
Dynamic Modeling of Distributed Product Development
Processes

Jun Lin1, Kah Hin Chai2, Yoke San Wong3, Aarnout C. Brombacher4

1Design Technology Institute, National University of Singapore, Singapore
linjun@nus.edu.sg

2Department of Industrial and Systems Engineering, National University of Singapore, Singapore

iseckh@nus.edu.sg

3Department of Mechanical Engineering, National University of Singapore, Singapore
mpewys@nus.edu.sg

4Faculty of Technology Management, Eindhoven University of Technology, The Netherlands

A.C.Brombacher@tm.tue.nl

Abstract
Market and technology changes have brought about new characteristics of product development.
One of the most significant changes from the traditional to the new paradigm is the change from
sequential and collocated development processes to concurrent and distributed processes.
Although some researchers have built models of development processes and product
development performance, most of these studies are about collocated development projects
where the information flows between development teams is not explicitly studied. Consequently,
there is a need to model the relationships between development processes and project cycle time
in the distributed context, with special attention to the information flows between development
teams. With the support of a design company, we developed and validated the model with data
from mobile phone projects.

Introduction
The growth of distributed development in general in the past few years has been facilitated due
to advances made in the computing world and particularly the creation and growth of the Internet.
The present industrial climate also results in the growth of distributed design. Continual
technological advancement is set against a backdrop of international partnerships which
invariably leads to more distributed collaboration in new product development. Further, recent
movements and concepts within the academic and industrial world such as distributed design,
collaborative product development, outsourcing and the concept of the extended enterprise,
promote the growth of distributed development. The realization that collaborators external to the
organization have higher levels of expertise continues to drive this increase. We list some
examples as following:

• Chrysler no longer writes detailed specifications for many parts. Instead, it relies on
suppliers to design and build the right parts and to find ways to lower prices. Chrysler
and the supplier split the savings (Minahan, 1998).

• Apple hired Sony to design the structure of the PowerBook because of its specialization
in miniaturization. As a result the size and development time was reduced (Magee, 1992).

• Boeing, Whirlpool, and McDonnell Douglas have outsourced many of their design
activities to other firms (Proctor, 1999).

• 70% of engineers’ time is spent on activities concerning distant suppliers within one
European Original Equipment Manufacturer (OEM) in the automotive industry
(Siemieniuch and Sinclair, 1999).

• Zhao (2003) studied six U.S. and Singapore firms selected from electronics, personal
computer, heavy machinery and steel industries. A trend of NPD outsourcing was found
in these firms. In the 1980s, outsourcing percentage is 17%-36%. In 2000, outsourcing
percentage increases to 47%-70%.

• Designs outsourced in PDAs, notebook PCs and mobile phones are 70%, 65% and 20%
respectively (Engardio and Einhorn, 2005).

Although the growth of the internet has facilitated product development in a distributed sense –
the development of computer tools has increased the level of communication and collaborative
product development at distance, insufficient information is still a big problem in distributed
development processes (McDonough III et al., 2001; Sosa et al., 2002). Lu (2002) showed a case
that one piece of information (about the different methods used to test the problems between a
company and its customer) was available to one location but not available to other locations
where it was most needed. Thus although a lot of tests were done in the business unit and by the
customer, there were still many quality problems were reported by the customer. Consequently,
the development cycle time is much higher in a distributed environment than in a conventional
project management environment.

Some previous research has focused on distributed or collaborative product development
processes (McDonough III et al. 2001; Sosa et al. 2002; Doz and Hamel 1998) and the benefits
of improving information flows between companies and teams are well understood. The
Maturity Index on Reliability method is developed to classify the information flows with respect
to their ability to measure, understand and improve the quality and reliability of a product
(Brombacher, 1999; Sander and Brombacher, 1999). However companies still hesitate to do it
because the cost of information flow improvement is high and there is no quantitative model
been developed to evaluate the benefits of it.

Traditional project management models based on the Critical Path Method (CPM) and Program
Evaluation and Review Technique (PERT) describe process in a static fashion with activity
duration estimates and precedence relationships describing the network of development activities.
Other approaches include identifying certain dynamic consequences of different project
structures on project performance. For example, the dynamic consequences of iteration among
project phases on project cycle time have been addressed directly with the Design Structure
Matrix (Smith and Eppinger 1997; Eppinger et al. 1994; Steward 1981). The impact of
overlapping and functional interaction on development time and effort is discussed based on
stochastic simulation model (Bhuiyan et al. 2004). Several system dynamics project models (e.g.,

Williams et al. 1995; Ford and Sterman 1998) have been built on phased network structure of
projects. However all of these models are focusing on the task flows, the information flows
between distributed development teams which underlie task flows and drive project cycle time
are not explicitly modeled and studied. This paper tries to develop a simulation model which can
be used to evaluate the benefits of information flow improvement. The model is successfully
validated by using data collected from several mobile phone development projects.

The Product Development Process Model
This section begins with a general overview of the distributed product development process
model, follows by details of initial development processes and rework processes.

Overview of the Model
The purpose of our model is similar to the purpose of Critical Path and PERT methods: to
describe the dependencies of development tasks on each other. However our model can describe
these relationships in greater detail and richness than the precedence relations used in many
Critical Path and PERT methods, and the information flows among development teams are
explicitly modeled:

 Our model describes the dependency among tasks along the entire duration instead of
only at the start and finish of the tasks as in the Critical Path and PERT methods.

 The degree of possible concurrence among tasks, the rate of development activities, and
the rework probability can be changed as information available is changed.

 Our model allows the development process to vary over the life of the project depending
on the frequency and type of quality problems found in different tasks. In contrast, the
precedence relationships used in many Critical Path and PERT methods are static.

Our model, which is essential for us to predict the product development performance, simulates
distributed product development processes. We describe product development processes with
two parts: initial development processes and rework processes. They are represented by generic
structures which can be used to represent product development projects with any number of
development teams, and also can be used to represent sequential, concurrent, partial concurrent
and iterative product development projects. In this report, we only use project cycle-time to
measure product development performance. According to Ford and Sterman (1998),
development processes, resources, project targets and project scope influence product
development activities. Different models are needed to understand the behavior of product
development and these models interact with each other. A process model simulates the
constraints of the project process due to the interactions among tasks. A resource model
simulates the influence of the work force and facilities available, the efficiency of team members,
and the allocation of these resources. A target model simulates the modification of time, quality,
and cost objectives in the project development processes in response to overall project targets
and task-level performance. A scope model simulates the project scope and task level scope
changes according to project performance. In our model we only focus on dynamic product
development processes and project cycle time. We assume that the project scope, target, and
resources are fixed at the beginning of the project and can be changed according to the
simulation result to improve product development performance.

Initial development processes describe the ideal product development processes where all quality
problems are discovered and solved when the task is completed. The fundamental units that flow
through a project are “development activities”, such as designing a keypad for a mobile phone
and writing a sub-program for software. The information flows from upstream tasks to
downstream task affect the development activities, so we describe the initial development
processes with development activities and feed forward information flows (Table 1).

Development Processes Flow Components

Initial Development Processes Development Activities and Feed Forward
Information Flows

Rework Processes Rework Activities and Feedback Information
Flows

Product development, even for derivative products, is an innovative process. Consequently,
many unanticipated quality problems happen during the development process. Therefore, rework
processes due to quality problems is a particularly important part of our model. In our model,
rework processes are composed of feedback information flows and rework activities (Table 1).
The links shown in Figure 1 represent several forms of inter-task interaction. Rework activities
describe the rework processes caused by quality problems. Feedback information flows denote
that when quality problems caused by upstream tasks are discovered by a downstream task, the
related information for rework will transfer to relevant upstream tasks. In order to solve the
quality problems, the team that discovers quality problems need to cooperate with the teams that
generate the problems. Good coordination between teams can reduce quality problems and
increase efficiency of feedback information flows.

In a product development, not only are the number and severity of quality problems important,
but also the time when these quality problems are found. For example, certain quality problems
of components can only be found after the mobile phones have been assembled and tested. In
order to correct the quality problems, the components have to be redesigned, and reproduced.
Then the mobile phones are assembled and tested again. Quality problems in a project can
increase cycle time and costs of the whole project, and can decrease the project quality. This is
the main reason why we model rework processes especially.

Most system dynamics models do not distinguish the completing rate of a task for rework from
the completing rate for initial development. However, from our experience, the completing rate
changes (usually decreases) dynamically in the product development processes. For instance, we
design a component of a mobile phone, and then we select a supplier and discuss the prices,
materials and delivery time with him. Later we find that the design of this component is wrong,
so we change the design and ask the supplier to produce a new one. In this rework process the
time spent on selecting a supplier should be saved, and the time needed to have a contract with
the supplier should be shorter.

Table 1 Development Processes and Flows

Initial Development Process
The initial development process describes what the development process is if all quality
problems are discovered and solved in the task. As mentioned above, both the initial
development process and rework process include task flows. Task flows related to rework
processes will be described in the next section.

There are two types of tasks in a project: unconstrained and constrained. Unconstrained tasks
mean that the completion of these tasks does not depend on any upstream tasks. All the
information needed for these tasks will be available and developers can start to do these tasks at
any time. However, most tasks in product development project are constrained tasks. These tasks
have upstream tasks which constrain their completion. The information from upstream tasks will
affect the development process of constrained tasks. The difference in the modeling process for
unconstrained and constrained tasks will be mentioned later. Our model uses two parts to
describe initial development processes: task flows, and process concurrence relationships.

Task Flows

Tasks of development processes are described in a stock and flow structure (Figure 2). We use
Tn to represent the Nth task of the development project. In our model, a task flow includes two
states: task uncompleted (TU) and task completed (TC). A task initially resides in the TU stock.
The development activity in the flow is named as completing task. Completing task rate (CTr)
equals to a percentage of a task completed at every step. Completed tasks accumulate in the TC
stock.

Concept
Development

Tooling Detailed
Design

Prototype
Test

Verification
Test

Figure 1: A Project Network

Task Flow

Rework Information Flow

Development Task

T Uncompleted T Completed

Completing T rate

Completing task rate is determined by average completion duration (ACD), effects of process
concurrence relationship on completing task rate (EPCRCT) and task available for completion
(TAC) (Figure 3). ACD is the time required to complete a development activity on a task if the
required resources and all the information needed from upstream tasks are available. It describes
the basic time constraint that the process imposes on the project progress. In our model, ACD
includes the time incurred by rework activities to solve any quality problems found in the self-
checking process. We assume that developers will solve these quality problems immediately and
will not report them. We treat the rework activities arising from these quality problems as part of
the completion task flow. Completing task activity requires sufficient skilled workers as well as
enough materials. Therefore, ACD for each activity is affected by the resources available. We
assume that the resources for each activity in a company will remain the same. Hence, based on
the aforementioned assumptions, ACD is a constant in our model.

EPCRCT and TAC are affected by process concurrence relationship (PCR). EPCRCT describes
the effect of upstream information on the CTr of current task. When all the relevant upstream
tasks are completed, EPCRCT is 1 which means that upstream tasks don’t affect CTr any more.
TAC represents the percentage of task which is not constrained by upstream tasks and has not
been completed. The policy of a company also affects TAC. Some companies would like to start
tasks as early as possible to reduce project cycle time, others would like to start tasks when most
of the required information is available in order to reduce rework and costs. For simplicity, we
assume that the policy of a company remains consistent in the short term.

Figure 2: Stock and flow model of a single task

Tn Tn

Tn

T3 Completed

Completing T3 rate

Effect of Process
Concurrence

Relationship on
Completing T3 Rate

Average Completion
Duration of T3

T1 Completed
Completing T1 rate

Average Completion
Duration of T1

Process Concurrence
Relationship of T1

Effect of Process
Concurrence

Relationship on
Completing T1 Rate

T3 Uncompleted

Process Concurrence
Relationship of T1-T3

T1 Uncompleted

T3 Available for
Completion

T1 Available for
Completion

Process Concurrence
Relationship of T2-T3

Process Concurrence
Relationship T3

Delay T1-T3

Delay T2-T3

Process Concurrence Relationships
Process concurrence relationship (PCR) describes the relationship between the percentage of
upstream task finished and the percentage of downstream task available. Sometimes one
downstream task has several upstream tasks. All the upstream tasks will constraint certain
proportion of the downstream task available. In our model PCR of a task (PCRn) is the tightest
constraint set by the PCRs between the focal task (denoted with subscript n) and the upstream
development tasks (denoted with subscript m where m { }1...,2,1 −∈ n) (PCRmn). If upstream
phases do not constrain downstream focal phase n, PCR is 1. For unconstrained tasks PCR and
EPCRCT are always 1. This means that all the information needed for unconstrained tasks is

Figure 3: Initial development processes

Tm

Completing Tm rate
Tm

Tm

Completing Tm rate

Tm

Tm

Completing Tn rate

Tn Tn

Tn
Completing Tn rate

Tn

Tn

Tm+1-Tn

Tm+1-Tn

Tm-Tn Tm-Tn

available. In distributed product development processes, information delay (ID) often happens
because of cooperation problems between teams or organizations. We treat ID as an important
part of our model.

The relationships of different tasks can be sequential, concurrent or partially concurrent. For a
sequential development process, all information needed for downstream tasks is generated at the
time when all (i.e. 100 percent) of the upstream tasks are completed. For concurrent development
process, information is formed gradually as each task is being completed. Then information is
transferred to downstream tasks. The downstream task will start when there is enough
information from its upstream tasks. The development progress can be constrained by inter-task
relationships. Consider the case of the mobile phone development as an example. In the design
verification test phase, co-developers and standard part suppliers can only design and produce
the components after the prototype has been tested. The assembly of these components is
constrained by the availability of the mechanical and electrical components, such as the keypad,
printed circuit board etc. If there is any quality problem found, the phones must be repaired or
reproduced. For any given technology, a certain amount of time is required for each of these
tasks. Production, inspection and rectification cannot be executed at the same time in this
example. For most projects, although some tasks can be done simultaneously, the other tasks
have to be done sequentially, thus constraining the cycle time of the development project.

PCRs of a project describe the interdependency of the tasks, which constraints the development
speed of the project. Most previously published system dynamics models of projects have
assumed that all the tasks are available for completion, or these constraints have been
incorporated into other project features (e.g., Richardson and Pugh 1981; Abdel-Hamid 1984).
The assumption that all tasks are available implies that the project can be done immediately
when there are enough resources. New product development research (e.g., Clark and Fujimoto
1991; Wheelwright and Clark 1992; Ford and Sterman 1998) shows that the development
process is one of the most important aspects that constrain the availability of tasks and the new
product development cycle time.

PCRs capture the degree of concurrence of tasks and the changes in the degree of concurrence as
the task progresses. As shown in Figures 4(a) and 4(b), when Tm (upstream task) available for Tn
(downstream task) is below a certain level, PCRmn (process concurrence relationship of task m
and task n) remains zero. It will increase as more Tm becomes available. The highest point is
reached after the proportion of Tm which constrains Tn is available. PCR can be applied to any
task which is constrained by upstream tasks. The percentage of task available due to upstream
constraint is a function of the percentage of available upstream tasks in the development
processes. A variety of function forms are possible, such as linear or non-linear relationships, as
long as the differential coefficient of the function remains positive. In general strong concurrent
relationships are described by curves near the vertical axis of the relationship graph and weak
concurrent relationships are described by curves near the horizontal axis of the graph.

Tn
Available

Tm Completed
0%

100%

100%

Tm Completed
0% 100%

100%

Tm Completed

0%
100%

100%

Tm Completed
0% 100%

100%

(a) (b)

(c) (d)

Tm Completed
0% 100%

100%

(e)

Tn
Available

Tn
Available

Tn
Available

Tn
Available

Figure 4: Examples of process concurrence relationships of Tm-Tn : (a) sequential
relationship; (b) discrete concurrence relationship; (c) “lockstep” concurrence

relationship; (d) low concurrence relationship; (e) strong concurrence relationship

Figure 4 illustrates several possible PCRs. Figure 4(a) shows the PCR which also can be
illustrated by the Critical Path Method and PERT. The other figures show PCR that cannot be
described with the Critical Path method and PERT. Based on simulation, our model shows the
relationships at a high level of details by altering the shape of the function curve. For instance,
Figure 4(b) shows that the downstream task can only start until 25% of the upstream task is
available. The availability of the downstream task increases discretely according to the
percentage of upstream task information available. Figure 4(c) shows that the availability of the
downstream task increases continuously as the percentage of available upstream task information
increases. Figures 4(d) and 4(e) show the relationships in less concurrent processes and more
concurrent processes, respectively.

Rework Processes
We have discussed the simulation of the development process if there is no quality problem and
rework. What should the development process be if there are quality problems? According to our
assumption that the task is either correct or wrong, if quality problems are found, the relevant
tasks have to be redone. For example, the feed back flow from Tn to Tm in Figure 5 means that
we find quality problems at state Tn Completed. In order to solve these problems, Tm and all the
downstream tasks (Tm+1 and Tn) have to be redone. The model for the rework processes are based
on quality-related information flows and task flows, and explicitly include the discovery of the
quality problems, finding the responsible tasks, and rectification of the quality problems in the
development processes.

Feedback Information Flows
The development activities may not be perfect, causing some quality problems to fail to be
corrected. Some tasks that have quality problems can be mistakenly considered to be finished
such that wrong information gets transferred to downstream tasks. The rework information flows
arise when these problems are found at downstream task.

As shown in Figure 5, the decision point (DP) describes the time when decision of rework (DOR)
should be made. DOR represents progress reviews that determine whether to proceed to the next
task or go back to upstream tasks. If rework happens, PCR of the current task and the
downstream tasks will become zero and development activity of the downstream tasks will be
stopped. The alternatives at the DOR are tagged with probability of rework, which is determined
according to the total task completed (TTC) by that time. This means that rework probabilities
may be changed as a function of the number of times that the task has been repeated. Improved
understanding decreases the probability of iteration. This learning effect, which captures the
influence of knowledge accumulation, occurs through the dynamic updating of probability of
iteration according to TTC. Cooperation of the teams involved also affects the probability of
rework, because information exchanged by teams highlights problems before they turn into
rework. Quality information delay (QID) describes the time needed to start rework and it is
affected by the coordination efficiency between the team which find the quality problem and the
team which is responsible for the problem. All relevant completed tasks will return to
uncompleted tasks, as rework information transferred from QID to task revision (TR).

T2 Completed

Completing T2 rate

Average Completion
Duration of T2

T4 Completed
Completing T4 rate

Average Completion
Duration of T4

Process Concurrence
Relationship of T4

Process Concurrence
Relationship of T2

Effect of Process
Concurrence

Relationship on
Completing T2 rate

Decision of Rework
T4-T2

Process Concurrence
Relationship of T2-T3

T2 Uncompleted

T4 Uncompleted

Revision T4

Revision T2

Effect of Process
Concurrence

Relationship on
Completing T4 rate

Quality Information
Delay T4-T2

T4 Available for
Completion

T2 Available for
Completion

Decision Point T4
Total T4 Completed

Total T2 Completed

Process Concurrence
Relationship of T4-T6

Delay T2-T3

Delay T4-T6

Figure 5: Rework Processes

Tm

Tm

Tn-Tm

Tm

Tm

Tm

Tn-Tm
Tm

Tm

Tm

Tm-Tm+1Tm-Tm+1

Tm

Tn

Tn
Tn

Tn

Tn

Tn

Tn

Tn

Tn-Tn+1

Tn-Tn+1

Tn
Tn

Adjustment of Task Flows
Learning may take place during the iteration. Improved understanding may increase the CTr and
cooperating speed, so that the ACD should be a function of TTC, which is the sum of TC and the
integration of task flow through the TR.

The rework of upstream tasks will affect rework of all the downstream tasks. This means PCR
can affect TR. For example, if rework happens for Tm the TCm stock and PCRm(m+1) (process
concurrence relationship of task m and task m+1) will become zero. Then the change of
PCRm(m+1) will cause rework of Tm+1.

Case Background
The company where the case study was conducted is a design company which mainly develops
mobile phones. This company operates in a business-to-business market, meaning that its
customers are other companies, not end users. It develops mobile phones according to market
and technology trends, and then sells the design to customers who will in turn sell the products to
end users. The market for these products has strong time and cost pressures. In terms of product
architecture, the electronic architecture is designed on the platform by a large international
company, while the mechanical architecture and software are developed in-house.

The products analyzed in this case study were developed based on customer requirements and
the customer was involved from the beginning of the product development process. Other co-
developers in this project were tooling companies, which developed and manufactured non-
standard parts; original equipment manufacture, which assembled the mobile phones and tested
their performance; and electronics suppliers. The development processes of these products
comprise six phases:

1) Concept Development: Based on the requirements provided by the customer, the design
company defined the main features with the customer, and developed the industrial design
plan, mechanical design plan, and electronic design plan.
2) Industrial Design (ID): This stage has several sub-processes: initial design, 3D model,
rendering, checking, dummy sample and ID confirm. The customer attended the checking
process to identify quality problems related to the features and appearance of the mobile
phone.
3) Detail Design (DD): At this stage, the mechanical design, electronic design and, software
design started. Working samples were completed. Then a team from the design company
checked the mechanical and electronic performance of the working sample with customer.
4) Engineering Verification Test (EVT): Dozens of mobile phones were produced at this
stage. The mechanical prototypes were used in this stage. These products were assembled in
the design company in order to identify and solve problems related to the assemble process.
The mechanical and electronic performances were tested.
5) Pilot Run (PR): Half-way through the DD process, the project manager began to prepare
for mould fabrication. According to the quality information from EVT, the design and mould
were modified. The mobile phones were produced by a contract-manufacturing company.
Quality engineers in the manufacturing company tested product quality and provided a report
to the design company. Finally, quality problems of design, mould and production process
were solved at this stage.
6) Pilot-line Production (PP): About one thousand products were produced at this stage to

make sure that problems related to mass production were identified and addressed before the
actual mass production began.

Figure 6 shows the development process of the design company. From Figure 6, a number of
conclusions could be drawn. Firstly a lot of tasks are done outside the company, so the
cooperation among the companies may affect project cycle time; secondly most of the phases are
done by several teams belong to different companies, phase based modeling can’t explicitly
model the information flows in the product development process.

Results
The model for the case studied was built based on interviews with the project managers,
mechanical engineers and quality engineers, and detailed historical data of four projects done
from April 2003 to May 2004. The types and sources of data are listed in Table 2. All projects
are derivative product development projects, where the product platform has been established.
The data are confidential and are not replicated here exactly. For the purpose of illustration, we
multiply all the original task duration by a confidential scale. We formally model the

Operation

Outside Operation

Checking & Decision

Outside Checking &
Decision

Delay

Development
Process

Quality-related
Information Flows

C: Checking
CD: Concept Development
CTA: China Type Approval
D: Delay
DD: Detail Design
DR: Design Revision
EVT: Engineering Verification Test
FT: Field Test
FTA: Full Type Approval
ID: Industrial Design
MP: Mass Production
MMI: Man Machine Interface
PP: Pilot-line Production
PR: Pilot Run
SD: Software Design
ST: Soft Tooling

CD C C C C C

C

D

D

D

C ID DD EVT

Tooling

D

PR PP MP

DR

MMI

FTA CTA

Figure 6: Product development process of the company

DR D

SD

ST

DR

DR

FT

development process from the start point of Industrial Design to the start point of Mass
production. Although concept development is very important for NPD processes, we didn’t
model this part because of its high uncertainty nature.

 Sources
Types Interview Documents

General information
about the company

General manager; vice general
manager (market)

Project management
handbook

General information
about the development
projects in the company

Vice general manager
(Development); technical
director

Project management
handbook; quality control
procedure; standard
operation procedure

Detailed data of the 4
projects

Project managers;mechanical
engineers;quality engineers

Project progress reports;
quality reports

In order to study the usability of the model, we compared the cycle times of ten derivative
projects completed in 2004 (there are 21 projects completed in 2004 of the company studied, but
some of these are relatively novel, and some of these are not full projects) and the simulation
results of our model. We list the data from real projects and simulation runs in Table 3 and Table
4:

Project Cycle-time
(working days) Project Cycle-time

(working days)

1 198 6 184

2 159 7 163

3 163 8 164

4 152 9 171

5 158 10 165

Table 2 Project cycle-time of the projects done in the focal company

Table 4-3 Project cycle-time (working days) of the projects done in the focal company

175 175 154 196

168 168 172 150

185 173 167 174

169 162 173 193

168 151 174 175

166 174 170 168

193 176 168 160

183 172 173 172

We use independent t-test to study the difference of the cycle-time of the two populations.
Because the projects 1-4 are used to build our model, the data generated by the model should be
closely related to these projects. The other 6 independent projects are used to test our model. We
assume both populations are normal and have uniform variance. The sample mean and sample
variance of the independent projects and simulated projects are:

5.1672 =rx 73.842
2 =rs

78.171=sx 34.1112 =ss
Pooled variance 64.1072

2 =ps
Now test the hypothesis that the difference between two means sµ and 2rµ is zero (05.0=α)

0: 20 =− rsH µµ
0: 21 ≠− rsH µµ

856.0
)11(

0)(

2

2
2

2 =
+

−−
=

rs
p

rs

nn
s

xx
t , 36.. =fd

Critical regions: t<-1.689 and t>1.689
Conclusion: Results from the two populations are not statically different.

F-test is carried out to check the assumption of uniform variance for the two populations:

5,31..,314.12

2

=== fd
s
s

F
r

s

Table 4-4 Project cycle-time (working days) of 32 runs of the model

From the F-table, 50.4)5,31(95.0 =F . Hence there is insufficient evidence to reject the assumption

that the two populations have the same variance.

In order to study the influence of information flows among development teams on project
performance, we interviewed the project managers, mechanical engineers and quality engineers
related to the projects 1-4. We asked them what the task duration, development rate, rework rate,
and iteration probability would be, if all the information needed from other teams available at the
right time (The data obtained from mobile phone companies having high level of quality-related
information flows are used as reference). The data related to Current Level come from the
projects 1-4 which have serious information flow problems among design team, tooling team,
manufacturing team and testing team. Then we use these data as inputs of the model. We run the
model to study the inference of information flows on project performance. Table 5 shows the
simulation results when the information flows are improved. Ten runs were carried out for each
of the results. The last column shows the time needed to finish a project. The impacts of the
information flows related to the customers and standard part suppliers are not discussed here,
since there is no serious information flow problems exist.

Level of Quality-related
Information Flows between DC

and OEM

Level of Quality-related
Information Flows between DC

and TC

Cycle
Time

Percentage of
Improvement

Current Level Ideal Level 139.2 18.97%
Ideal Level Current Level 141.6 17.57%
Ideal Level Ideal Level 116.1 32.41%

References
Abdel-Hamid, T. K. 1984. The Dynamics of Software Development Project Management: An

Integrative System Dynamics Perspective. Doctoral thesis, MIT, Cambridge, MA.
Bhuiyan, N., D. Gerwin and V. Thomson. 2004. Simulation of the New Product Development

Process for Performance Improvement. Management Science 50(12), 1690-1703.
Brombacher, A. C. 1999. Maturity index on reliability: covering non-technical aspects of IEC

61508. reliability certification. Reliability Engineering & System Safety 66, 109–120.
Clark, K. B. and T. Fujimoto. 1991. Product Development Performance Strategy, Organization

and Management in the World Auto Industry. Boston, MA: Harvard Business School Press.
Doz, Y. and G. Hamel. 1998. Alliance Advantage: the art of Creating Value through Partnering.

Harvard Business School Press, Boston, MA.
Engardio, P. and B. Einhorn. 2005. Outsourcing Innovation. BusinessWeek Magazine March 21,

2005.
Eppinger, S. D., D. E. Whitney, R. P. Smith and D. A. Gebala. 1994. A model-based method for

organizing tasks in product development. Research in Engineering Design 6(1), 1-13.

Table 5 Simulation Results of Project Cycle Time

Ford, D. N. and J. D. Sterman. 1998. Dynamic modeling of product development processes.
System Dynamics Review 14(1), pp31-68.

Lu, Y. 2002. Analysing Reliability Problems in Concurrent Fast Product Development Processes.
Ph.D. thesis, Eindhoven University of Technology, Eindhoven.

Magee, J. F. 1992.Strategic alliances: Overcoming barriers to success. Chief Executive 81(11/12),
56-60.

McDonough III, E. F., K. B. Kahn, and G. Barczak. 2001. An investigation of the use of global,
virtual, and collocated new product development teams. Journal of Product Innovation
Management 18(2), 110-120.

Minahan, T. 1998. Platform teams pair with suppliers to drive Chrysler to better designs. Design
News, 53(10), s3-s7

Proctor, P. 1999. Boeing hones new 550-seat transport design. Aviation Week & Space
Technology 150(17), 39.

Richardson, G. P. and A. L. Pugh III. 1981. Introduction to System Dynamics Modeling with
Dynamo. Cambridge, MA: MIT Press.

Sander, P. C. and A. C. Brombacher. 1999. MIR: The use of reliability information flows as a
maturity index for quality management. Quality and Reliability Engineering International 15,
439-447.

Siemieniuch C. E. and M. Sinclair. 1999. Real-time collaboration in design engineering: an
expensive fantasy or affordable reality. Behaviour & Information Technology 18(5), 361–371.

Smith, R. P. and S. D. Eppinger. 1997. A predictive model of sequential iteration in engineering
design. Management Science 43(8), 1104-1120.

Sosa, M. E., S. D. Eppinger, M. Pich, D. G. McKendrick, and S. K. Stout. 2002. Factors that
influence technical communication in distributed product development: An empirical study in
the telecommunications industry. IEEE Transactions on Engineering Management 49(1), 45-
58.

Steward, D. 1981. The design structure matrix: A method for managing the design of complex
systems. IEEE Trans. Engineering Management, 28(3), 71-74.

Wheelwright, S. C. and K. B. Clark. 1992. Revolutionizing Product Development, Quantum
Leaps in Speed, Efficiency, and Quality. New York: The Free Press.

Williams, T., C. Eden, F. Ackerman and A. Tait. 1995. The effects of design changes and delays
on project cost. The Journal of the Operational Research Society 46, 809-818.

Zhao, Y. 2003. The Trend toward Outsourcing in New Product Development: Case Studies in
Six Firms. International Journal of Innovation Management 7(1), 51–66.

