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Abstract

A system dynamics approach is used in order to model and identify the structural relationship

between freight rates in the tanker industry and a set of exogenous inputs. Our motivation results

from the limited data availability and the prohibitive theoretical complexity of economic models for

the evaluation of managerial decisions and risk management. The combination of statistical analysis

and economic insight leads to an innovative multidisciplinary approach for modelling competitive

economic systems. We calibrate the model with real data from 1980-2002, achieve estimation and

identification of the system and fully track the directional changes in freight rates. After conduct-

ing performance evaluation an innovative hybrid model is introduced and system performance is

maximized both within and out-of-sample. Finally we discuss potential uses of this model for policy

analysis, managerial investment decisions and risk management.
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1 Introduction

There are two main contributions of this paper: (1) The development of a structural model for

time charter rates in the oil tanker industry, that improves the ability of agents and policy makers

to undertake decisions in this industry and (2) the demonstration of innovative techniques for the

modelling of competitive economic systems. While pursuing this task we discuss how system dy-

namics and identification techniques can effectively represent complex environments, where agents

undertake economic actions and ultimately challenge the widespread perception that structural

models consistently under-perform statistical models.

Since the seminal work of Lucas and Prescott (1989) the General Equilibrium approach has

been the predominant trend for analyzing investments under perfect competition. Due to the

assumptions concerning the rationality of agents and their ability to commit themselves to fully

rational decisions, the General Equilibrium approach has strict implications on price dynamics,

especially when we try to compute the equilibrium in sophisticated markets, such as the oil tanker

industry. Despite the limited empirical success of such models (Rust 1995), economists have been

particularly cautious with approaches that build on the general principles of systems. Besides

the inability of most structural models to outperform statistical models, economists have been

suspicious of “black-box” type methodologies that do not take into account the ability of agents to

“learn” rationally and adapt their optimal policies dynamically. After what is formally known as

Lucas’ critique (1989), recursive dynamic programming methods have been the standard approach.

Furthermore, from an empirical and applied point of view, most models derived from the prin-

ciples of structural systems have not outperformed statistical approaches, such as the Generalized

Autoregressive Conditional Heteroscedastic family (Engle et al. 1994). Due to the dynamic re-

sponse of agents to shifts in policy and external shocks, economic systems are time varying, which

implies that the dimension of the system may evolve over time. Non-parametric solutions may lead

to over-parameterization of the system and in some sense, if we attempt to fully identify the system

non-parametrically, there is no need for conceptual or scientific intuition. In this paper, besides

the accomplishment of our main objective, we demonstrate that any attempt to model economic

systems without theory and first principles in the background, leads to over-parameterization; on

the other hand system theory coupled with economics may provide a useful and intuitive alterna-

tive towards the understanding and modelling of complex economic systems, especially when the

availability of data is prohibitive for the employment of classical or computationally intense method-

ologies. In the final section we present a hybrid model that clearly outperforms statistical models,

allowing for controlling external events. This is particularly relevant for evaluating managerial and

policy decisions in this market, especially when one takes into account the interaction of different
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inputs.

The paper is organized as following:

In Section 2 we introduce the tanker industry and the economic laws of motion that govern

the industry. In Section 3 we re-address the theoretical issues of the system and their empirical

relevance with regards to the specific market for time charter freight rates. Several shortcomings

are analyzed, which are mainly accountable for preventing system dynamics to become the main

device towards the modelling of complex economic systems of interacting agents, despite the natural

tendency of economic systems to seem consistent with system modelling. Whilst proceeding with

identification and estimation, several techniques are introduced, which provide the intuition and

theoretical relevance that allows us to overcome some of the restrictions and shortcomings imposed

by rational expectations equilibriums. The combination of system principles, econometrics and

economic theory provides a hintful insight. We calibrate the system and in Section 4 we test its

performance and discuss issues of data updating and learning. In Section 5 an innovative technique

that maximizes performance is proposed. Finally we highlight possible uses of the model for policy

making, evaluation of managerial decisions in the tanker industry and the extension of this approach

to competitive economic markets.

2 The Tanker Industry: Economic Principles of the System

A tanker is a vessel designed to carry liquid cargoes. Refined oil products and crude oil are the

most common types of cargo carried in such vessels. Tankers may rarely be employed for the

transportation of chemicals, wine, vegetable and other food oils 1. The tanker freight market may

be perceived as the place where the buyers and sellers of shipping services come together to strike a

deal, regarding the transportation of a specific tonnage of oil from one place to another. In exchange

for their service, carriers receive a time charter rate per day (freight rate hereafter). Tanker freight

rates determine the revenue a ship earns for servicing a particular contract for a pre-specified

period of time and vary with duration and vessel type. However, the procedures involved are fairly

standardized and the market for one-year time charter contracts is well organized and liquid. Time

charter rates correspond to price in the transportation supply function, which is determined by

the existing fleet, the orders for new vessels and the number of scrapped vessels. Furthermore,

ship owners have the option to lay-up a fraction of the available capacity. Additionally, in order to

reduce fuel and maintenance costs, they have the option to adjust their velocity and the productive

operational days, given the economic conditions prevailing in the market. In order to obtain an
1For a detailed description of the tanker industry the reader should consult (Strandenes 2002) or (Frankel and

Marcus 1973).
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estimate for the transportation supply function we have to determine the ordered tonnage in each

period, the tonnage scrapped and the fraction of tonnage in lay-up, as well as the productivity of

the total fleet. The above modules of the transportation supply function depend on the prevailing

time charter rate. Demand is derived from the demand for oil and is considered as freight rate

inelastic, in the short-term at least (Stopford 1991). This is discussed later on, as it is of profound

impact on the specification and identification of the system. The key determinants of demand for

sea transport are: the distance and the volume or quantity of the cargo to be transported.

The active merchant fleet may be perceived as the state variable of the system that takes into

account the inflows and outflows of tonnage, whereas the average fleet productivity is a transfor-

mation device that incorporates decisions of operations management in this industry. Later on all

variables are explicitly defined, in a consistent fashion related to the economic principles of the

tanker industry. Furthermore, most competitive economic systems display similar dynamics and

characteristics with the tanker industry. This observation makes the methodology and insight in

this paper extendable to most markets governed by conditions of intense competition.

The specific characteristics of each market provide the essential contextual knowledge for the

design of a system counterpart that will generate the observed market dynamics, given a set of

inputs. In the tanker market industry there are two facts that reduce the complexity of the

problem. Demand for transportation capacity is freight rate inelastic (at least in the short term), as

transportation costs (freight rates) are a very small fraction of the price of the transported product.

This allows us to consider demand exogenous and identify it with the input of the system. On the

other side, supply (which consists of the aggregate tonnage capacity and the notion of productivity)

will be the main driving force of the freight rate innovations and we identify it with the system.

The most important task, before proceeding with the structural determination of the time

charter rate given a set of relevant inputs, is the precise definition of the transportation supply

function and demand. In this section we follow closely the notation and discussion in “Maritime

Economics”, the authoritative tome by Martin Stopford (1991). Stopford discusses a similar model

for the determination of the short term time charter rate, with perfect foresight and no structural

interpretation into the modules of entry, exit and lay-up, which determine the active tonnage that

exists in this market. Once we have specified the aggregate exit, entry and lay-up equations, the

rate will be determined by the interaction of supply and demand. The most crucial aspect is that

demand and supply do not solely depend on the available deadweight or tonnage, but also on the

average haul that goods have to be transported. A ton of oil transported from the Middle East

to Western Europe via the Cape generates two or three times as much demand for sea transport

as the same tonnage of oil shipped from Libya to Marseilles. This distance effect corresponds
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to the average haul which explains why sea transport demand and supply is measured in ton-

miles. Following the definition by Stopford (1991) it is “the tonnage of cargo shipped, multiplied

by the average distance over which it is transported.” The effect of changes in the average haul on

transportation capacity is dramatic and significant movements in spot and time charter prices are

often due to political events that have a direct effect on the average haul. A recent example with

a severe impact on the haul is the Iraq war.

On the supply side, although at each point of time the fleet is fixed in terms of deadweight

or tonnage, the productivity of the ships determine the transportation supply function. Tanker

productivity adds an element of flexibility to the specification of the transportation supply function,

but it is impossible to measure it directly since there are no available data on the productivity of each

specific vessel. Most of our efforts in identifying the system will be devoted to the specification of an

appropriate productivity function and are motivated by the lack of data on the productivity of each

vessel. All the equations and notation in this section are presented and discussed by Stopford (1991)

in his “Introduction to Ship Market Modelling” ((Stopford 1991), p.515). Although the system

equilibrium modelling of ship markets is inherent in the pioneering Zannetos (1966) monograph,

to the knowledge of the authors, this paper is the first published study that introduces a hybrid

device for the modelling of competitive economic environments. Motivated from the economics

of this particular market, the key idea between the supply and demand representation of spot

and short term charter rates, remains unchanged. The interaction of the different modules, input

and output variables is visualized in Figure 1, which summarizes all the different equations and

notation we introduce in this section. In the remainder of this section and in the next we will

explicitly analyze the motivation behind these interactions, as well as the necessary assumptions

and limitations.

We now define the laws of motion that govern the system, such as the tonnage supply function

and the average productivity of fleet. Staying consistent to Stopford’s notation Pt stands for

aggregate productivity at time t, St the average operating speed per hour, LDt the loaded days

at sea per annum, DWUt the deadweight utilization and rt the time charter rate. Then:

Pt(rt) = 24 · St(rt) · LDt(rt) · DWUt (1)

The transportation supply function in ton-miles is denoted SSt, the active merchant fleet AMFt

and the average productivity Pt. Both the average merchant fleet and the productivity are deter-

mined by the time charter rate rt and some set of exogenous variables xt, which we have suppressed

in the above equation. The active merchant fleet is equal to the existing fleet during the previous

period, plus any new deliveries, minus scrapped tonnage and vessels in lay-up and may be perceived
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Figure 1: System Modelling of Time Charter Freight Rates

as the “state variable” of the system. The transportation supply function is the product of the

active tonnage (AMF ) and the productivity of the fleet (P):

SSt(rt) = AMFt(rt) · Pt(rt) (2)

The equilibrium time charter rate is determined by bringing supply SSt(rt) to demand DDt,

where demand is measured in ton-miles and is assumed completely exogenous. Then, assuming

there is an unknown functional relationship Ψ between supply and demand:

Ψ(SSt(rt), DDt) (3)

Having discussed the key characteristics of the Tanker Industry and the equations that govern

the demand and supply of transportation capacity, we proceed with the estimation and identification

of the system.

3 Tanker Freight Rate Dynamics: A system dynamics Problem

This section is structured in three parts. First, we discuss the theoretical “inconsistency” between

the system dynamics approach and modern economic theory, which is formally known as Lucas’

critique. Second, we provide the necessary behavioral motivation for our innovative approach of an-

alyzing economic systems. Third, we state the problem formally and proceed with the identification

of the system and argue that the performance is very good.
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3.1 Lucas’ critique

At this point one might find it hard to understand why and what is particularly difficult in esti-

mating the laws of motion introduced in the previous section. Given a set of inputs and data why

is it difficult to estimate the transportation supply equation? And once specified, may we simulate

the effects of different policies by simply changing the inputs? The answer to these two questions

is interrelated and, according to Economic Theory, it is “no” to both of them.

The system modelling approach is surrounded by the suspicion that arises from the criticism

Lucas initiated in the 70s (1975). Traditional model building that uses historical data for the

calibration of abstract econometric models does not take into account the response of agents to

changes in policy regimes. Under Rational Expectations, agents assume a process for the freight

rates rt and then make their optimal decisions regarding entry, exit and lay-up. Their responses

simultaneously determine the average merchant fleet and productivity. Demand is fully satisfied in

equilibrium and the observed process has the same dynamics with the assumed process. The theory

of Rational Expectations assumes that agents are forward looking and do not act upon historical

data. This implies that on the one hand historical data should not be used for estimating the

equation without incorporating the role of expectations and on the other hand, models estimated

solely on historical time series should not be employed for evaluating the effects of different policies.

The role of Lucas’ critique on models of time charter rates has also been addressed in a seminal

paper by Magirou, Psaraftis and Christodoulakis (1992). These two reasons may provide additional

reasons for “why systems thinking has struggled to influence strategy and policy formulation”; a

question recently addressed by Warren (2004). A third reason that is also accountable for the

limited usage of the system modelling approach of competitive economic systems is the relatively

low performance of such models in comparison to econometric models. In this paper we do not

attempt to provide the necessary behavioral assumptions (such as bounded rationality) for making

system thinking to overcome Lucas’ critique; however, we will show the importance and necessity of

economic thinking for designing the system, as well as the unique performance of these techniques

for explaining the dynamics of time charter rates.

Additional motivation towards the system analysis stems from the complexity of the Rational

Expectations approach. Under uncertainty, the derivation of a competitive equilibrium requires

that the whole stochastic process is determined endogenously as a fixed point of the system2

(Dixit and Pindyck 1994), whilst preserving the necessary economic structure. In order to avoid the
2Dixit and Pindyck (1994) extend the Lucas investment model under uncertainty and irreversibility. For an

excellent discussion regarding the tight connection between the competitive equilibrium and finding a fixed point in

uncountable infinite dimensional spaces see (Dixit and Pindyck 1994, p. 253).
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search for a fixed point in the functional space of processes, we employ the structural equations

that depend only on the current value of the variable, which is then determined endogenously by

the outcome of the system. Ultimately, the performance of the system will be an indirect joint test

of the underlying structural assumptions and our belief that the approach we undertake can shed

light into the dynamics of tanker freight rates. To avoid the complications of solving for a fixed

point in functional spaces, we now proceed with a sketch of assumptions regarding the way agents

undertake their decisions. This allows the decomposition of the average merchant fleet function

into the entry, exit and lay-up modules and the simplification of our calculations, and highlights

the importance of the behavioral background of the model on our interpretation and understanding

of the results. The validity of the method will be tested by the performance of the system.

3.2 The Principle of Decomposition

In contrast to financial markets, data in this industry are not fully available, especially for the

productivity of vessels and consequentially the average productivity of the fleet. This limitation

makes the need for the introduction of an innovative technique even stronger. In the next section we

will demonstrate that the system modelling approach may provide significant insight in such cases

of limited data, where we are essentially addressing a problem of “blind” identification. However,

Economic Theory will provide the necessary intuition for the inclusion of the relevant variables and

for the assessment of the estimated implied equations and parameters.

Having foregone the rationality assumptions underlying the general equilibrium, the derived

price process does not have to be consistent to the one that rational agents assume. This reduces

the complexity of the problem. By employing independence of actions and the principle of decom-

position3 (Rust 1997), as well as a mild assumption on the exogeneity of the price process with

respect to entry and exit decisions, we provide an alternative and innovative approach. Further-

more, if we are willing to relax some of the behavioral assumptions, “backward looking” might

seem more permissible. The behavioral intuition behind the decomposition principle is the follow-

ing: Instead of assuming that agents learn and respond fully rationally from prices, we assume

that agents “solve” the sub-problems of entry, exit and temporary suspension, instead of the full

dynamic programming problem. In some sense, we assume that agents learn, but not perfectly, as

implicitly assumed in a Rational Expectations General Equilibrium. This approach allows us to

break down the average merchant fleet into three different flows, by assuming that agents perceive

the endogenous price process as exogenous, when they determine their optimal actions. In this

paper we do not attempt to provide the necessary set of behavioral assumptions that will allow
3Rust is the first one who introduces decomposition in order to deal with the complexity of economic systems.
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us to forego the suspicions that surround black-box modelling approaches. Our main focus will be

on the successful calibration of the model. However, any approach to design an economic system

has to take into account the economic structure of the underlying market and remain consistent

to the underlying behavioral assumptions. On the one hand this reduces the dimensionality of the

problem and on the other hand it may enhance system thinking to influence strategy and policy

evaluation.

The transportation supply function characterizes the formation of time charter freight rates,

especially in this market, where demand is freight rate inelastic (at least in the short term) (see

Frankel and Marcus, 1973, for a detailed discussion). Using the principle of decomposition (Rust

1997) we “break-down” the transportation supply function and estimate separately the mass of new

and exiting tonnage, as well as the lay-up dynamics. We then bring them together and compute

the structural transportation supply function, which determines the spot price and, consequently,

the short term time charter price once set equal to demand. From this highly nonlinear approach

it is obvious that the dynamics of the time charter process will not always be consistent to the

expectations heterogeneous agents adopt on the process. We avoid this complication by disregarding

the ability of agents to learn in competitive markets with the hope to achieve more complex feedback

mechanisms and a more realistic description of price dynamics. This is the system theoretical

approach we adopt, that will ultimately allow us control over the input of the system, which in this

case is the exogenous demand for transportation capacity. The main drawback of this approach is

that it is still subject to Lucas’ critique: rational agents in equilibrium should respond to exogenous

shifts and update their supply of capacity. By using the equations for new vessels, scrapped vessels

and lay-up, in order to determine the transportation supply function, we do not take fully into

account optimal reactions of agents to external shifts, nor their change of optimal actions with

respect to shifts in policies. A rather strong implication is that in the long-run the model may not

fully reflect the impact of different policies, unless we make some ad hoc modifications to the micro-

foundations of the three different building blocks of the transportation supply functions. Whatever

approach we undertake our understanding of the economic principles of the system is essential for

its effective representation.

Having discussed our motivation and intuition behind the decomposition and exogeneity

assumptions, as well as the laws of motion that govern this market, we proceed with the specification

and identification of the system.

10



3.3 The system dynamics Approach

Starting with the integration of each estimated module towards a complete system, our key problem

is a problem of system dynamics. We suppress the time index and assume an exogenous demand

DD

in ton-miles, which has been kindly provided by Marsoft, (Boston) Inc. and the demand data in

the book of Martin Stopford (1991). The key equation that determines the time charter rate r is

the unknown functional relation Ψ that relates supply

SS(r, x)

with demand (x stands for the vector of all exogenous variables hereafter, such as operating expenses

opex and all other “system inputs” introduced diagrammatically in Figure 1 and defined in the

Appendix):

Ψ(SS(r, x), DD) = 0 (4)

Furthermore, supply is determined by the active merchant fleet (tonnes) times the average

productivity of the fleet, as defined in the previous section:

SS(r, x) = AMF (r, x) · P (r, x) (5)

And finally, the innovation of the state variable of AMF each period is determined by the

previous value of the state variable, the new deliveries N(r, x) (entry), the scrapped levels Sc(r, x)

(exit) and the tonnage in lay-up Lay(r, x):

AMFt+1(r, x) = AMFt(r, x) + N(r, x) − Sc(r, x) − Lay(r, x) (6)

We are facing a non linear problem with three unknowns and three equations. What complicates

the problem is that our unknowns are functions, namely: the fraction of the lay-up function

Lay(r, x) for each category of tankers4, the productivity P (r, x) and the functional relation Ψ

between supply and demand. Based on the principle of decomposition we will employ category

specific estimates for the entry and exit functions (namely N(r, x) and Sc(r, x)) derived in different

settings (Zannetos 1966), (Dikos 2004), whose form is discussed in the Appendix.
4Although we have data to derive the Lay-Up function for aggregate data, the task of deriving the fraction for

each tanker category is part of the calibration process, due to the lack of category specific data.
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Regarding the Ψ function that determines the relationship between supply and demand, we

start with the simplest form, which stems from the neoclassical assumption that requires markets

to clear and bring supply equal to demand. This specification contradicts the discussion in the

seminal monograph by Zannetos ((1966), Chapter 8), where Zannetos speculates that the price

(spot and time charter) generating mechanism is far more complicated than equality, due to the

“Cobweb” Theorem and the elasticity of expectations. At this point the reader may question the

ability of the system to generate such volatile price outputs (hereafter price stands for the spot and

time charter rate), since the input of the system (demand) is far less volatile and relatively stable.

As it will turn out, market clearing modelling of prices will be sufficient for the specification of the

system.

Let us now discuss the lay-up function, which consists of our second functional unknown. Using

the principle of similarity we assume that the parametric form of the lay-up function is the same

across size categories. We therefore proceed and use the well-established functional form5 for lay-up,

which we estimate with aggregate data and present in the Appendix. It then becomes part of the

system calibration process to assign the optimal fraction of lay-up for each category, by employing

simulation techniques. This assignment is a critical part of the system calibration process and

the algorithm we use in order to calibrate the system will be thoroughly discussed, once we have

addressed the final and most crucial unknown, which is the average productivity of the fleet.

Stopford ((1991), Appendix 1) derives the implied average fleet productivity that satisfies mar-

ket clearing (supply equals demand). There are two limitations with the numbers presented by

Stopford: These numbers are annual, which does not leave them enough space to account for the

volatility observed in each quarter, and they are averaged across size categories. However they may

provide preliminary guidance towards the parametric form of productivity. Consequentially, the

estimation of the parameters becomes a part of the calibration process.

We now proceed with the presentation of the “calibration” algorithm. To account for the effects

of category and size we consider three different size categories (j is a category index): The first one

is for tankers with deadweight tonnage between 10.000 and 60.000 (10 − 60K DWT), the second

70 − 140K and the last one is 200 + K DWT. The average merchant fleet for each category is

determined by the recursive state defined as in (6):

AMFt+1,j(r, x;βj) = AMFt,j(r, x) + Nj(r, x) − Scj(r, x) − Lay(r, x;βj) (7)

5Zannetos proposes a functional relation between tonnage in lay-up and the inverse square of the time charter

rate. This functional relation has been re-estimated in (Dikos 2004) and is strongly supportive of to the Zannetos

specification.
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where j now stands for each one of the three categories.

Using the principle of decomposition our identification strategy is the following: We employ

structural equations that determine the flow of new vessels (Nj(r, x)), the flow of scrapped vessels

(Scj(r, x)) and the tonnage in lay-up, up to the unknown parameters for each category βj . These

equations have been estimated from historical data and their form is discussed in the Appendix.

With these estimates we proceed with the calculation of estimates for the average merchant fleet.

The success of the integration of the modules and our modelling approach depends on the successful

identification of the relationship between supply and demand and the productivity function.

The equations in (7), for the newbuildings Nj(r, x) (Module 1), the scrapped tonnage Scj(r, x)

(Module 2) and the tonnage in lay-up status are presented in Appendix. The parametric form of

the lay-up equation has been determined from aggregate data, but has to be re-calibrated for each

category: therefore, it is known only up to the parameter βj , where j stands for the three different

categories. Preliminary insight into the parametric form of the productivity function P (r, x, θj) and

the explanatory exogenous variables x is based on the Stopford productivity data set. Regarding

the third unknown Ψ we start with the market clearing approach that imposes a linear relation

that requires supply to be equal to demand.

In order to choose the parameters βj , θj optimally for each category and calibrate the system

(within the sample) we use as input the real prices r, exogenous variables x and exogenous demand

DD observed in our historical data set and choose for each of the three categories the parameters

that minimize the mean squared error between supply and demand:

1
N − 1

√∑N

t=0

(AMFt,j(rt, xt;βj) · P (rt, xt, θj) − DDjt)2, j = 1, 2, 3 (8)

The calibration process is essential but not particularly interesting. Despite its profound impact

on the performance of the system the specification of the productivity function remains subtle. The

next section will be devoted to the derivation of the parametric form of the average productivity

and the presentation of the outcome of the calibrated system.

3.4 Integrating the Modules

Using the three modules (presented in Appendix) that determine the active merchant fleet in (7),

we may observe that the average merchant fleet is far less volatile than the observed spot and time

charter rates.

Demand, which is an exogenous input and the main “driving force” of the system, is far less

volatile than the time charter rates. This observation implies that in a market clearing model,

average productivity of fleet is the only mechanism that can generate the observed
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price volatility. This observation leads us to the consequence that productivity has to be a

function of the price, if there is any value in attempting to model the price process as the

outcome of the interaction of supply and demand. If productivity is completely exogenous, then

any set of prices may well satisfy market equilibrium, since for every r there will be a P that

satisfies equation (4) for any Ψ; if it is to make the system non-degenerate, then productivity has

to be a function of time charter rates and potentially of other variables, too.

In our market clearing specification, where supply equals demand in (4), the most important

unknown is the average fleet productivity function as defined in (5). In order to identify the

parametric form of the productivity function and optimize accordingly we will use the following

strategy, which is the one introduced by Stopford ((1991), Appendix 1). Stopford uses the actual

active merchant fleet and solves for the implied average fleet productivity, that equilibrates

supply with demand. In order to stay consistent to our approach we may use the predicted active

merchant fleet (which does not depart significantly from the true active merchant fleet) and solve

for the implied average fleet productivity. The ability of the system to generate accurate time

charter estimates depends crucially on the level of correlation between the estimated

implied average productivity and the observed prices. To make this point clear, let us

assume that average productivity is totally random; then an infinite set of prices satisfies the three

equations presented in the previous section. If productivity is fully determined by some (unknown)

functional dependence with prices, then we may equate supply as defined in (5) with demand and

solve for the implied productivity ( DDt
AMF (rt)

= P (rt)) that brings the system in equilibrium and

has a straightforward solution, and then solve for the unknown price. Stopford (1991) follows this

approach and derives average fleet productivity, by dividing the demand in ton-miles with the

average merchant fleet in each period from 1980 − 1995 on an annual basis. Although his data for

the total fleet do not differ across categories and are quoted on an annual basis, we use them as a

benchmark, in order to generate a first estimate of the parametric form of the average productivity

function.

By regressing the levels of implied productivity on the logarithm of rates, we acquire a fit of

0.7869, which although significant, is not sufficient enough to capture the co-movement of pro-

ductivity and rates. The average fleet productivity function, derived on aggregate data, has the

following parametric form, which guarantees the non-negativity of the time charter rate:

P (rt) = θ1,j · ln(rt) − θ2,j (9)

We now proceed with the presentation of the calibration algorithm that will allow us to esti-

mate the unknown parameters of the lay-up and productivity function, β and θ in equation (8)
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respectively, as well as, any “hidden” functional relationships that will improve the system. This

algorithm is in a sense a typical learning algorithm that reduces significantly the dimensionality

of the identification problem. We start with the smallest number of parameters and increase the

dimensionality only when a higher performance is accomplished.

Calibration Algorithm

• Using the real numbers for ships in lay-up, scrapped tonnage and new orders we derive the

active average merchant fleet. We assume equilibrium, divide the exogenous demand with

the AMFt and derive the implied average fleet productivity Pt. We start with the actual

numbers for AMFt and DD and not with their structural estimates.

• We regress the implied productivity for each category with the actual prices (time charter

rates rt) and estimate the unknown parameters θj for the productivity function, for each

category as in (9). The performance of the system depends on the level of fit acquired in this

step. We have now obtained an estimate of the productivity function ̂P (rt,j , θj).

• We repeat Step 1, but instead of solving for Pt we use ̂P (rt, θ) (we suppress the category

index j) and solve for r̂t that clears the market in (5). The mean squared error between the

actual prices rt and the output of the system, r̂t is calculated. If this error is acceptable we

proceed to the following step; if not, we try to improve the estimation and specification in

the previous step, by adding exogenous variables xt in the specification of the productivity

function.

• Having an acceptable estimate of the implied productivity we proceed with full system esti-

mation. Instead of using the actual active merchant fleet AMFt, we employ the structural

functional forms of the modules that determine (7) and minimize the mean squared error

between the estimated transportation supply function and the exogenous demand:

1
N − 1

√∑N

t=0

(AMFt,j(rt, xt) · P (rt, xt, θj) − DDjt)2, j = 1, 2, 3 (10)

where DDt,j and xt are the exogenous inputs to the system and presented in the Appendix for

the modules that determine the average merchant fleet. The choice of the exogenous inputs

that determine the productivity function is part of the system identification process. Solving

for the equilibrium rate r̂t,j we achieve all the goals set: We derive the forecast for prices and

fully determine the new orders and scrapped vessels. We then calculate the mean squared

error between the new estimates and the actual prices for the parameters θj , βj that minimize
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the error. This allows an endogenous determination of the average transportation supply and

the interrelated modules. At this point the estimates of θj may differ significantly from the

estimates in the previous step.

• If the mean squared error is acceptable, we stop. If not, we go back to Step 2, add some of

the exogenous variables to the specification of the productivity function and repeat all the

steps. If this action is insufficient then we depart from the market clearing assumption and

search for a non-linear relationship between supply and demand in (4).

We now proceed as discussed in the calibration algorithm and start with the simplest linear

specification; we start directly from Step 3 by replacing the parameters θ1,j and θ2,j in (9), with

estimates from the annualized average productivity data set derived by Stopford ((1991), Appendix

1). To gain insight regarding the performance of the system we start with a productivity function

that does not differ across categories and is a linear function of the logarithm of time charter

rate. The generated outcome captures the main trend of the actual market prices, but is far below

the performance of the statistical models and is much less volatile than the real market prices.

Furthermore, especially in the region of low rates, the implied productivity values do not guarantee

the non-negativity of the price process and the output of the system generates negative values for

the estimated time charter process. The results are encouraging, but fail systematically especially

for the larger categories. The failure of the outcome may be attributed to two other basic reasons:

Either the market clearing assumption does not hold, or productivity differs significantly across

categories. We therefore abandon the aggregate annual productivity specification, and proceed

with the implementation of all steps of the calibration algorithm, where productivity is estimated

endogenously for each category, as the ratio of the demand in ton-miles with the estimated active

merchant fleet, which accounts for heterogeneity across categories.

The full algorithm is re-implemented and the different parameters for the productivity function

across categories are derived. The results are improved, but still lack the necessary volatility

observed in actual market prices. As discussed earlier, the dynamics of the actual merchant fleet

and the exogenous demand, are far less volatile than the spot and time charter rates observed in

the markets. This implies that we have two key expectations from the productivity function, if we

want to achieve an acceptable performance for our system: we expect productivity to be a function

of the price and generate through the system the volatility observed in real data. We proceed as

discussed in the last step in the algorithm by adding a set of exogenous variables that will hopefully

identify the structural relationship between the implied productivity and charter rates.

In order to improve the performance of the system, without abandoning the market clearing

approach, we will derive the aggregate average fleet productivity, based on microfoundations with
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the hope that the structural approach will provide us the necessary insight in including the “missing”

variables, that will improve the identification process. As it will turn out, there will be one variable

that will totally “boost” the performance of the system.

Let us start from explaining and understanding productivity for one specific vessel: On a ship

basis, the ship has a non-zero productivity only if it is in a non lay-up status. If the ship is in

lay-up or used for purposes of storage (a recent example is the employment of VLCC’s in the 1991

Kuwait War) then it has zero speed St and consequently from (1) zero productivity. Once rates are

sufficiently high, then the ship has a positive productivity. The speed increases with the prevailing

prices, but the loaded days at sea and capacity utilization remain ambiguous. This observation

implies that in the region of low rates, only the younger and most efficient ships contribute to the

average fleet productivity. At higher rates even the more obsolete and old vessels contribute to the

average fleet productivity, which reduces the effects of higher rates on the average speed of the fleet.

Due to the adverse effects we expect average productivity to remain relatively stable in the region

of high rates. Higher prices have a positive impact on the optimal speed of each vessel and

a negative impact on the quality and average performance of the active fleet. Therefore,

the implied productivity of the system does not possess the necessary volatility we have hoped for

and cannot solely account for the volatile pattern observed in prices. In order to model average

productivity effectively we have to combine two adverse forces: on the one hand, high rates have to

contribute in a positive sense and on the other hand, we must identify the necessary state variable

that will account for the negative contribution of high prices on the quality and age distribution of

the fleet. We choose tonnage in lay-up as the associated quality explanatory state variable for the

following reason: High rates induce high productivity and less tonnage in lay-up, whereas low rates

reduce speed and potentially the days spent at sea (owners are willing to undertake dry-docking

and repair activities in depressed markets), but increase lay-up. These two adverse factors that

account for speed, days at sea and fleet quality seem more intuitive for modelling productivity. We

now choose the following parametric form for the P (rt, Lay) function:

P (rt) = θ1,j · ln(rt) − θ2,j + θ3,j · Lay (11)

We now repeat all the steps of the calibration algorithm. The parameters θ of the productivity

function and the mean squared error and average error between the system output and the observed

rates are presented in TableP . The results are displayed in Figure 2 and are remarkable indeed

verifying Vapnik’s assertion (1995) that “there is nothing more practical than a good theory”. The

outputs of the system are marked with arrows. In periods of low rates, the system output is below

the actual market prices, which implies that supply potentially exceeds demand, when the market
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Table P: Implied Productivity Parameters

Categories 200K 90-140K 30-70K

theta1 5500 6150 6500

theta2 29050 19000 10300

theta3 2300 2000 1150

Mean Squared Error 6068.93 3165.77 2273.25

Average Error -0.2507 -0.1981 -0.1235

is in recession. In periods of high rates our forecast tracks the innovations of the true prices even

in the most volatile and adverse movements. The performance of the system is not only optimized

but follows the direction of the actual prices with the utmost precision.

Having completed the specification and estimation of the model, we proceed with discussing

the results. Despite the remarkable fit achieved, let us give a structural interpretation into the

estimated parameters.

In equilibrium, average fleet productivity for each category is P̂ = DDt
AMFt

and using the final

formula for productivity, we solve for the rate and plug in the derived productivity. We then obtain

the following structural equation for the rate:

rt = exp(
1
θ1

· ( DDt

AMFt
+ θ2 − θ3 · Lay)) (12)

Taking the partial derivatives with respect to demand DD, we expect the derivative to be

positive; whereas we expect it to be negative with respect to the average merchant fleet, which is

the case if and only if θ1 > 0. Taking the partial derivative with respect to the tonnage in lay-up

Lay, we expect the partial derivative to be negative, which requires θ3 > 0. The derived parameters

θ are all positive and verify the requirements imposed by economic theory and intuition. What is

particularly interesting is that in the periods of high volatility, the fit provided by the deterministic

equation (12) is more than 0.93, which implies that a deterministic equation can provide the rich

price dynamics, that are very sympathetic to stochastic specifications. This argument verifies the

assertion of Chaos Dynamics Theorists, that namely deterministic equations can generate patterns

that resemble stochastic processes.
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Figure 2: system dynamics Output: Final Results
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4 Performance Evaluation and Learning

All the analysis, identification and estimation has been carried out within the full sample until

now. There are two particular reasons supportive to this specific approach: on the one hand our

data consists of only 91 observations for each category and on the other hand, we have been mainly

interested in assessing the validity of our basic identification assumptions, such as the equality

between supply and demand and the exogeneity of the time charter rate for newbuilding and scrap-

ping decisions. Furthermore, we have been particularly interested in the economic interpretation

of the structural parameters, which have been in line with economic theory and supportive to the

integration of the three sub-modules.

Having verified the validity of the market clearing approach, as well as the success of the

integrated equilibrium price model, we now address issues interrelated to the ability of the model

to generate accurate forecasts. In order to address potential concerns on over-fitting, we use the

following training rule: we split the sample and use a fraction of the available observations in order

to “train” the system (identify the parameters) and the remaining fraction, in order to generate

the forecasts with the parameters obtained from the “training” sub-sample and compare

the relative performance of the system, with respect to the “full sample” performance. This is an

essential step for evaluating the performance of the system, when data arrive dynamically and from

a theoretical point of view, it is interrelated to the consistency of the learning process (Vapnik,

(1995), p. 35). More specifically, the estimation of the parameters β, θ in (10) is performed for a

fixed sample. When data arrive dynamically an iterative “learning” procedure is used for updating

the parameters. Viewing the square of the distance between the estimated supply function and

demand as the empirical risk function, we may rigorously apply the entire asymptotic learning

theory. The smooth properties of the functions that determine transportation supply, guarantee

the consistency of the learning process, i.e. that the estimated parameters behave smoothly and

converge to the true parameters, regardless of the choice of sample and dynamic updating of data.

The rigorous application of the theory is beyond the scope of this paper. However, we estimate

the parameters for different sub-samples in order to provide empirical evidence with regards to the

stability and forecast ability of the system.

In order to perform the training and forecasting approach for the System Dynamics output

we consider several sub-samples (deterministic and random) and perform parameter estimation

“within the sub-sample” and forecasting “out-of-sample”. Finally we evaluate the performance of

the system by undertaking an adaptive learning approach: namely, we increase in each step the

training sub-sample by one observation and decrease the remaining forecasting sub-sample by one

observation.
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Once we forego the first quarter of observations (which corresponds to a “bear” market), the

estimated parameters and the associated “out-of-sample” performance display remarkable stability

and appear to converge to the “full sample” parameters and mean squared error. The results are

indicative of the stability of the system and provide supportive evidence for the “out-of-sample”

ability of the system to track changes, both in direction and magnitude. Once the two thirds of

the sample approximately are used to calibrate the system, all changes of directions are tracked

successfully and the “out-of-sample” mean square error does not differ significantly from the one

achieved with the entire 91 observations. Our results provide firm empirical evidence that the

system is not over-parameterized and that convergence of the system is achieved within a relatively

small fraction of the total sample. Results for different ratios of fitting/forecasting data resemble

very similar patterns, especially after the first quarter of observations is used for calibration and

estimation. This performance evaluation approach is interrelated to the learning properties of the

system and the consistency of the learning process, when the system is updated with dynamic data

and the parameters are re-calibrated dynamically.

5 A Hybrid Model

In this section we evaluate the performance of the system within a statistical framework. The results

derived in the previous sections correspond to the output of a structural system, whereas the

Generalized Autoregressive Conditional Heteroscedasticity model (GARCH) ((Engle et al. 1994),

Appendix 2), which is the main statistical model employed in financial modelling and time charter

rate modelling specifically (Kavussanos 2002), corresponds to the statistical approach. In his

influential series of papers, Kavussanos ((Kavussanos 2002), (Kavussanos 1996)) applied models of

the GARCH family for the representation of risk and uncertainty in the tanker industry. To the

knowledge of the authors this has been a unique application of models usually employed in high

frequency financial data, in Industrial Organization. In this section we address the question, to

which extent each model can benefit from the other and proceed with the estimation of “hybrid”

models that optimize the performance of our system, combining the complex statistical modelling

of volatility (uncertainty) with the structural output of the supply and demand approach, which

allows us to control for exogenous events.

The first step towards the evaluation of our system dynamics outputs is the following: Since

the output of the system displayed in Figure 2 (busp hereafter) incorporates all economic informa-

tion on demand and prices, the key assertion is that it should be a sufficient statistic for all the

exogenous variables used in the Exponential Generalized Autoregressive Conditional Heteroscedas-
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ticity (EGARCH) 6 models as defined in (Engle, Bollerslev and Nelson, 1994, p.10-11) where the

dependent variable is the first difference (denoted D. hereafter) of the time charter rate rt and

the exogenous variables X ′
t is the first difference of the output of the system busp, as displayed in

Figure 2.

The output of our system, busp, is a sufficient statistic indeed, if it improves the Log Likelihood

function, once it replaces the commonly employed exogenous variables: demand for transportation

dmd, oil prices oil and the index for air transportation air. We perform estimation and specification

of the model with busp as the main exogenous variable and report the results in Table I.

The results verify our assertion that the output of the system aggregates all economic infor-

mation. The Log Likelihood has been increased with a smaller number of variables, which results

in a significant increase in the Akaike information ratio and the parameter of busp displays a huge

t-statistic of tbusp = 121.92, which verifies the high impact of the system output on the statistical

model. Finally, the category effect appears insignificant here, which is intuitive, since all informa-

tion aggregate or category specific is aggregated in busp. Having estimated the GARCH model

with the output of the System Dynamics model as an input to the (GARCH) specification, we have

accomplished two diverse, but complementary tasks: on the one hand we have verified that the

variable created in the previous two paragraphs indeed aggregates all economic information and on

the other hand this hybrid model takes advantage of the dynamics of any information “left out” by

the System Dynamics approach, or simply by imposing statistical structure on the deterministic

market clearing model.

We now proceed with imposing some more structure on our hybrid model and repeat estimation

of the GARCH model for the logarithm of the time charter rate, as indicated by the exponential

specification we derived in (12) and display the results in Table II.

The mean squared error across each category ranges from 0.143611 to 0.22187 and the average

error from 0.00675 to 0.018272, which is less than two percent and is very low, given the small

numbers of inputs used. In order to test if any information is “left out” in the residuals, we employ

white noise tests (which are typical in system identification) and the Portmanteu (1983) statistic is

χ40 = 26.7704 and does not reject the null, namely that residuals are white noise. Having combined
6

yt =

p∑
j=1

arLj · yt−j + X ′
t · β +

q∑
k=0

maLk · εt−k, εt ∼ N(0, σ2
t ) (13)

and

ln σ2
t =

p∑
j=1

earchLj · ln σ2
t−j + Z′

t · hetfactors +

q∑
k=0

egarchLk · zt−k, zt ∼ N(0, σ2) (14)
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Table I Hybrid EGARCH Full System

D.tcrate Coef. Std.Err. z p-0

D.busp .5947561 .0048782 121.92 0.000

cat -.0544945 .3609009 -0.15 0.880

cst 89.67948 39.91656 2.25 0.025

arL1 1.605983 .1200491 13.38 0.000

arL2 -.7344997 .1003696 -7.32 0.000

maL1 -1.57367 .130966 -12.02 0.000

maL2 .6588982 .1171024 5.63 0.000

D.busp .0000316 3.67e-06 8.63 0.000

hetcat .0001946 .0005558 0.35 0.726

hetcst .7213303 .2043463 3.53 0.000

earchL1 .2120146 .0515153 4.12 0.000

earchL2 .0765114 .041925 1.82 0.068

earchaL1 .5955742 .0587514 10.14 0.000

earchaL2 .8173896 .056611 14.44 0.000

egarchL1 .0493823 .036764 1.34 0.179

egarchL2 .9088119 .0315344 28.82 0.000

LogL -3856.066
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Table II Hybrid EGARCH Full System

D.ln(tcr) Coef. Std.Err. z p-0

D.ln(busp) .4394877 .0085786 51.23 0.000

cat 8.68e-07 .000012 0.07 0.942

cst .0015319 .0016221 0.94 0.345

arL1 .8382046 .5109495 1.64 0.101

arL2 .0170225 .4519416 0.04 0.970

maL1 -.8280828 .5218845 -1.59 0.113

maL2 -.1203292 .5073313 -0.24 0.813

D.ln(busp) .1340466 .0789613 1.70 0.090

hetcat .000816 .0007054 1.16 0.247

hetcst -.3673754 .1639719 -2.24 0.025

earchL1 -.0398744 .0413473 -0.96 0.335

earchL2 .0554082 .0363861 1.52 0.128

earchaL1 .6983358 .057588 12.13 0.000

earchaL2 .8875543 .047151 18.82 0.000

egarchL1 -.0305064 .0193224 -1.58 0.114

egarchL2 .9381737 .0149055 62.94 0.000

LogL 516.61382
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all available forces for the calibration of the system this hybrid GARCH-System Dynamics model

has achieved three different tasks:

• It incorporates all economic theory and information in a market clearing environment, since

it uses as an input the output of a market clearing system.

• It takes advantage of the rich character of GARCH models, by imposing structure on the

dynamics of the residuals and combines system dynamics and identification with statistical

modelling.

• Finally, we have proposed a hybrid model and a calibration algorithm that aggregates statis-

tical models with engineering type models.

The results of the hybrid model and the actual prices are displayed in Figure 3, which needless

to say speaks for itself.

6 Conclusions and Further Research

Besides our main goal of describing an innovative approach for the modelling of the competitive

market for tanker rates, we have demonstrated the importance of behavior, economics and statistical

modelling towards a system synthesis and identification of the relevant variables in a competitive

economic environment.

We focused on the structural relationship between freight rates in the tanker industry and a set

of exogenous inputs. We have successfully challenged the assertion that statistical models system-

atically outperform structural or system dynamics models and presented an innovative approach

for the modelling of the competitive market for tanker rates. Subsequently, this model captures

the essential features of several shipping industry situations and allows us to identify analytically

conditions that influence bidirectional changes imposed on time charter rates. The amalgamation

of a structural system and a statistical framework give us the necessary insights in this specific

market, while remaining consistent to economic principles.

Further applications of our model leads to the support of managerial decisions, both quantitative

and qualitatively in risk management and decision making.

The innovative techniques introduced in this paper, may be applied to the analysis and modelling

of any competitive economic system. A final route of future research that is worth exploring is to

embed our estimation procedure into other transportation-related industries that exhibit similar

patterns or the real estate industry.

25



Figure 3: Hybrid GARCH-system dynamics Output
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7 Appendix

For the function of the flow of new building vessels that corresponds to the tonnage inflow N(r, x),

we employ the estimates in Dikos (Dikos, 2004, p. 54). The number of new vessels in each

period follows a Negative Binomial process (Hausman, Hall and Griliches, 1984) (an extension of a

Poisson process) and the set of exogenous inputs x that determine the intensity of the process are

the following:

• shipk: lags of ships of order k

• tcrate: one year time charter rate rt (source: Marsoft, Clarksons)

• newprice: the price of new vessels (source: Clarksons)

• accident: a dummy for accidents

• lrate: the FED lending rate (source: Datastream)

• opex: operating expenses (source: Clarksons, Marsoft, etc.)

• tcs: tcrate2

• dwg: a deadweight dummy variable

• oil: prices of crude oil (source: Datastream)

• spoil: Standard and Poor’s oil price index (source: Datastream)

• air: Standard and Poor’s index of air transportation (source: Datastream)

For the function of of the flow of scrapped tonnage that corresponds to the tonnage outflow

Sc(r, x), we employ the estimates in Dikos (Dikos, 2004, p. 77). The number of vessels scrapped

each period follows a Negative Binomial process and the set of exogenous inputs x that determine

the intensity of the process are:

• scrk: lags of the scrapped tonnage scr of order k

• crt: capital replacement time calculated in equilibrium

• tci, opi: tcrate and opex category weighted indexes
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For the fraction of tonnage in Lay-Up Lay(r, x) we employ the functional form estimated by

Zannetos (1966) and Dikos (2004). Although estimates of the Lay-Up function with aggregate data

exist, size category specific estimates do not exist. Therefore the parametric form is presented up to

the unknown parameter βj . Estimating the parameters for each category is part of the calibration

process.

Layt(rt, x) =
βj0

r2
t

+ βj1 · xt (15)

The set of exogenous inputs x are the following:

• layk: lag of the tonnage in lay-up lay of order k

• fleet: total fleet in tonnage (source: Marsoft)
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