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Abstract 
Market and technology changes have brought about new characteristics of product development. 
One of the most significant changes from the traditional to the new paradigm is the change from 
sequential and collocated development processes to concurrent and distributed processes. 
Although some researchers have built models of development processes and product 
development performance, most of these studies are about collocated development projects 
where the information flows between development teams is not explicitly studied. Consequently, 
there is a need to model the relationships between development processes and project cycle time 
in the distributed context, with special attention to the information flows between development 
teams. With the support of a design company, we developed and validated the model with data 
from mobile phone projects. 

Introduction 
The growth of distributed development in general in the past few years has been facilitated due 
to advances made in the computing world and particularly the creation and growth of the Internet. 
The present industrial climate also results in the growth of distributed design. Continual 
technological advancement is set against a backdrop of international partnerships which 
invariably leads to more distributed collaboration in new product development. Further, recent 
movements and concepts within the academic and industrial world such as distributed design, 
collaborative product development, outsourcing and the concept of the extended enterprise, 
promote the growth of distributed development. The realization that collaborators external to the 
organization have higher levels of expertise continues to drive this increase. We list some 
examples as following: 



• Chrysler no longer writes detailed specifications for many parts. Instead, it relies on 
suppliers to design and build the right parts and to find ways to lower prices. Chrysler 
and the supplier split the savings (Minahan, 1998). 

• Apple hired Sony to design the structure of the PowerBook because of its specialization 
in miniaturization. As a result the size and development time was reduced (Magee, 1992).  

• Boeing, Whirlpool, and McDonnell Douglas have outsourced many of their design 
activities to other firms (Proctor, 1999).  

• 70% of engineers’ time is spent on activities concerning distant suppliers within one 
European Original Equipment Manufacturer (OEM) in the automotive industry 
(Siemieniuch and Sinclair, 1999).  

• Zhao (2003) studied six U.S. and Singapore firms selected from electronics, personal 
computer, heavy machinery and steel industries. A trend of NPD outsourcing was found 
in these firms. In the 1980s, outsourcing percentage is 17%-36%. In 2000, outsourcing 
percentage increases to 47%-70%. 

• Designs outsourced in PDAs, notebook PCs and mobile phones are 70%, 65% and 20% 
respectively (Engardio and Einhorn, 2005). 

 
Although the growth of the internet has facilitated product development in a distributed sense – 
the development of computer tools has increased the level of communication and collaborative 
product development at distance, insufficient information is still a big problem in distributed 
development processes (McDonough III et al., 2001; Sosa et al., 2002). Lu (2002) showed a case 
that one piece of information (about the different methods used to test the problems between a 
company and its customer) was available to one location but not available to other locations 
where it was most needed. Thus although a lot of tests were done in the business unit and by the 
customer, there were still many quality problems were reported by the customer. Consequently, 
the development cycle time is much higher in a distributed environment than in a conventional 
project management environment.  
 
Some previous research has focused on distributed or collaborative product development 
processes (McDonough III et al. 2001; Sosa et al. 2002; Doz and Hamel 1998) and the benefits 
of improving information flows between companies and teams are well understood. The 
Maturity Index on Reliability method is developed to classify the information flows with respect 
to their ability to measure, understand and improve the quality and reliability of a product 
(Brombacher, 1999; Sander and Brombacher, 1999). However companies still hesitate to do it 
because the cost of information flow improvement is high and there is no quantitative model 
been developed to evaluate the benefits of it.  
 
Traditional project management models based on the Critical Path Method (CPM) and Program 
Evaluation and Review Technique (PERT) describe process in a static fashion with activity 
duration estimates and precedence relationships describing the network of development activities. 
Other approaches include identifying certain dynamic consequences of different project 
structures on project performance. For example, the dynamic consequences of iteration among 
project phases on project cycle time have been addressed directly with the Design Structure 
Matrix (Smith and Eppinger 1997; Eppinger et al. 1994; Steward 1981). The impact of 
overlapping and functional interaction on development time and effort is discussed based on 
stochastic simulation model (Bhuiyan et al. 2004). Several system dynamics project models (e.g., 



Williams et al. 1995; Ford and Sterman 1998) have been built on phased network structure of 
projects. However all of these models are focusing on the task flows, the information flows 
between distributed development teams which underlie task flows and drive project cycle time 
are not explicitly modeled and studied. This paper tries to develop a simulation model which can 
be used to evaluate the benefits of information flow improvement. The model is successfully 
validated by using data collected from several mobile phone development projects. 
 

The Product Development Process Model 
This section begins with a general overview of the distributed product development process 
model, follows by details of initial development processes and rework processes. 

Overview of the Model 
The purpose of our model is similar to the purpose of Critical Path and PERT methods: to 
describe the dependencies of development tasks on each other. However our model can describe 
these relationships in greater detail and richness than the precedence relations used in many 
Critical Path and PERT methods, and the information flows among development teams are 
explicitly modeled: 

 Our model describes the dependency among tasks along the entire duration instead of 
only at the start and finish of the tasks as in the Critical Path and PERT methods. 

 The degree of possible concurrence among tasks, the rate of development activities, and 
the rework probability can be changed as information available is changed. 

 Our model allows the development process to vary over the life of the project depending 
on the frequency and type of quality problems found in different tasks. In contrast, the 
precedence relationships used in many Critical Path and PERT methods are static. 

 
Our model, which is essential for us to predict the product development performance, simulates 
distributed product development processes. We describe product development processes with 
two parts: initial development processes and rework processes. They are represented by generic 
structures which can be used to represent product development projects with any number of 
development teams, and also can be used to represent sequential, concurrent, partial concurrent 
and iterative product development projects. In this report, we only use project cycle-time to 
measure product development performance. According to Ford and Sterman (1998), 
development processes, resources, project targets and project scope influence product 
development activities. Different models are needed to understand the behavior of product 
development and these models interact with each other. A process model simulates the 
constraints of the project process due to the interactions among tasks. A resource model 
simulates the influence of the work force and facilities available, the efficiency of team members, 
and the allocation of these resources. A target model simulates the modification of time, quality, 
and cost objectives in the project development processes in response to overall project targets 
and task-level performance. A scope model simulates the project scope and task level scope 
changes according to project performance.  In our model we only focus on dynamic product 
development processes and project cycle time. We assume that the project scope, target, and 
resources are fixed at the beginning of the project and can be changed according to the 
simulation result to improve product development performance. 
 



Initial development processes describe the ideal product development processes where all quality 
problems are discovered and solved when the task is completed. The fundamental units that flow 
through a project are “development activities”, such as designing a keypad for a mobile phone 
and writing a sub-program for software. The information flows from upstream tasks to 
downstream task affect the development activities, so we describe the initial development 
processes with development activities and feed forward information flows (Table 1).  
 
 

Development Processes Flow Components

Initial Development Processes Development Activities and Feed Forward 
Information Flows

Rework Processes Rework Activities and Feedback Information 
Flows

 
 
Product development, even for derivative products, is an innovative process. Consequently, 
many unanticipated quality problems happen during the development process. Therefore, rework 
processes due to quality problems is a particularly important part of our model. In our model, 
rework processes are composed of feedback information flows and rework activities (Table 1). 
The links shown in Figure 1 represent several forms of inter-task interaction. Rework activities 
describe the rework processes caused by quality problems. Feedback information flows denote 
that when quality problems caused by upstream tasks are discovered by a downstream task, the 
related information for rework will transfer to relevant upstream tasks. In order to solve the 
quality problems, the team that discovers quality problems need to cooperate with the teams that 
generate the problems. Good coordination between teams can reduce quality problems and 
increase efficiency of feedback information flows. 
 
In a product development, not only are the number and severity of quality problems important, 
but also the time when these quality problems are found. For example, certain quality problems 
of components can only be found after the mobile phones have been assembled and tested. In 
order to correct the quality problems, the components have to be redesigned, and reproduced. 
Then the mobile phones are assembled and tested again. Quality problems in a project can 
increase cycle time and costs of the whole project, and can decrease the project quality. This is 
the main reason why we model rework processes especially. 
 
Most system dynamics models do not distinguish the completing rate of a task for rework from 
the completing rate for initial development. However, from our experience, the completing rate 
changes (usually decreases) dynamically in the product development processes. For instance, we 
design a component of a mobile phone, and then we select a supplier and discuss the prices, 
materials and delivery time with him. Later we find that the design of this component is wrong, 
so we change the design and ask the supplier to produce a new one.  In this rework process the 
time spent on selecting a supplier should be saved, and the time needed to have a contract with 
the supplier should be shorter. 
 
 

Table 1 Development Processes and Flows 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

Initial Development Process 
The initial development process describes what the development process is if all quality 
problems are discovered and solved in the task. As mentioned above, both the initial 
development process and rework process include task flows. Task flows related to rework 
processes will be described in the next section. 
 

There are two types of tasks in a project: unconstrained and constrained. Unconstrained tasks 
mean that the completion of these tasks does not depend on any upstream tasks. All the 
information needed for these tasks will be available and developers can start to do these tasks at 
any time. However, most tasks in product development project are constrained tasks. These tasks 
have upstream tasks which constrain their completion. The information from upstream tasks will 
affect the development process of constrained tasks. The difference in the modeling process for 
unconstrained and constrained tasks will be mentioned later. Our model uses two parts to 
describe initial development processes: task flows, and process concurrence relationships. 

Task Flows 

Tasks of development processes are described in a stock and flow structure (Figure 2). We use 
Tn to represent the Nth task of the development project. In our model, a task flow includes two 
states: task uncompleted (TU) and task completed (TC). A task initially resides in the TU stock. 
The development activity in the flow is named as completing task. Completing task rate (CTr) 
equals to a percentage of a task completed at every step. Completed tasks accumulate in the TC 
stock.  
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Figure 1: A Project Network 
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Completing task rate is determined by average completion duration (ACD), effects of process 
concurrence relationship on completing task rate (EPCRCT) and task available for completion 
(TAC) (Figure 3). ACD is the time required to complete a development activity on a task if the 
required resources and all the information needed from upstream tasks are available. It describes 
the basic time constraint that the process imposes on the project progress. In our model, ACD 
includes the time incurred by rework activities to solve any quality problems found in the self-
checking process. We assume that developers will solve these quality problems immediately and 
will not report them. We treat the rework activities arising from these quality problems as part of 
the completion task flow. Completing task activity requires sufficient skilled workers as well as 
enough materials. Therefore, ACD for each activity is affected by the resources available. We 
assume that the resources for each activity in a company will remain the same. Hence, based on 
the aforementioned assumptions, ACD is a constant in our model. 
 
EPCRCT and TAC are affected by process concurrence relationship (PCR). EPCRCT describes 
the effect of upstream information on the CTr of current task. When all the relevant upstream 
tasks are completed, EPCRCT is 1 which means that upstream tasks don’t affect CTr any more. 
TAC represents the percentage of task which is not constrained by upstream tasks and has not 
been completed. The policy of a company also affects TAC. Some companies would like to start 
tasks as early as possible to reduce project cycle time, others would like to start tasks when most 
of the required information is available in order to reduce rework and costs. For simplicity, we 
assume that the policy of a company remains consistent in the short term. 
 

Figure 2: Stock and flow model of a single task 
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Process Concurrence Relationships 
Process concurrence relationship (PCR) describes the relationship between the percentage of 
upstream task finished and the percentage of downstream task available. Sometimes one 
downstream task has several upstream tasks. All the upstream tasks will constraint certain 
proportion of the downstream task available. In our model PCR of a task (PCRn) is the tightest 
constraint set by the PCRs between the focal task (denoted with subscript n) and the upstream 
development tasks (denoted with subscript m where m { }1...,2,1 −∈ n ) (PCRmn). If upstream 
phases do not constrain downstream focal phase n, PCR is 1. For unconstrained tasks PCR and 
EPCRCT are always 1. This means that all the information needed for unconstrained tasks is 

Figure 3: Initial development processes 

Tm 

Completing Tm rate
Tm

Tm 

Completing Tm rate

Tm

Tm

Completing Tn rate

Tn Tn

Tn 
Completing Tn rate

Tn

Tn 

Tm+1-Tn 

Tm+1-Tn 

Tm-Tn Tm-Tn



available. In distributed product development processes, information delay (ID) often happens 
because of cooperation problems between teams or organizations. We treat ID as an important 
part of our model. 
 
The relationships of different tasks can be sequential, concurrent or partially concurrent. For a 
sequential development process, all information needed for downstream tasks is generated at the 
time when all (i.e. 100 percent) of the upstream tasks are completed. For concurrent development 
process, information is formed gradually as each task is being completed. Then information is 
transferred to downstream tasks. The downstream task will start when there is enough 
information from its upstream tasks. The development progress can be constrained by inter-task 
relationships. Consider the case of the mobile phone development as an example. In the design 
verification test phase, co-developers and standard part suppliers can only design and produce 
the components after the prototype has been tested. The assembly of these components is 
constrained by the availability of the mechanical and electrical components, such as the keypad, 
printed circuit board etc.  If there is any quality problem found, the phones must be repaired or 
reproduced. For any given technology, a certain amount of time is required for each of these 
tasks. Production, inspection and rectification cannot be executed at the same time in this 
example. For most projects, although some tasks can be done simultaneously, the other tasks 
have to be done sequentially, thus constraining the cycle time of the development project. 
 
PCRs of a project describe the interdependency of the tasks, which constraints the development 
speed of the project. Most previously published system dynamics models of projects have 
assumed that all the tasks are available for completion, or these constraints have been 
incorporated into other project features (e.g., Richardson and Pugh 1981; Abdel-Hamid 1984). 
The assumption that all tasks are available implies that the project can be done immediately 
when there are enough resources. New product development research (e.g., Clark and Fujimoto 
1991; Wheelwright and Clark 1992; Ford and Sterman 1998) shows that the development 
process is one of the most important aspects that constrain the availability of tasks and the new 
product development cycle time. 
 
PCRs capture the degree of concurrence of tasks and the changes in the degree of concurrence as 
the task progresses. As shown in Figures 4(a) and 4(b), when Tm (upstream task) available for Tn 
(downstream task) is below a certain level, PCRmn (process concurrence relationship of task m 
and task n) remains zero. It will increase as more Tm becomes available.  The highest point is 
reached after the proportion of Tm which constrains Tn is available. PCR can be applied to any 
task which is constrained by upstream tasks. The percentage of task available due to upstream 
constraint is a function of the percentage of available upstream tasks in the development 
processes. A variety of function forms are possible, such as linear or non-linear relationships, as 
long as the differential coefficient of the function remains positive. In general strong concurrent 
relationships are described by curves near the vertical axis of the relationship graph and weak 
concurrent relationships are described by curves near the horizontal axis of the graph.  
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relationship; (d) low concurrence relationship; (e) strong concurrence relationship 



Figure 4 illustrates several possible PCRs. Figure 4(a) shows the PCR which also can be 
illustrated by the Critical Path Method and PERT. The other figures show PCR that cannot be 
described with the Critical Path method and PERT. Based on simulation, our model shows the 
relationships at a high level of details by altering the shape of the function curve. For instance, 
Figure 4(b) shows that the downstream task can only start until 25% of the upstream task is 
available. The availability of the downstream task increases discretely according to the 
percentage of upstream task information available. Figure 4(c) shows that the availability of the 
downstream task increases continuously as the percentage of available upstream task information 
increases. Figures 4(d) and 4(e) show the relationships in less concurrent processes and more 
concurrent processes, respectively.  

Rework Processes 
We have discussed the simulation of the development process if there is no quality problem and 
rework. What should the development process be if there are quality problems? According to our 
assumption that the task is either correct or wrong, if quality problems are found, the relevant 
tasks have to be redone. For example, the feed back flow from Tn to Tm in Figure 5 means that 
we find quality problems at state Tn Completed. In order to solve these problems, Tm and all the 
downstream tasks (Tm+1 and Tn) have to be redone. The model for the rework processes are based 
on quality-related information flows and task flows, and explicitly include the discovery of the 
quality problems, finding the responsible tasks, and rectification of the quality problems in the 
development processes. 

Feedback Information Flows 
The development activities may not be perfect, causing some quality problems to fail to be 
corrected. Some tasks that have quality problems can be mistakenly considered to be finished 
such that wrong information gets transferred to downstream tasks. The rework information flows 
arise when these problems are found at downstream task.  
 
As shown in Figure 5, the decision point (DP) describes the time when decision of rework (DOR) 
should be made. DOR represents progress reviews that determine whether to proceed to the next 
task or go back to upstream tasks. If rework happens, PCR of the current task and the 
downstream tasks will become zero and development activity of the downstream tasks will be 
stopped. The alternatives at the DOR are tagged with probability of rework, which is determined 
according to the total task completed (TTC) by that time. This means that rework probabilities 
may be changed as a function of the number of times that the task has been repeated. Improved 
understanding decreases the probability of iteration. This learning effect, which captures the 
influence of knowledge accumulation, occurs through the dynamic updating of probability of 
iteration according to TTC. Cooperation of the teams involved also affects the probability of 
rework, because information exchanged by teams highlights problems before they turn into 
rework. Quality information delay (QID) describes the time needed to start rework and it is 
affected by the coordination efficiency between the team which find the quality problem and the 
team which is responsible for the problem. All relevant completed tasks will return to 
uncompleted tasks, as rework information transferred from QID to task revision (TR). 
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Figure 5: Rework Processes 
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Adjustment of Task Flows 
Learning may take place during the iteration. Improved understanding may increase the CTr and 
cooperating speed, so that the ACD should be a function of TTC, which is the sum of TC and the 
integration of task flow through the TR. 
 
The rework of upstream tasks will affect rework of all the downstream tasks. This means PCR 
can affect TR. For example, if rework happens for Tm the TCm stock and PCRm(m+1) (process 
concurrence relationship of task m and task m+1) will become zero. Then the change of 
PCRm(m+1) will cause rework of Tm+1. 

Case Background 
The company where the case study was conducted is a design company which mainly develops 
mobile phones. This company operates in a business-to-business market, meaning that its 
customers are other companies, not end users. It develops mobile phones according to market 
and technology trends, and then sells the design to customers who will in turn sell the products to 
end users. The market for these products has strong time and cost pressures. In terms of product 
architecture, the electronic architecture is designed on the platform by a large international 
company, while the mechanical architecture and software are developed in-house.  
 
The products analyzed in this case study were developed based on customer requirements and 
the customer was involved from the beginning of the product development process.  Other co-
developers in this project were tooling companies, which developed and manufactured non-
standard parts; original equipment manufacture, which assembled the mobile phones and tested 
their performance; and electronics suppliers. The development processes of these products 
comprise six phases:  

1) Concept Development: Based on the requirements provided by the customer, the design 
company defined the main features with the customer, and developed the industrial design 
plan, mechanical design plan, and electronic design plan.  
2) Industrial Design (ID): This stage has several sub-processes: initial design, 3D model, 
rendering, checking, dummy sample and ID confirm. The customer attended the checking 
process to identify quality problems related to the features and appearance of the mobile 
phone.   
3) Detail Design (DD): At this stage, the mechanical design, electronic design and, software 
design started. Working samples were completed. Then a team from the design company 
checked the mechanical and electronic performance of the working sample with customer.  
4) Engineering Verification Test (EVT): Dozens of mobile phones were produced at this 
stage. The mechanical prototypes were used in this stage. These products were assembled in 
the design company in order to identify and solve problems related to the assemble process. 
The mechanical and electronic performances were tested. 
5) Pilot Run (PR): Half-way through the DD process, the project manager began to prepare 
for mould fabrication. According to the quality information from EVT, the design and mould 
were modified. The mobile phones were produced by a contract-manufacturing company. 
Quality engineers in the manufacturing company tested product quality and provided a report 
to the design company. Finally, quality problems of design, mould and production process 
were solved at this stage. 
6) Pilot-line Production (PP): About one thousand products were produced at this stage to 



make sure that problems related to mass production were identified and addressed before the 
actual mass production began. 
 

Figure 6 shows the development process of the design company. From Figure 6, a number of 
conclusions could be drawn. Firstly a lot of tasks are done outside the company, so the 
cooperation among the companies may affect project cycle time; secondly most of the phases are 
done by several teams belong to different companies, phase based modeling can’t explicitly 
model the information flows in the product development process. 
 
 

 

 

Results 
The model for the case studied was built based on interviews with the project managers, 
mechanical engineers and quality engineers, and detailed historical data of four projects done 
from April 2003 to May 2004. The types and sources of data are listed in Table 2. All projects 
are derivative product development projects, where the product platform has been established. 
The data are confidential and are not replicated here exactly. For the purpose of illustration, we 
multiply all the original task duration by a confidential scale. We formally model the 
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development process from the start point of Industrial Design to the start point of Mass 
production. Although concept development is very important for NPD processes, we didn’t 
model this part because of its high uncertainty nature.  
 
 
 
 

                       Sources     
Types Interview Documents

General information 
about the company

General manager; vice general 
manager (market) 

Project management 
handbook

General information 
about the development 
projects in the company

Vice general manager 
(Development); technical 
director

Project management 
handbook; quality control 
procedure; standard 
operation procedure

Detailed data of the 4 
projects

Project managers;mechanical 
engineers;quality engineers

Project progress reports; 
quality reports

 
 
In order to study the usability of the model, we compared the cycle times of ten derivative 
projects completed in 2004 (there are 21 projects completed in 2004 of the company studied, but 
some of these are relatively novel, and some of these are not full projects) and the simulation 
results of our model. We list the data from real projects and simulation runs in Table 3 and Table 
4: 
 
 
 

Project Cycle-time 
(working days) Project Cycle-time 

(working days)

1 198 6 184

2 159 7 163

3 163 8 164

4 152 9 171

5 158 10 165
 

 
 
 
 
 
 

Table 2 Project cycle-time of the projects done in the focal company 

Table 4-3 Project cycle-time (working days) of the projects done in the focal company 



 
 
 
 
 

175 175 154 196

168 168 172 150

185 173 167 174

169 162 173 193

168 151 174 175

166 174 170 168

193 176 168 160

183 172 173 172
 

 
We use independent t-test to study the difference of the cycle-time of the two populations. 
Because the projects 1-4 are used to build our model, the data generated by the model should be 
closely related to these projects. The other 6 independent projects are used to test our model. We 
assume both populations are normal and have uniform variance. The sample mean and sample 
variance of the independent projects and simulated projects are: 

5.1672 =rx  73.842
2 =rs   

78.171=sx 34.1112 =ss  
Pooled variance 64.1072

2 =ps  
Now test the hypothesis that the difference between two means sµ  and 2rµ is zero ( 05.0=α ) 
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Critical regions: t<-1.689 and t>1.689 
Conclusion: Results from the two populations are not statically different. 
 
F-test is carried out to check the assumption of uniform variance for the two populations: 
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Table 4-4 Project cycle-time (working days) of 32 runs of the model 



From the F-table, 50.4)5,31(95.0 =F . Hence there is insufficient evidence to reject the assumption 

that the two populations have the same variance. 

 
In order to study the influence of information flows among development teams on project 
performance, we interviewed the project managers, mechanical engineers and quality engineers 
related to the projects 1-4. We asked them what the task duration, development rate, rework rate, 
and iteration probability would be, if all the information needed from other teams available at the 
right time (The data obtained from mobile phone companies having high level of quality-related 
information flows are used as reference). The data related to Current Level come from the 
projects 1-4 which have serious information flow problems among design team, tooling team, 
manufacturing team and testing team. Then we use these data as inputs of the model. We run the 
model to study the inference of information flows on project performance. Table 5 shows the 
simulation results when the information flows are improved. Ten runs were carried out for each 
of the results. The last column shows the time needed to finish a project. The impacts of the 
information flows related to the customers and standard part suppliers are not discussed here, 
since there is no serious information flow problems exist. 
 
 
 

Level of Quality-related 
Information Flows between DC 

and OEM

Level of Quality-related 
Information Flows between DC 

and TC

Cycle 
Time

Percentage of 
Improvement

Current Level Ideal Level 139.2 18.97%
Ideal Level Current Level 141.6 17.57%
Ideal Level Ideal Level 116.1 32.41%
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