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Abstract 
 
Rate variables and auxiliary variables in System Dynamics models are normally 
constructed using functional equations and or table functions. To construct functions, 
however, it is imperative to know the underlying relation between the independent 
variables and the dependent variable. This, we know, is not always an easy task. 
Indeed, in many differentially non-linear or chaotic situations this may be totally 
impossible. One may have to resort to less accurate representations if constrained to 
write relations as equations or tables. Neural Networks has been deployed in many 
fields to capture the underlying structural relations between variables in such 
situations through training schemes. When trained, Neural Networks may achieve 
generalization capabilities though literarily as black boxes. As Neural Networks 
models when trained can work online like a function, they can be easily implanted 
within System Dynamics models to surrogate rates or auxiliary variables. The idea in 
this article is, in situations were it is not possible or it is considerably difficult to 
construct explicit functions or tables, to deploy Neural Networks to surrogate 
functions. Neural Network models, here called elements, can be trained on actual data 
to capture the underlying functional relationships between input output variables and 
implanted as rates or auxiliary variables to carry out computation on line. 
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Introduction 
 
In System Dynamics models, while stock variable are integrals of rate variables, the 
rates and auxiliary variables are given as causal functions of some input variables and 
constants. This is because the philosophy behind System Dynamics modeling is 
basically the prevalence of casual relationships (Forrester, 1961). It is consequently 
imperative to know the causal relationships and have a clear picture of the underlying 
structures to construct appropriate functional equations or tables for the rates and 
auxiliary variables. Without knowing the causal relationships and without having a 
clear picture of the underlying structure between the input variables and the rate or 
auxiliary variables it is not an easy task to constructing the appropriate functional 
equations or tables.  



 
Indeed, in many differentially non-linear or chaotic situations this may be totally 
impossible. We specifically know that chaotic relations though deterministic in nature 
do not lend themselves to any normal mathematical equation (Stewart, 1990), hence 
the absence of such equations to start with. One may have to resort to less accurate 
representations if constrained to write relations as equations or tables. This may 
adversely affect the validity of the final model.  
 
Neural Networks has been deployed in many fields to capture the underlying 
structural relations between variables in such situations through training schemes 
(Haykin, 1994). When trained, Neural Networks may achieve generalization 
capabilities though literarily as black boxes. As Neural Networks models when 
trained can work online like a function, they can be easily implanted within System 
Dynamics models to compute rates or auxiliary variables. The idea in this article is, in 
situations were it is not possible or it is considerably difficult to construct explicit 
functions or tables, to deploy Neural Networks to surrogate functions. Neural 
Network models, here called elements, can be trained on actual data to capture the 
underlying functional relationships between input output variables and implanted as 
rates or auxiliary variables to carry out computation on line. 
 
 
Neural Networks as Function Approximate 
 
Adapting from Aleksander and Morton (1990), as quoted in Haykin (1994), a neural 
network can be defined as follows: 
 
A neural network is a massively parallel distributed processor that has a natural 
property for storing experiential knowledge and making it available for use. It 
resembles the brain in two respects: 
 
1. Knowledge is acquired by the network through a learning process. 
2. Interneuron connection strengths known as synaptic weights are used to store 
knowledge. 
 
A neural network derives its computing power from, first, its massively parallel 
structure and second its ability to learn and therefore to generalize. In this way it is 
able to solve complex problems which are currently intractable (Haykin, 1994). 
 
Neural networks are consequently often used to approximate functions. Here inputs to 
the neural networks are the independent variables and the outputs are the dependents 
variables. This is specifically constructive when the underlying relations between 
variables are not known to the researcher or when the relations are differentially 
nonlinear or chaotic in nature making it impossible to be mathematically captured. 
Neural networks have often proved useful in such instances in capturing the 
underlying structures even if non-linear or chaotic and hence able to surrogate for 
mathematical functions.  
 
This is because neurons which make up the neural network model are basically 
nonlinear devices. As a result the network which is made of the neurons is nonlinear 
itself. Further more the nonlinearity of the neural network is of a special kind in the 



sense that it is distributed throughout the network (Haykin, 1994). This renders the 
model an extremely important property to handle nonlinear cases where the 
underlying physical structural relationship between the input and output variables is 
nonlinear in nature. 
  
Dynamic systems, by nature, are often complex. Some variables in the system may 
have nonlinear or chaotic relationships to each other. The prevalence of nonlinearity 
or chaos may make it difficult to construct highly valid System Dynamics models, as 
such relations would not lend themselves to normal mathematical formulas. The 
practice in System Dynamics modeling, to represent rates and auxiliary variables as 
functional equations or table functions may inherit such difficulties. Neural Network 
models may be deployed, in such instances, to surrogate the rates and auxiliary 
variables. Individual Neural Networks models, here called elements, may be trained 
on actual data and inserted within the model to work on line to compute rates and 
auxiliary variables.  
 
 
Some Hypothetical Examples 
 
In the simple model of gravity shown below, adopted from the Vensim software 
demo, the auxiliary variable "attraction force" is computed by an equation i.e. 
(g*mass1*mass2/distance*distance).  This is fortunate because we know the 
underlying functional relationship from physics. In the absence of this knowledge we 
may have not been able to make an accurate representation of the relation ship with an 
equation. We could alternatively do an experiment whereby we could record the 
actual attraction forces given the two masses with different distance measurements. 
The data so obtained could be used to train a neural network model to surrogate the 
equation for the attraction force.  
 
Same argument applies to the rate equations, accelerations 1 and 2, as well. Of course 
we know from physics that acceleration is attraction force over mass. Yet if we did 
not know this from physics we would have been at loss again.    
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In another more complicated example which involves chaotic behavior, from the field 
of medicine given below, again adopted from the Vensim software demo, it might 
have been possible to use neural network elements to surrogate some of the empirical 
equations e.g. the rate variable Chg. dRa i.e  (-2*d*Omega*(K)^0.5*dRa-
Omega*Omega*K*(Ra Afferent Arter Resist-Psi Input*Ra0) if that was found to be  
more appropriate.   
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Conclusions 
 
There are situations where the underlying structure between variables are not known 
to the researcher or where the underlying structure does not lend itself to close 
mathematical formulas, e.g. when there is chaos. It may therefore be impossible or not 
accurate enough, when modeling, to construct formulas or table functions to represent 
some rates or auxiliary variables. It may be more appropriate, in these cases, to resort 
to Neural Networks to capture the underlying structures and surrogate for these rates 
or auxiliary variables. Neural Networks has been deployed in many fields to capture 
the underlying structural relations between variables in such situations through 
training schemes. When trained, Neural Networks may achieve generalization 
capabilities though literarily as black boxes. As Neural Networks models when 
trained can work online like a function, they can be easily implanted within System 
Dynamics models to surrogate rates or auxiliary variables.  
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