles of hardware, infrastructure and content providers and the steps taken to ensure that all parties 

develop and benefit mutually from organic growth (Tee, 2005; NTT Docomo, 2006). 

 



However a consistent feature among the analogues is the complementarity – the symbiosis between 

hardware and the complementary content and services [internet was well developed content by the 

time broadband became popular]. 

 

The enable a comparison against the econometrically oriented study of Zettelmeyer and Stoneman 

(1993/2002), which considers the diffusion of camcorders, CD players and cars, the economic 

variables of price, personal disposable income, and interest rates were included as economic factors.  

In equations (6) to (8) above, this was done by multiplying the p and q factors in the diffusion models 

above by a multiplier β where 321 a
kt

a
jt

a
it RYDP −−−=β  where P is the price of the product, YD is personal 

disposable income and R the interest rate.  A priori expectations from economic theory are that a1 < 0, 

a2 > 0, a3 < 0, and i, j, and k stand for lags that can be chosen individually for each data set.  The prices 

and economic data were normalised to unity for the beginning observation.  The sources used for 

compiling the time series data are shown in Table 2. 

 
Table 2:  Data sources for calibration experiments 

1. UK Broadband adoption (2000 – 2005, monthly data) 

a. UK National Office of Statistics: Index of internet connectivity [for penetration data] (ONS, 

2006a) 

b. Ofcom: The Communications Market 2004 [for prices, based on April 2004 values] (Ofcom, 2004) 

2. UK mobile telephone adoption (1984 – 2004, annual data) 

a. OECD Telecommunications Database 2003 (OECD, 2003) [for revenue and penetration data] 

b. OECD Communications Outlook 2005 (OECD, 2005) [for revenue and penetration data] 

c. Ofcom: The Communications Market 2004 (Ofcom, 2004) [for revenue data] 

d. Euromonitor International Global Market Information database (Euromonitor.2006) [for additional 

penetration data]. 

e. Office for National Statistics (ONS, 2006b) [for Retail Price Index data] 

3. i-mode adoption (1997 - 2005, mainly monthly data), NTT DoCoMo website, Japan (NTT DoCoMo, 

2006). 

4. Office for National Statistics for personal disposable income (YD) and Interest rate (R) data3 (ONS, 

2006c) 

 

Penetration data are generally preferable as this avoids contamination with multiple or repeat sales.  
However, for estimation purposes using Eviews, the penetration data must be transformed by first-

differencing into discrete sales data, which inevitably increases the proportional measurement errors in 

the derived sales. 

 

Results and discussion 

 

Some work-in-progress results are presented in the Appendix.  The results show that it is easy to 
obtain a fit for the stock of adopters against cumulative subscribers or penetration data.  The very high 

R
2  values and low Durbin Watson statistics – suggesting autocorrelation of residuals – are  a result of 

accumulating the errors in the process that actually generates the stock of adopters.  Given that it is 

intuitively appealing, and possible to reproduce the sigmoid time history using system dynamics 

calibration, is this wrong?  The answer is no, if one is simply seeking a set of parameters to calibrate a 

model.  If one wishes to do hypothesis tests or to check the normality of residuals (for the purpose of 

constructing confidence intervals on the parameters), then it is better to calibrate the adoption rate 

against the data.  The system dynamics perspective that integration is a better way of seeing the world, 

ie that a stock of adopters result from accumulating sales, rather than sales being the differential of the 

adopters, would support the view that it is the adoption rate which is the key variable, that is the 

adoption rate is “causing” the stock of adoptions rather than vice versa. 

 

1. Calibration against stock or flow data?  Calibrating against the adoption rate yields similar 

parameter estimates and usually better statistics for normality and homoscedasticity. 

                                                      
3
 YD Real households’ disposable income per head, CVM SA; R: selected UK retail banks’ base rate 



2. The effect of exogenous economic variables.  The economic variables added to the quality of 

the fit in the case of UK mobiles, since diffusion has seemed to be strongly driven by price 

decreases.  The other economic variables remained relatively static over their time history.  

Generally, the fit of models is good without including decision variables (eg price) and 

environmental economic variables (Bass, Krishnan and Jain, 1994) and adding these variables 

often does not improve forecast performance (Bottomley and Fildes, 1998). 

3. Network effects on supply side.  A ‘table function’ multiplier, to represent the effect of 

network effects on the supply-side, was found to improve the fit (as measured by log 

likelihood) and is an independent confirmation of what is known from other sources (ie 

literature and management reports) to be the case.  The relationship was found to be applicable 

for both i-mode and UK mobile phone adoption but led to no improvements for the broadband 

case.  It could alternatively be seen as a time dependence (or, more strictly, a penetration-

dependence) of the demand-side p and q coefficients. 

Multiplier on adoption rate to represent netw ork effects on 
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4. Lack of identifiability of system.  The weakness of trying to estimate both structure and 

parameters from historic time series data is that different model specifications and parameter 

sets can fit the data equally well.  This is a strong point in favour of the system dynamics 

method where parameters, and particularly structure should be elicited from managerial or 
‘operator’ knowledge 

5. Endorsement of the ‘hand calibration’ method.  As implemented in Vensim, and especially 

using the Synthesim capability within Vensim, it is easy to get a picture of what changes 

different parameters make by changing the simulation interactively and thus learning about the 

model’s behaviour.  In conjunction with the calibration routines, reasonable bounds on 

parameters can be defined.  In contrast, the automatic calibration procedures in Eviews 

sometimes resulted in parameters that artificially tracked signals in the exogenous data, 

yielding extreme and incorrectly signed parameters. 

6. Calculation of confidence intervals.  The likelihood ratio method of calculating confidence 

intervals that is implemented in Vensim is based on the assumptions of normality, 

independence and homoscedasticity of residuals.  Where these conditions do not apply, this 

method cannot be used.  An alternative method called bootstrapping, which relaxes these 

assumptions, is mentioned by Dogan (2004) but this seems rather cumbersome at present. 

 

Further work planned 

 

Further work is planned in this research to: 

1. undertake judgemental bootstrapping experiments from expert judgement forecasts to serve as 

a basis for later model experimentation 



2. supply additional statistics, eg the Theil statistics (as recommended by Sterman) could be 

added to the diagnostic indicators in the results. 

3. perform forecast tests, by the usual procedure of splitting historic data into two portions and 

carrying out ‘ex post’ forecasting.  Papers testing differing models in the forecasting 

literature often perform forecast tests, and not just fitting against historic data, so 1-step 

ahead forecast tests could be added. 

4. examine supply side structures with the involvement of real operator experience in developing 

potential business models – ie not just relying on calibration 

5. develop practical ideas on model validation and how this varies across the continuum of 

models from policy modelling to ‘predictive’ modelling  

 

 

Conclusions 
 

Calibration of system dynamics models against historic time series data in the end is very similar to 
econometric estimation.  Given that the marketing and economics literature is dominated by 

econometric estimation methods, a higher recognition for system dynamics and its approaches to 

parameter estimation would be aided by connecting better with econometric procedures and quoting 

diagnostic indicators.   

 

This is particularly true in accepting that parameter estimation by direct observation, which is part of 

good system dynamics practice, is not really feasible for aggregated market level models.  A major 

weakness of econometric estimation is that one does not have the same opportunity to explore manual 

simulation and calibration methods, which aid model understanding.   However, econometric packages 

have a greater variety of tools to explore diagnostics of the fit against the data.  For example, knowing 

whether the residuals pass a test for normality and heteroscedasticity is valuable, if not to perform 

statistical hypothesis testing, but to check whether confidence bounds can be reliably stated using the 

simple likelihood ratio procedure available in Vensim. 

 

In many practical situations, a broad estimate of parameter values will be all that is needed in diffusion 

models, since the overall behaviour will not alter, especially if one is comparing alternative structures 

for a future market.  This paper has proposed that one way of incorporating expert judgement into 

models of new markets is through judgemental bootstrapping, ie calibrating models against expert 

forecasts as a basis for subsequent structural experiments. 

 

System dynamics have a potentially strong role in forecasting applications, even though the 

community has tended to reject the use of models to predict rather than learn (de Geus, 1992).  At the 

least, forecasting practitioners will want to know whether system dynamics models can provide 

managerial guidance to the assessment of new market entry strategy.  Marketing science practitioners 

will be interested in techniques that allow market strategy to be conceptualised and quantified, not just 

pre-launch forecasting.  However, different modes of modelling represent poles of a continuum and 

therefore some of the criteria by which forecasting models are judged need to be incorporated in 
system dynamics practice.   

 

However, returning to the ‘policy modelling’ that is a more mainstream domain for the system 

dynamics method, there is wide opportunity to use diffusion models as a basis for lifecycle 

management strategies or identifying the best supply-side configurations for firms in complex service 

delivery chains.  Initial evidence has been adduced that positive network effects on the supply side act 

to accelerate adoption with increasing penetration factors. 
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1. Importance of calibration and a statistical fit criterion see: Reichelt, K. S., et al. (1996). Calibration 

Statistics: Selecting a Statistic and Setting a Standard. 1996 International System Dynamics Conference, 

Cambridge, Massachusetts, System Dynamics Society. 

2. ‘Positive economics’ = ability of model to predict without need for explanation or the need for the 

model structure to be consistent with reality 

 

 



APPENDIX – Interim results for Eviews estimation / Vensim calibration 

Table 3: i-mode calibration 

i-mode penetration (mainly monthly) data:  22 Feb 1999 - 31 Dec 2005

J-B B-G White

# model soft- data Comments p q m γ σ α SSR T k SE R
2

(R-bar)
2

LL DW Norm LM12 Heteros

ware 1/yr 1/yr [-] % / yr [-] %/yr JB, p F, p Obs*R2, p

1 Bass E " constant m 0.09613 1.031 34.11 0.00 1 0 31.5641 29 3 1.1018 0.9931 0.9926 -42.38 0.2209 2.386 21.078 0.4920

se N formul'n 0.01182 0.091 0.46 − − − 0.303 0.000 0.7819

t-ratio 8.13008 11.277 73.60 − − −

2 Bass E delta subscribersconst m 0.0636 1.595 38.25 4.266 77 3 0.2401 0.7471 0.7403 2.13 0.9134 0.471 10.003 3.7482

se NLS formul' 0.00869 0.106 1.66 0.790 0.000 0.5862

t-ratio 7.31668 15.075 22.99

3 Bass E subcribers const m 0.10162 0.985 43.69 135.722 78 3 1.3452 0.9916 0.9914 -132.28 0.0409 4.662 394.020 9.0965

se N formul'n 0.00713 0.053 0.35 0.097 0.000 0.0106

t-ratio 14.2505 18.671 124.22

4 Bass E const m 0.1466 0.868 44.50 755.933 77 3 3.1961 0.6566 0.6473 -197.20 0.6538 4.112 12.331 12.0421

se sales 0.02404 0.091 0.66 0.128 0.000 0.0024

t-ratio 6.09742 9.585 67.06

5 Bass E ord sales 0.10258 1.928 26.66 11.46 284.660 77 4 1.9747 0.8707 0.8654 -159.60 1.624 11.400 4.225 6.8586

se 0.02668 0.116 0.78 0.87 0.003 0.000 0.2314

t-ratio 3.8457 16.623 33.99 13.13

6 EMM E ord sales 0.0315 1.654 28.02 10.22 0.7518 260.532 77 5 1.9022 0.8816 0.8751 -156.19 1.7866 34.237 3.771 6.9859

se 0.0404 0.148 1.14 1.10 0.0923 0.000 0.000 0.2217

t-ratio 0.77955 11.176 24.56 9.29 8.1446

7 Bass V subscribers 0.06106 2.028 26.44 11.77 9.041 78 4 0.3495 0.9994 0.9994 -26.63 0.1782

95% CI lower 0.05748 1.985 26.26 11.53

95% CI upper 0.06494 2.072 26.62 12.01

8 Bass V sales const  m 0.07381 1.452 40.05 574.556 77 3 2.7864 0.7442 0.7373 -186.64 0.8758 0.133 6.21

0.936 0.04

9 Bass V sales data 0.04756 2.221 25.00 12.71 260.244 77 4 1.8881 0.8818 0.8769 -156.14 1.8837 27.219 9.9493

0.000 0.0069

10 EMM V sales data 0.02591 2.059 25.50 12.04 0.89168 0 258.021 77 5 1.8930 0.8828 0.8763 -155.81 1.9025 8.738

for subscribers data 0.04464 1.959 26.49 11.77 0.92365

11 KS V sales data 0.0277 3.436 22.56 21.54 93.2145 240.258 77 5 1.8267 0.8908 0.8848 -153.07 2.0533 8.565

Parameters Diagnostic statistics

 
Key 

E = Eviews; V = Vensim; SSR = sum of squared residuals; T = number of observations, k = number of estimated coefficients; SE = standard error of the regression; R2 = coefficient of 
determination; (R-bar)2 = is R2 adjusted for degrees of freedom; LL = log likelihood; DW = Durbin Watson statistic; JB = Jarque-Bera test for normality (JB statistic, p-value); B-G = Breusch-

Godfrey Lagrange Multiplier (LMj) test for serial correlation to the jth degree [F-statistic, p value]; White = White’s test for heteroscedasticity [Obs*R2 statistic, p value]; 



 

Table 4:  UK mobile phone subscription calibration 

UK mobile annual data 1984 - 2004

[P] [YD] [R] JB B-G White

model s/w data Comments p q m σ α a1 a2 a3 SSR T k SE R
2

(R-bar)
2

LL DW Norm LM1 Heteros

p F, p Obs*R2, p

Long tail means low p and high q

Bass V % pen with econ factors0.00089 0.08953 89.1628 1.000 0 -1.056 0.000 -0.013 69.65 20 6 2.23052 0.996889 0.99578 -40.9 1.72256 4.173487

adoption peak leads data by about 0.7 yr 0.124091

adoption rate with econ factors0.000144 0 85.0965 1.000 0 -3.465 0.000 -0.131 25.88 20 6 1.35958 0.972424 0.96258 -31.0 2.26823 1.494622 vis hetero

0.473638

EMM V % pen with econ factors0.001533 0.10341 87.9631 1.198 0 -0.915 0.756 0.000 63.19 20 7 2.20474 0.997177 0.99587 -39.9 1.94908 2.735555

0.254672

adoption rate as for Bass given that q=0

KS V % pen with econ factors0.000988 0.12667 89.8475 1.000 23.6062 -1.068 0.000 -0.080 66.72 20 7 2.26549 0.99702 0.99564 -40.4 1.71629 4.337957

0.114294

Bass V % pen econ+mult 0.003145 0.05584 90.4168 1.000 0 -1.199 0.057 0.000 37.31 20 6 1.63245 0.998334 0.99774 -34.6 1.98346 2.864735

0.238743

EMM V % pen econ+mult 0.00333 0.06138 90.1289 1.057 0 -1.091 0.446 -0.001 37.17 20 7 1.69097 0.99834 0.99757 -34.6 2.05588 3.615716

0.164005

KS V % pen econ+mult results not improved on Bass ie. Alpha = 0

Bass E sales no econ 0.0001 0.86528 88.5429

fixed 0.0935 2.51727

9.254 35.1741

Bass E w econ 0.000252 0 91.328 -3.015 -0.492 19.42 20 7 1.22225 0.979306 0.96975 -28.1 1.89735 11.8883 2.765169 7.359731

negative values of p or q 0.000104 2.21119 0.155 0.362 0.002621 0.117085 0.59972

EMM E 2.421469 41.3028 -19.45 -1.362

KS E

Diagnostic statisticsParameters

 
Key 
E = Eviews; V = Vensim; SSR = sum of squared residuals; T = number of observations, k = number of estimated coefficients; SE = standard error of the regression; R2 = coefficient of 

determination; (R-bar)2 = is R2 adjusted for degrees of freedom; LL = log likelihood; DW = Durbin Watson statistic; JB = Jarque-Bera test for normality (JB statistic, p-value); B-G = Breusch-

Godfrey Lagrange Multiplier (LMj) test for serial correlation to the jth degree [F-statistic, p value]; White = White’s test for heteroscedasticity [Obs*R2 statistic, p value]; 

 

 

 



UK broadband residential subscriptions Jan 2000 - Dec 2005

[P] [YD] [R] J-B B-G White

model pkge data Comments p q m σ α a1 a2 a3 SSR T k SE mean %SE R
2

(R-bar)
2

LL DW Norm Skew LM12 Heteros

regr' dv Kurt* F, p Obs*R2, p

consideration made to lagging the economic variables but visual inspection did not suggest this would help

Bass V UK b'band pen % 0.0254 0.6899 100 1.000 0 -0.1777 0.213 0 17.70 60 6 0.57249 #### 0.02510 0.9992 0.9992 -48.5 0.1487 1.003 -0.125 13.402

0.606 -0.619 0.00123

EMM V 0.0257 0.7227 100 1.009 0 -0.1252 0.188 0 18.53 61 7 0.58584 #### 0.02569 0.9992 0.9991 -50.2 0.1741 34.068 vis homo

0.000

KS V 0.0248 0.7306 100 1.000 3.74 -0.1404 0.403 0 18.63 61 7 0.58734 #### 0.02575 0.9992 0.9991 -50.4 0.1735 33.405 vis homo

0.000

multiplier doesn't assist calibration

Bass V adoption rate no econ 0.0207 0.8234 100 361.22 60 3 2.51737 #### 0.19822 0.8917 0.8879 -139.0 1.2815 53.225 0.8825 0.572641

0.000 4.3927 0.751022

Bass V adoption rate 0.0232 0.719 100 1.000 0 -0.0076 1.346 0 362.25 61 6 2.56638 0.8963 0.8869 -140.9 1.2854 7.108 vis homo

0.029

EMM V adoption rate 0.0166 0.5505 100 0.86269 0 −0.1525 1.901 0 358.13 61 7 2.57526 0.8975 0.8861 -140.5 1.3029 12.439 vis homo

0.002

KS V same results as Bass, ie alpha = 0

Bass E sales no econ 0.0217 0.7697 108.2 367.30 60 2 2.53849 #### 0.19988 0.8899 0.8880 -139.5 1.2907 33.616 -0.775 1.1982 2.59103

0.0053 0.0592 8.472 0.000 6.3233 0.3137 0.273757

4.118 12.997 12.78

E m=100 0.02 0.828 100 375.49 60 2 2.54441 #### 0.20035 0.8874 0.8855 -140.2 1.2635 44.884 -0.951 1.2436 2.487511

0.0056 0.028 0.000 6.7863 0.2841 0.288299

3.5618 29.624

E slhs 0.0048 0.955 100 11.20 60 2 0.43937 -2.10 0.20900 0.8730 0.8708 -34.8 1.4401 ###### -2.529 0.731 4.04062

0.0023 0.0683 0.000 15.234 0.7141 0.132614

2.1135 13.991

E NLS method 0.0226 0.7491 110.9 2.43 60 3 0.20634 1.06 0.19496 0.8952 0.8916 11.1 1.3183 34.925 -0.712 1.2242 2.24962

0.0022 0.062 9.662 0.000 6.4556 0.2969 0.324714

10.492 12.078 11.48

0.0213 0.8221 100

Bass E slhs w econ -0.0194 3.6989 100 −1.2345 −21.1 1.699 8.07 60 5 0.38295 -2.10 0.18216 0.9085 0.9019 -24.9 2.1628 340.20 -2.284

0.000 13.73

Parameters Diagnostic statistics

 
Key 

E = Eviews; V = Vensim; SSR = sum of squared residuals; T = number of observations, k = number of estimated coefficients; SE = standard error of the regression; R2 = coefficient of 

determination; (R-bar)2 = is R2 adjusted for degrees of freedom; LL = log likelihood; DW = Durbin Watson statistic; JB = Jarque-Bera test for normality (JB statistic, p-value); B-G = Breusch-
Godfrey Lagrange Multiplier (LMj) test for serial correlation to the jth degree [F-statistic, p value]; White = White’s test for heteroscedasticity [Obs*R2 statistic, p value]; 


