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Abstract 

Formal model analysis tools are essential elements in understanding how structure drives behavior. 

Conventional model analysis relies heavily on a time-consuming experimental iterative process. Current 

formal tools are not mature enough for application to most models. This paper presents a loop dominance 

analysis approach based on eigenvalue elasticity analysis. Eigenvalue elasticity analysis, although a 

potentially strong formal model analysis tool, has drawn criticisms over the years for a number of reasons. 

The approach proposed in this study attempts to bring proper solutions to the issues raised by those 

criticisms. To this end, a ten-step procedure is proposed. Among the most prominent features of the 

proposed procedure is the ability to track the influences of feedback loops on a specific variable of 

interest. Others include the ability to track the loop dominance dynamics over time and an attempt to the 

codification of the proposed features of the eigenvalue elasticity analysis. Several programming codes, 

written for this purpose in mind, are presented in the paper. The application of the proposed approach is 

demonstrated using a simple economic long wave model and two other models, all chosen from earlier 

methodological studies on formal loop dominance analysis. The results of these applications also facilitate 

the comparison of the proposed approach to other formal model analysis tools. 
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formal model analysis, model structure, economic long wave. 

 

1. Background 
 
1.1. Motivation 
 
The concept of feedback in systems thinking essentially stems from the notion that endogenous sources 

are responsible for the creation of system behavior. Akin to this view, the premise of the system dynamics 

has been to bring understanding to how structure drives behavior. “Understanding model behavior” has 

claimed the first rank in a list of eight problem areas put forward as currently deserving the attention of 

system dynamics practitioners (Richardson 1996). 

 

Although the importance of structure in unfolding of model behavior is acknowledged, the formal tools to 

reveal how structure generates behavior have largely been missing in the system dynamics applications. 

The established practice in model analysis in system dynamics field is to formulate relevant hypotheses 

and to perform repeated simulations to test them. Furthermore, this experimental approach has to be 

coupled with intuition and experience on the part of the analyst in order the approach to be fruitful. The 

difficulty of carrying out this process becomes burdensome even for experienced modeler in dealing with 

complex models. While this approach is a necessary part of model analysis and probably will never be 

completely replaced it should be supported by formal analysis tools in order to increase the efficacy of the 
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existing practice. Over the years, there have been attempts towards a better understanding of structure-

behavior linkages and the formulation of formal tools for this purpose (Forrester 1982; Davidsen 1991; 

Richardson 1995; Ford 1999; Saleh 2002; Mojtahedzadeh et al. 2004; Oliva 2004). 

 

The earliest and mathematically the most rigorous of the formal model analysis tools is the eigenvalue 

elasticity analysis (Forrester 1982). This study is an attempt to advance the eigenvalue elasticity analysis 

as a methodology for tracking the dynamics of feedback loop dominance in high-order nonlinear models. 

The overall goal is to develop a theoretical and methodological framework to uncover structure-behavior 

relationships in highly complex nonlinear models. Specific objectives of the research are to determine the 

dominant behavior modes in highly nonlinear models and the contribution of models’ feedback loops to 

these dominant modes. 

 

The research holds promise of opening ways for possible theoretical developments in how certain 

feedback loops operate together to give rise to various behavior modes in nonlinear models (Güneralp 

2004). Practical contributions will be identification of parameters that play a significant role in generating 

the dynamics of a model. This improvement would lead to identification of efficient policy leverage 

points in the particular system under study. Finally, successful implementation of the proposed 

methodology on a model would increase the credibility of the model for use in policy analysis and 

decision-making practices. Accomplishment of these objectives will contribute to the analysis of complex 

nonlinear systems by providing a numerical tool to identify significant causal structures that underlie the 

dominant behavior modes in highly nonlinear systems. 

 

This paper presents the results of the first stage of the research on loop dominance dynamics. The later 

stages of the research will concentrate on the coupling of the eigenvalue elasticity analysis with the error 

analysis tools (Gertner 1987). Important objectives of this type of analysis include the identification and 

quantification of different sources of uncertainty that propagate through the model affecting model 

behavior patterns. The coupling will enable to identify the effects of parameter uncertainty on the loop 

dominance dynamics in a model. The broader impact of the research when completed will be twofold: Its 

contribution to the analysis of complex systems by bringing a new understanding to how structure drives 

behavior in nonlinear models, and by identifying the effect of parameter uncertainty on these structure-

behavior relations. 

 

1.2. Loop dominance analysis 
 
Analyzing the structure-behavior relationship in a model essentially reveals what parts (which feedback 

structures) are responsible for which behavior mode of the model and to what extent. The central theme in 

uncovering structure-behavior relations is the “dominant loop” concept. The model behavior evolves as a 

consequence of the dynamic interactions between various feedback loops of the model. As a result, the 

influence of any feedback loop at any time on the generation of model behavior may change. The most 

influential structure in determining some segment of the dynamics of a system is called dominant and the 

analysis that aims to uncover these loops is called the loop dominance analysis. 

 

Uncovering dominant feedback structures is important in a number of ways. For instance, they may assist 

in formulating principles on how certain feedback loop combinations function in concert to generate 

observed behavior patterns. Graham (1977) constitutes the first and only attempt in organizing a set of 

such principles. Recently, Güneralp (2004) presented interesting results on the structure-behavior 

relationships on a set of linear models that may also have potential implications for nonlinear systems. 

 

Loop dominance analysis has attracted the attention of a handful of system dynamics researchers. These 

studies approached the subject from different points of view. On the one hand, there are structure-oriented 
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tools such as eigenvalue elasticity analysis (EEA) and pathway participation metrics (PPM). On the other, 

there is the behavior-oriented approach of Ford (1999). 

 

Forrester (1982) is the first to lay out the foundations of the eigenvalue elasticity analysis in the system 

dynamics field. The practice consists of linearizing the model under study at any point in time, calculating 

its eigenvalues and then noting how the eigenvalues change as causal link gains change in the linearized 

model. The eigenvalues can be thought of as different behavior modes the superposition of which gives 

rise to the observed behavior of the system. Thus, EEA, by forming a connection between the model 

structure and behavior, provides a means to figure out the dominant structure in the model.  

 

The EEA approach requires identifying all feedback loops and all links they pass through in the model. If 

the model is highly complex with tens of feedback loops this procedure becomes prohibitively difficult. 

To alleviate the problem, first Kampmann (1996) then Oliva (2004) came up with techniques that allow 

for using a relatively small number of loops to determine the most influential structure in the model. 

 

The rigor in the mathematical foundations of the EEA also seems to be one of its disadvantages. The 

approach is repeatedly criticized over its reliance on abstract mathematical constructs such as eigenvalues, 

which make little sense to the less mathematically advanced. Another weakness of the approach is that it 

is conventionally used to identify dominance at the level of the model. In other words, it fails to relate the 

identified dominant structure to any selected variable of interest (Ford 1999). 

 

The most recent contribution to the loop dominance analysis has come from Saleh (2002). Saleh, besides 

introducing a new measure, called behavior pattern index to quantify the behavior pattern of a state 

variable, refined many aspects of the eigenvalue analysis including its application to nonlinear models. 

His study once more showed that the EEA is perfectly suited for application to nonlinear models. 

 

A model at its outset may contain a number of redundant substructures. The dominant behavior mode(s) 

of the system under study could also be captured without these substructures. Hence, eigenvalue analysis 

can also be used to simplify linear models by retaining selected behavior modes (Eberlein 1984). 

 

Mojtahedzadeh (1997) has proposed another mathematical tool that would aid in understanding structure-

behavior linkages. His method makes use of a pathway participation metric (PPM), a measure devised 

based on ideas first elaborated in Richardson (1995). In contrast to the EEA, which traditionally 

approaches the structure-behavior relations at the level of model, PPM adopts a minimalist approach in 

that pathways between two state variables are considered as the primary building blocks of influential 

structure. Eventually, some combinations of pathways define the most influential system structure, which 

contains a single feedback loop, in determining the behavior of a state variable at a given time interval. 

PPM stands as the only approach whose features are implemented in an experimental piece of software, 

Digest (Mojtahedzadeh et al. 2004). 

 

One criticism directed towards the PPM method is that it identifies only a single feedback loop at any 

instant to explain the behavior of a selected variable (Saleh 2002). However, there are actually many 

interacting feedback loops that are influential in generating the behavior of the selected variable at any 

time interval. 

 

Another problem about the PPM method is its somewhat myopic approach to structure-behavior 

relationship. In other words, by confining itself to a single path of dominance, the method misses what is 

going on in the rest of the model and does not capture the model-wide dynamics. It is also possible that as 

will be discussed later in the paper, PPM approach, in its current form, fails to properly reveal the causes 

of oscillatory behavior. 
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Approaching the loop dominance question from the behavioral perspective, the distinguishing feature of 

Ford’s approach is its exclusive emphasis on behavior patterns rather than the structure or system 

conditions in models (Ford 1999). The behavioral approach defines dominance with three basic behavior 

modes: linear, exponential and logarithmic. Furthermore, it identifies simultaneous dominance by 

bringing in the concepts of multiple dominance and shadow feedback structures. While suffering from the 

similar shortcomings such as the lack of automation and rigor to be applied to large scale complex models 

the behavioral approach, by adopting a different vantage point and by raising important questions 

regarding the purpose and implementation of feedback loop analysis, offers new prospects to enhance the 

potential of existing loop dominance analysis tools. 
 
2. The methodology 
 
Eigenvalue elasticity analysis was first proposed by Forrester (1982) as a method for relating the strengths 

(gains) of individual feedback loops to the behavior modes of a linear system. Forrester concentrates on 

the gains of the causal links that constitute the structure of the model. The causal structure of a linear 

model can be represented as a gain matrix (Eq. 1). Each entry in the gain matrix, which is equivalent to 

the Jacobian used in linear analysis near an equilibrium point, represents a compact net gain that 

represents the slope of the relationship between the net rate of the state variable p and the state variable q, 

i.e. the change in the net rate of the state variable p in response to a change in the level of the state 

variable q, x xp q∂ ∂� . 

 
Each eigenvalue of the gain matrix G represents an elemental behavior mode the system is capable of 

generating. These elemental behavior modes (or behavior mode, in short) that may be present in a model 

are: 
 
(a) Monotonic convergent behavior mode associated with a real negative eigenvalue; 

(b) Monotonic divergent behavior mode associated with a real positive eigenvalue; 

(c) Sustained oscillatory behavior mode associated with a complex conjugate pair of eigenvalues with 

zero real parts; 

(d) Convergent oscillatory behavior mode associated with a complex conjugate pair of eigenvalues with 

negative real parts; and 

(e) Divergent oscillatory behavior mode associated with a complex conjugate pair of eigenvalues with 

positive real parts. 
 
These five behavior modes are shown in Figure 1 in the order they are listed. For monotonic convergent 

behavior mode, the eigenvalue represents its decay rate, the reciprocal of which is the characteristic time 

constant τ of the behavior mode. Similarly, a negative real part of a complex eigenvalue pair determines 

the decay rate of an exponential envelope around the oscillations. If the real part of a complex eigenvalue 

pair is positive the oscillations will grow with time. On the other hand, the imaginary part of a complex 

eigenvalue pair determines the observed frequency of the oscillations (Franklin et al. 2002). 

 
 

 

  

 

Time Time Time Time Time 

(a) (b) (c) (d) (e) 

Figure 1. Five behavior modes of Eigenvalue Elasticity Analysis. 
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The superposition of these behavior modes gives rise to the observed behavior patterns of the model 

variables. The gains are combinations of the model variables. Therefore, a change in the value of a certain 

variable changes values of certain gains and thus modifies the behavior modes of the model (i.e. changes 

the eigenvalues of the model). This may result in an alteration of the overall model behavior. Thus, in the 

EEA, eigenvalues and eigenvectors characterize the global link between the model structure and behavior. 
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The EEA can be used for formal model analysis even when the system under study is highly nonlinear 

(Kampmann 1996, Saleh 2002). The gain matrix of a nonlinear model can be imagined as one the entries 

of which change over the simulation time due to nonlinear interactions between its elements. However, at 

sufficiently small time intervals such as the simulation time step, the entries of the gain matrix of a 

nonlinear model can be assumed to be constants. In other words, the dynamics of the original model is 

approximated through time by the behaviors of a series of linear models with varying entries in their gain 

matrices. Then the EEA can be applied to these series of gain matrices over simulation time. 

 

Eigenvalue elasticity is a convenient measure of transient-response sensitivity of the model to parameter 

changes. The elasticity values are dimensionless, so they are comparable with each other. The elasticity of 

a complex conjugate eigenvalue pair is also a complex conjugate pair. In such a case, the real part of the 

elasticity gives the effect on the exponential envelope around oscillations, while the imaginary part gives 

the effect on the empirical frequency of oscillations (Saleh 2002). The magnitude of the elasticity gives 

the overall sensitivity of the cyclic mode. In particular, causal links with large elasticities are important. If 

a small number of links have distinctly larger magnitudes than others, this indicates that they define a 

dominant subset of the model structure. Most of the time, these distinct links happen to form feedback 

loops in the model. A detailed explanation on the computation of eigenvalue elasticities is provided in 

Appendix A.1. 

 

A complete description of link elasticities allows one to calculate loop elasticities. This idea is based on a 

property of elasticity that the sum of all link elasticities arriving at a node, that is a variable in the model, 

equals the sum of all link elasticities departing that node. This allows one to set up a system of 

simultaneous linear equations the solution of which identifies the loop elasticities of the model (Forrester 

1983, Kampmann 1996). In general, the magnitude of elasticity measures the overall importance of a loop 

to a behavior mode. The magnitude can be used to rank loops according to their dominance over each 

mode. 

 

The implementation of this procedure to calculate loop elasticities becomes unreasonably difficult if the 

model consists of many feedback loops. Kampmann (1996) discovered that a small subset of loops is 

sufficient to explain the most influential substructure of a system dynamics model. However, the 

“independent loop set” obtained is not unique in most instances and making matters worse, the resulting 

structure-behavior explanations depend on the particular independent loop set. Recently, Oliva (2004) 

came up with an improvement over the “independent loop set” concept where he, drawing upon the graph 

and network theory concepts, proposes an algorithm to put feedback loops of a model in a hierarchical 

order. The algorithm produces a “shortest independent loop set (SILS)”. The number of loops identified 

this way and their length is unique. Although the SILS is not unique the SILS algorithm does generate a 
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unique outcome from a given model structure. The SILS algorithm resolves the problem of arbitrarily 

forming an independent loop set. It also eliminates the need for using somewhat complicated approaches 

such as Mason’s rule and solving the characteristic equation to directly calculate loop elasticities as 

proposed by Gonçalves et al. (2000). Although the system of equations will still be overdetermined for a 

typical-sized system dynamics model, it will be consistent and hence will yield a unique solution in terms 

of loop elasticities (Kampmann 1996). 

 

Oliva and Mojtahedzadeh (2004) has shown on a simple economic long wave model that the most 

influential loops determined by the PPM method are contained in the SILS of the model. Therefore, it is 

possible to explain the core dynamics based on the loops selected using the SILS method. However, as 

they mentioned in their paper, coupling SILS with the EEA would allow for an exploration of interacting 

feedback loops based on the simplest, most granular and intuitive loops. Therefore, the resulting analysis 

will be system-wide rather than local and based on an intuitive set of loops. This paper presents, among 

other examples, the results of and a discussion on a joint implementation of SILS and the EEA on a 

simple long wave model. 

 

As with every other loop dominance analysis tool, the EEA is still in its formative phase and because of 

this, criticisms over its implementation have not been missing in the literature (Ford 1999, Mojtahedzadeh 

et al. 2004). The problems these criticisms raise and how they are tackled in this study are explained in 

the following paragraphs. It is hoped that the proposed approach will advance the EEA as a methodology 

for tracking the dynamics of feedback loop dominance in highly nonlinear models. 

 

First, a typical application of the EEA amounts to a loop dominance analysis at the level of the model 

under study. In other words, while behavior modes and the most influential parts of the model are 

identified one could not be able to explicitly relate these findings to any state variable in the model. Saleh 

showed that it is possible to break the relative changes in net rate of any state variable at any time down to 

its constituents each of which is due to each behavior mode of the system. In this paper, it is shown that 

by further elaboration, the contribution of each behavior mode on any selected state variable can be 

quantified at any time over the simulation run. The following is a brief explanation of the approach; the 

details are presented in Appendix A. 

 

During simulation, the dominance of each behavior mode may change over time as a result of the 

dynamics among various feedback loops of the system. These changes in turn are reflected in the overall 

behavior pattern of the system. As mentioned above, the model behavior is a linear combination of all 

behavior modes represented by the eigenvalues of the system (Eq. 2). Thus the contributions of behavior 

modes on the overall behavior at any instant can be examined independently as follows.  

 

1 1 n n.. ..i iα α α= + + + +s r r r  (2) 

where s is the slope vector, ri is the right eigenvector associated with the i
th
 behavior mode, and iα  is the 

coefficient of the i
th
 behavior mode, given by 

 
( )0 i ot t

i i e
λα α −=     1...ni =         (3) 

where to is the initial time, 
0

iα  are the initial values of iα  at to and iλ  is the eigenvalue representing the 

i
th
 behavior mode. 

 
0 ( )0 0i o ot t

ip i ip i ips e r r
λα α−

= =  (4) 

( )0 i o
dt dt t

ip i ips e r
λα −

=  (5) 
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At each time step interval, Eq. 4(5) gives the portion of initial (final) slope of the state variable of interest 

p coming from the i
th
 behavior mode. The change in the state variable p due to the i

th
 behavior mode is 

then  
 

0dt

ip ip ips s s∆ = −  (6) 

 
The resulting changes in overall behavior reveal the contribution of each behavior mode on the state 

variable of interest. The comparison between the contributions of behavior modes becomes easier when 

the changes they induce are normalized by the sum of the absolute values of those changes. Then the ratio 

of the change due to that behavior mode and the sum of absolute changes gives the relative contribution 

of each behavior mode to the overall behavior of the variable of interest (Eq. 7). The rescaled changes 

vary between –1 and 1. A negative rescaled change at any time step means that behavior mode decreases 

the slope of the state variable of interest in that interval. A positive change, however, means that the 

behavior mode increases the slope of the state variable of interest in that interval. The closer the rescaled 

change is to –1 or 1, the greater the change in the slope due to that behavior mode. It is worth mentioning 

that the rescaled contribution values tell nothing about the nature of the behavior mode it belongs or that 

of the overall behavior pattern. 
 

n

1,
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m p
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c
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=
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=
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    1...ni =        (7) 

 
Second, there is the question of how dominant behavior modes play out throughout the simulation. It is 

possible that not every state variable of a model exhibits the same behavior mode. As mentioned in the 

previous paragraph, the specification of a variable of interest also addresses the issue of different 

variables simultaneously exhibiting different behavior patterns.  

 

Third, it is also possible that the behavior mode exhibited by any state variable be composed only of a 

single dominant behavior mode at all times during the simulation. There may be brief periods where the 

dominant behavior mode of a state variable changes from one behavior mode to another or even periods 

of considerable length during which more than one behavior mode dictates the behavior mode of one or 

more state variable. These situations certainly have implications on determining the dominant feedback 

structure. The conventional approach in EEA is to pick up a single behavior mode as the dominant one, 

look at which loop(s) it is most sensitive to and then claim them (those) as the dominant substructure. 

This approach, however, simply fails when there is more than a single dominant behavior mode to explain 

the behavior of the selected variable. Nevertheless, the quantification of the contribution of each behavior 

mode to the behavior exhibited by the selected state variable offers a way out. The rescaled contribution 

values of behavior mode may serve as weights for those behavior modes (Eq. 7). This way one can say, 

for example, that 60 percent of change in the state variable of interest is due to behavior mode a while the 

remaining 40 percent is due to behavior mode b at a particular time step. These values can be used as 

weights for the loop elasticities of each behavior mode for each loop in the “shortest independent loop 

set”. The resulting values would then reflect the overall influence of loops over the behavior of the state 

variable of interest at any time step: 
 

n

1

i

k i k

i

oe c e
=

=∑      1..Kk =        (8) 

where 
i

ke  is the elasticity of i
th
 behavior mode to loop k. 
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Since what we really care about is the relative importance of the feedback loops in creating the system 

dynamics it would be better if the overall loop elasticities obtained through Eq. 8 are normalized by the 

sum of their absolute values (Eq. 9). The rescaled overall loop elasticities vary between –1 and 1. A 

negative loop elasticity at any time step means that that loop drives the behavior of the state variable of 

interest overall in that interval in negative direction. A positive elasticity, however, means that the loop 

drives the behavior overall in positive direction. The closer the overall loop elasticity is to –1 or 1, the 

greater the influence of the corresponding loop. 
 

K

1

k
k

j

j

oe
re

oe
=

=

∑
      1..Kk =       (9) 

 
Fourth is the lack of automation, which remains as a stringent obstacle to widespread implementation not 

only of EEA but of other loop dominance analysis methods as well (Ford 1999, Saleh 2002). While a 

necessity, the automation issue is neither something to be resolved in any one study nor in a short period 

of time. The new tool that is presented in this study for the analysis of the structure-behavior relationship 

should therefore be seen as a humble attempt towards the full automation of EEA features. Nevertheless, 

it serves as a starting point for more advanced implementations of the methodology. For this purpose, 

several pieces of computer code have been written. A piece of code was written in C language whose 

main function is to provide the communication between the modeling/simulation software Vensim
®
 and 

MATLAB
®
 where the actual loop dominance analysis is carried out. Vensim

®
 is selected because of its 

advanced data handling capabilities. Its Monte Carlo sensitivity analysis module will also be used in the 

later stages of this research. MATLAB
®
, on the other hand, is a tool for algorithm development, data 

visualization, data analysis, and numerical computation with matrices and vectors. The pseudo-codes for 

the codified portions of the analysis are provided along with brief descriptions of their functions in 

Appendix B. 

 

3. The feedback loop dominance analysis procedure 
 

The proposed methodology is formulated as a ten-step procedure. Apart from reflecting where the EEA 

currently stands in loop dominance analysis this sequential approach is a step forward towards the 

establishment of the EEA as a formal loop dominance method. While tools to carry out some of these 

steps are available in some of the commercial SD software others still require manual labor (e.g. 

determining the pathways between state variables and the gains of those pathways). 

 

The first four steps stand as exploratory structural analysis because they amount to identifying structural 

characteristics of the system dynamics model. The remaining six steps perform on the structural layout 

produced by the previous steps and are computationally intensive. 

 

1. Identify and list all nodes (i.e. all elements except the constants and table functions) including the 

state variables (i.e. stocks) in the model. At this stage, the state variable of interest for which the 

feedback loop dominance dynamics is to be analyzed can be selected. 

2. Identify and list all causal links (except the ones that involve constants and flow-to-stock links) and 

pathways in the model. The causal links are the structural building blocks of feedback loops and a 

link elasticity is the sum of elasticities of all loops which that link is a part of. They need to be 

identified so that their elasticities will be computed and used in obtaining loop elasticities later on. 

Pathways are causal structures linking one state variable to itself or another. There may be multiple 

pathways on which a state variable interacts with itself or other state variables in a model. A pathway 
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may consist of one or more causal links and a causal link may lie on several pathways. Identification 

of these pathways allows for relating eigenvalue elasticities computed from the compact gain matrix 

G to the elasticities of causal links. 

3. Identify and list the feedback loops in the Shortest Independent Loop Set (SILS) for the model using 

the structural analysis procedure proposed by Oliva (2004). This procedure is an improvement over 

Kampmann’s independent loop set concept in the sense that it greatly reduces the subjectivity in the 

selection of loops that form the most granular yet comprehensive representation of the model 

structure. Interested readers are referred to Oliva (2004) for the details of the SILS procedure. 

4. Form the gain matrix, which represents the links between state variables in their most compact form. 

The pathways linking the state variable pairs can be aggregated into single links. The gains of these 

composite links are the elements of the gain matrix. In linear models, the equations for these 

composite gains are fairly simple and the values they attain are constant; in nonlinear models, 

however, they may get quite complicated and their values change over time. This amounts to writing 

down the model equations and taking the partial derivatives with respect to each state variable. 

5. Simulate the model and read the gain matrix, pathway gains, net flows of state variables over time 

from Vensim into MATLAB. Vensim has built-in functions that allow for exporting simulation 

output out to be used by other software. A C code was written which reads data necessary for the 

analysis from Vensim and transfer to MATLAB where most of the rest of the analysis is performed. 

6. Determine the characteristics of all elemental behavior modes of the system and the contribution of 

each behavior mode to the behavior of the state variable of interest. The identification of behavior 

modes of the system amounts to the computation of the eigenvalues and eigenvectors of the model at 

each analysis time step. The contribution of each behavior mode at any time step can be determined 

by sequentially deactivating all but one of the behavior modes and noting the change in the slope 

vector of the selected variable between consecutive time steps. After a suitable rescaling so that they 

take on values between –1 and 1, they serve as the weights of the behavior modes that constitute the 

overall behavior mode of the selected variable for the concerned time interval. As with the rest of the 

analysis this is repeated at every time step. See Appendix A.1 for a detailed discussion and Appendix 

B.2 for the pseudo-code of an algorithm that does the relevant computations for third-order models. 

7. Compute the elasticities of behavior modes (eigenvalues) with respect to the compact links in the gain 

matrix. For a detailed explanation and the corresponding equation, Eq. A.9, see Appendix A.1. The 

pseudo-code of the algorithm that does these computations is given in Appendix B.3. 

8. Compute the eigenvalue elasticities with respect to each causal link selected in Step 2. For a detailed 

explanation and the corresponding equation, Eq. A.10, see Appendix A.1. The pseudo-code of the 

relevant algorithm is given in Appendix B.4. The algorithm is modified for the analysis of a simple 

long wave model. 

9. Using the links identified in Step 2 and the loops in SILS, form the directed cycle matrix. Directed 

cycle matrix is a notion borrowed from the graph theory in mathematics and is used to present the 

information on which cycles (loops) are formed by which links in matrix form. The rows in a directed 

cycle matrix are links, and the columns are loops where the element dij of the matrix is 1 if link i is an 

element of loop j and 0 otherwise. The loop elasticities are related to the link elasticities through the 

directed cycle matrix (Appendix A.2). The matrix will most surely be overdetermined for almost any 

system dynamics model. Nevertheless, its rank will be equal to the number of columns, thus will 

always have a unique solution (Kampmann 1996). 

10. Compute and plot the overall loop elasticity values over time and evaluate the findings. Having 

determined the loop elasticities in Step 9, the overall loop elasticity of any loop can be computed by 

multiplying that loop’s elasticity for each eigenvalue by the corresponding eigenvalue contribution 

weight (see Step 6) and rescaling between –1 and 1. The resulting loop elasticity values are plotted 

over time, which enables visualizing the evolution of loop dominance dynamics acting upon the 
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selected model variable over time. The pseudo-code of the algorithm that does the computations of 

this step for the simple long wave example is given in Appendix B.4. 

 

4. Application of the proposed methodology 

 

The application of the proposed methodology is illustrated using three models selected based on the 

criteria that they should come from earlier methodological loop dominance studies and would give the 

most insight (which also happened to come from the most recent studies) on the potential of the EEA 

approach. A system story will be weaved around the findings of each model’s analysis. This will result in 

coherent, dynamically correct explanations of how certain parts of the system structure create observed 

patterns of the system behavior as advocated by Mojtahedzadeh et al. 2004. In addition, comparisons with 

earlier approaches will be presented. The model variable names are in italics in the text. The equations of 

the models used as examples are given in Appendix C. 

 

Yeast Population model 
 

This is a simple second-order nonlinear model of yeast population dynamics. It is previously used in the 

loop dominance analysis context by Saleh (2002). The stock-flow diagram is presented in Figure 2. The 

model provides a classical example of overshoot-then-collapse dynamics. 

 

Cells

Alcohol

births deaths

alcoholgeneration

divisiontime lifetime

eff alc birth eff alc death

alcoholperc

ellgeneration

L1 L2

L3 L4

 

Figure 2. Stock-flow diagram of Yeast model. 

 

1. Identify and list all nodes and choose the state variable of interest. 

There are eight nodes in the model: Cells, Alcohol, births, deaths, alcoholgeneration, 

alcoholpercellgeneration, eff alc birth, and eff alc death. Cells is chosen as the state variable of interest. 

 

2. Identify and list all causal links (except the ones that involve constants and flow-to-stock links) and 

pathways in the model. 

There are seven such causal links in the model and they are listed in Table 1. 
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Table 1. Causal links of Yeast model relevant to the analysis. 

 Link no. Variable sequence 

 1 Alcohol – eff alc birth 

 2 Alcohol – eff alc death 

 3 Cells – alcoholgeneration 

 4 Cells – births 

 5 Cells – deaths 

 6 eff alc birth – births 

 7 eff alc death – deaths 

 

There are two pathways from Cells to itself, one pathway from Cells to Alcohol and two from Alcohol to 

Cells (Table 2). 

 

Table 2. Pathways in Yeast model. 

 Pathway no. Variable sequence 

 1 Cells, births, Cells 

 2 Cells, deaths, Cells 

 3 Cells, alcoholgeneration, Alcohol 

 4 Alcohol, eff alc birth, births, Cells 

 5 Alcohol, eff alc death, deaths, Cells 

 

3. Identify and list the feedback loops in the Shortest Independent Loop Set (SILS). 

The loops in the SILS of Yeast model are listed in Table 3. 

 

Table 3. Feedback loops in the Shortest Independent Loop Set of Yeast model. 

 Loop no. Variable sequence 

 L1 Cells, births 

 L2 Cells, deaths 

 L3 Alcohol, eff alc birth, births, Cells, alcoholgeneration 

 L4 Alcohol, eff alc death, deaths, Cells, alcoholgeneration 

 

4. Form the gain matrix, which represents the links between state variables in their most compact form. 

The model is a second-order nonlinear one. Therefore, the dimensions of its gain matrix are 2×2 and the 

elements of the matrix change continuously over time. The matrix and the partial derivatives are in Eq. 10 

and Eq. 11, respectively. The first and second terms in Eq. 11.a are the gains of the Pathways 1 and 2 

respectively. Similarly, the first and second terms in Eq. 11.b are the gains of the Pathways 4 and 5 

respectively. The partial derivative in Eq. 11.c equals the gain of Pathway 3. 
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.
∂ =

∂
 (11.a) 

 

( ) ( )Cells Cells -eff alc death*Cells-0.1 +
Alcohol divisiontime lifetime

.
∂ = ∗

∂
 (11.b) 

 

Alcohol alcoholpercellgeneration
Cells

.
∂ =

∂
 (11.c) 

 

Alcohol 0
Alcohol

.
∂ =

∂
 (11.d) 

 

5. Simulate the model and read the gain matrix, pathway gains, net flows of state variables over time. 

The behavior of the variable of interest over 90 minutes is shown in Figure 3. The yeast cells grow at a 

fast rate during the initial phases of the simulation but then as more and more alcohol accumulates in the 

environment eventually they are wiped out after an even faster decline; thus the overshoot-then-collapse 

dynamics. The data required to further the analysis is read from Vensim and transferred into MATLAB 

using the main function whose pseudo-code is in Appendix B.1. 

 

 

Figure 3. Reference behavior of state variable of interest, Cells. 
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6. Determine the characteristics of all elemental behavior modes of the system and the contribution of 

each behavior mode to the behavior of the state variable of interest. 

The behavior modes that are present at any time step and their relative contributions (weights) to the 

overall behavior of the variable of interest are provided on Figure 4. The evolution of these behavior 

modes over time is shown in Figure C.1 of Appendix C.1. 

 

 

Figure 4. Rescaled contributions of behavior modes on behavior of state variable of interest, Cells. 
 

7. Compute the eigenvalue elasticities with respect to compact links in the gain matrix. 

The elasticity of each behavior mode is in matrix form as shown in Figure 5. For brevity, the graphs for 

the elasticities are not shown. 
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(a) (b) (c) 

Figure 5. Elasticity matrices for two real eigenvalues (a and b) and complex pair (c). 

 

8. Compute the eigenvalue elasticities with respect to each causal link. 

The set of equations that gives the elasticities with respect to each causal link are listed below. For 

brevity, the graphs for the link elasticities are not shown. 
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where gpq is the gain of compact link from state variable q to p, gpq,pathway i is the gain of pathway i from 

state variable q to p, and epq is the elasticity to compact link from state variable q to p. The superscripts 

that identify eigenvalues are omitted for clarity. 

 

9. Using the links identified in Step 3 and the loops in SILS form the directed cycle matrix. 

The directed cycle matrix for this model is given in Figure 6. It is a 7×4 matrix and its rank equals 4, the 

number of loops on the SILS. 

 

 L1 L2 L3 L4 

cl1 0 0 1 0 

cl2 0 0 0 1 

cl3 0 0 1 1 

cl4 1 0 0 0 

cl5 0 1 0 0 

cl6 0 0 1 0 

cl7 0 0 0 1 

Figure 6. Directed cycle matrix of Yeast model. 

 

10. Compute and plot the overall loop elasticity values over time and evaluate the findings. 

The overall loop elasticities are computed and resulting loop dominance dynamics are shown in Figure 7. 

 

 

Figure 7. Evolution of loop dominance dynamics for Yeast model over time. 

 

The dynamics that give rise to the well-known overshoot-then-collapse behavior in this particular case is 

beautifully revealed by the loop dominance analysis. One important distinction of this analysis from the 

one presented in Saleh (2002) is that the analysis in the latter study was done for only four time steps. 

Each of these time steps is picked arbitrarily from each period during which different behavior modes are 

dominant (Figure 4). In contrast, the analysis presented above is truly continuous in time. 
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Nevertheless, the findings of the two study are in agreement except the third analysis time step at t = 70 of 

Saleh (2002)
1
. First of all, both studies identify four phases of model behavior each characterized by 

distinct behavior modes: Exponential growth, diverging oscillatory, converging oscillatory, and 

exponential decay behaviors (See Figure 4 and Figure C.1). 

 

As for the loop dominance dynamics the two studies identify the same loops as dominant except the 

discrepancy mentioned in the previous paragraph. While loop L1 is dominant during the exponential 

growth phase loops L1 and L3 are co-dominant during the divergent oscillation phase. The important 

point is that from the rescaled dominance graph it is not possible to differentiate which loop supports the 

divergent mode. Close examination of elasticities reveals that loop L1 supports the divergent mode while 

loop L3 has a restraining effect. During the second phase, loop L1 is mainly responsible for the expansion 

of the envelope (i.e. its elasticity is substantially high only for the real part) while loop L3 generates the 

oscillations (i.e. its elasticity is nonzero only for the imaginary part) although not as strong as loop L1. 
 
At minute 65.5, the real part becomes negative, oscillatory mode becomes converging and we pass onto 

the third phase (Figure C.1). The corresponding elasticity values of the loops change sign accordingly. 

These loops are L1 and L2 since loop L3 and loop L4 are only responsible for the generation of the cyclic 

pattern. This makes sense because loop L3 and loop L4 are major loops, in other words pathways for the 

propagation of disturbances from one state variable to another
2
. Until this point, loop L3 has lost its 

influence giving way to loop L4; loops L1 and L2 are of equal importance though now the elasticity of the 

first is negative, that of the latter is positive. At minute 68.87, gain of loop L1 becomes negative and 

hence its elasticity becomes positive but by now loop L2 has become the most influential loop on the 

convergence of the exponential envelope. The influence of loop L4 is also increasing but it is still smaller 

than that of loop L2. 
 
At minute 77.9, the complex conjugate eigenvalue pair bifurcates and two real and negative eigenvalues 

emerge, hence the fourth phase: the exponential decay. The elasticities of loops L1 and L2 are positive for 

the larger eigenvalue, negative for the smaller. It is the opposite for loops L3 and L4. However, in terms 

of magnitude loops L2 and L4 have the two largest elasticities. Towards the end of the simulation loop L2 

becomes completely dominant while the resistance of loop L4 gradually dies away. 
 
The application of the proposed methodology in this simple example enabled showing how loop 

dynamics evolve over time for a second-order nonlinear model. In addition, this allows tracking the 

continuous change in relative influence of loops in SILS. Another improvement is the fact that a variable 

of interest, that is Cells, is specified and the loop dominance analysis is done for that variable. This is 

important since the EEA is often critiqued for being too general in its conclusions meaning that the 

resulting dominant loops could not be associated with a particular variable of interest in the model. Last 

but not the least, using the contributions of behavior modes on the overall behavior of the variable of 

interest as weights for the loop elasticities for each of these behavior modes is something new and the 

preliminary results are promising. 

 

An example with nonlinear oscillations (A Predator-Prey model) 
 

This example is another second-order nonlinear system known as Lotka-Volterra model. It is used by 

Mojtahedzadeh (1997) to illustrate the application of PPM approach on a nonlinear oscillatory model; 

thus the following analysis not only illustrates the application of the proposed methodology on a model 

                                                 
1
 The discrepancy is apparently caused by a slight computational error in Saleh (2002). 

2
 This observation is in line with the one stated in Güneralp (2004): In a second-order oscillatory system with one 

major and two minor loops, the negative-polarity major loop is only responsible for the imaginary part whereas the 

minor loops are mainly responsible for the real part and reduce only slightly the frequency of oscillations. 
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with sustained nonlinear oscillatory dynamics but it also provides an opportunity to compare the two 

approaches. The stock-flow diagram is presented in Figure 8. 

 

Prey

Predator

prey birth prey death

predator birth predator death

L1

L2

L3

L4

L5

prey birth
rate prey interaction

constant

predator interaction

constant
predator death

rate

 

Figure 8. Stock-flow diagram of Predator-Prey model. 

 

1. Identify and list all nodes and choose the state variable of interest. 

There are six nodes in the model: Predator, predator birth, predator death, Prey, prey birth, and prey 

death. Prey is chosen as the state variable of interest. 

 

2. Identify and list all causal links (except the ones that involve constants and flow-to-stock links) and 

pathways in the model. 

There are six such causal links in the model and they are given in Table 4. 

 

Table 4. Causal links of Predator-Prey model relevant to the analysis. 

 Link no. Variable sequence 

 1 Prey – prey birth 

 2 Prey – prey death 

 3 Prey – predator birth 

 4 Predator – predator birth 

 5 Predator – predator death 

 6 Predator – prey death 

 

There are a total of six pathways: Two pathways from Prey to itself, two from Predator to itself, one from 

Prey to Predator and one from Predator to Prey (Table5). 
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Table 5. Pathways in Predator-Prey model. 

 Pathway no. Variable sequence 

 1 Prey, prey birth, Prey 

 2 Prey, prey death, Prey 

 3 Predator, predator birth, Predator 

 4 Predator, predator death, Predator 

 5 Predator, prey death, Prey 

 6 Prey, predator birth, Predator 

 

3. Identify and list the feedback loops in the Shortest Independent Loop Set (SILS)
3
. 

The loops in the SILS of Predator-Prey model are listed in Table 6. 

 

Table 6. Feedback loops in the Shortest Independent Loop Set of Predator-Prey model. 

 Loop no. Variable sequence 

 L1 Prey, prey birth 

 L2 Prey, prey death 

 L3 Predator, predator birth 

 L4 Predator, predator death 

 L5 Predator, prey death, Prey, predator birth 

 

4. Form the gain matrix, which represents the links between state variables in their most compact form. 

The model is a second-order nonlinear one. Therefore, the dimensions of its gain matrix are 2×2 and the 

elements of the matrix change continuously over time. The matrix and the partial derivatives are shown 

below: 

 

Prey Prey
Prey Predator

Predator Predator
Prey Predator

. .

. .predator prey−

∂ ∂
∂ ∂

∂ ∂
∂ ∂

 
 
 =
 
 
 

G  (13) 

 

( )Prey
prey birth rate + -prey interaction constant Predator

Prey

.
∂

= ∗
∂

 (14a) 

 

                                                 
3
 For an alternative stock-flow representation of this model, SILS procedure identified only the first four loops 

leaving out the major loop connecting the two stocks. The alternative representation is given in Figure C.2 of 

Appendix C.2. Without the major loop the two stocks would be decoupled and there would not be a predator-prey 

system. This fact and the following analysis illustrate that it is actually an essential loop for the system to oscillate 

not to mention to exist as it is. Although this is a low-order system it gives sufficient reason to further scrutinize the 

SILS approach with high-order systems. This example should be regarded as a warning against the faith-based 

application of the SILS approach –or of any method for that matter. 



 18

Prey
-prey interaction constant Prey

Predator

.
∂

= ∗
∂

 (14b) 

 

.
Predator predator interaction constant Predator

Prey
∂ = ∗

∂
 (14c) 

 

Predator predator interaction constant Prey predator death rate
Predator

.
∂ ∗ −

∂
=  (14d) 

 

5. Simulate the model and read the gain matrix, pathway gains, net flows of state variables over time. 

The behavior of the variable of interest over 60 months is shown in Figure 9. Because the oscillations are 

sustained, the following analysis is conducted over a period of 30 months, which is approximately the 

period of oscillations. 

 

 

Figure 9. Reference behavior of state variable of interest, Prey. 

 

6. Determine the characteristics of all elemental behavior modes of the system and the contribution of 

each behavior mode to the behavior of the state variable of interest. 

The only behavior mode for this model is sustained oscillations, which is reflected in the complex 

eigenvalue pair of the gain matrix. However, these oscillations are different in nature than the elemental 

sustained oscillatory behavior mode in the sense that the first are caused by the nonlinear mechanism in 

the system. Although there is only one complex eigenvalue pair the real and imaginary parts continuously 

change over time (in fact they oscillate too) because of the nonlinearity in the model. These oscillatory 

changes in the real and imaginary parts of the eigenvalue pair are the cause of the observed sustained 

oscillations. Since there is only one complex eigenvalue pair of the model at any time there is no point in 

calculating the contribution weight, which is obviously one. The figure that shows how the exponential 

envelope and the frequency of the oscillations (associated with the real and imaginary parts of the 

complex conjugate eigenvalue pair, respectively) evolve over time, is given in Figure C.3 of Appendix 

C.2. 
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7. Compute the eigenvalue elasticities with respect to compact links in the gain matrix. 

The elasticity of each behavior mode is in matrix form as shown in Figure 10. For brevity, the graphs for 

the elasticities are not shown. 
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Figure 10. Elasticity matrices for real (a) and imaginary (b) parts of complex eigenvalue pair. 

 

8. Compute the eigenvalue elasticities with respect to each causal link. 

The set of equations that gives the elasticities with respect to each causal link are listed below. For 

brevity, the graphs for the link elasticities are not shown. 
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9. Using the links identified in Step 3 and the loops in SILS form the directed cycle matrix. 

The directed cycle matrix for this model is given in Figure 11. It is a 6×5 matrix and its rank equals 5, the 

number of loops on SILS. 

 

 L1 L2 L3 L4 L5 

cl1 1 0 0 0 0 

cl2 0 1 0 0 0 

cl3 0 0 0 0 1 

cl4 0 0 1 0 0 

cl5 0 0 0 1 0 

cl6 0 0 0 0 1 

Figure 11. Directed cycle matrix of Predator-Prey model. 

 

10. Compute and plot the overall loop elasticity values over time and evaluate the findings. 

The overall loop elasticities are computed and resulting loop dominance dynamics impacting the 

exponential envelope and the observed frequency of oscillations are shown in Figure 12. The loop 

dominance dynamics impacting the oscillatory behavior as a whole are shown in Figure 13. 
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(a) (b) 

Figure 12. Evolution of loop dominance dynamics for exponential envelope (a) and for frequency of 

oscillations (b) of Prey behavior over time. 

 

 

Figure 13. Evolution of loop dominance dynamics for overall behavior of Prey over time. 

 

The results of the analysis show how the nature of the sustained oscillations in this nonlinear system 

differs from the nature of those in linear systems. The oscillations are indeed sustained but this is not 

because the exponential envelope is non-existent (i.e. real part of the eigenvalue pair is zero) but because 

the exponential envelope keeps changing due to the nonlinearity in the model (Figure C.3).
4
 The 

exponential envelope is a diverging one during two segments of the period of oscillations. The first of the 

two segments is between months 0 and approximately 6.80 and the second is between months 20.5 and 

30. Between these two segments the exponential envelope is contracting (Figure C.3). Figure 12a shows 

that both minor birth loops, that is, loops L1 and L3 support the diverging exponential envelope but resist 

when it is in the contracting phase. In contrast, both minor death loops, that is, loops L2 and L4 support 

the contracting envelope but resist when it is in the divergent phase. In addition, it is worth noting that the 

major loop L5 plays no role over the exponential envelope. 

                                                 
4
 The nonlinearity is a simple multiplication of the two state variables reflecting the interaction of the two species 

(See Appendix C.2 for the model equations). 
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The frequency of oscillations too changes over time (Figure C.3). The major loop L5 is virtually the only 

responsible structural piece for the frequency for almost the whole period (Figure 12.b). The elasticities of 

the prey birth loop L1 and the predator death loop L4 are positive (potentially leading to higher frequency 

of oscillations) for almost half the period and negative (potentially leading to lower frequency) for the 

rest. The picture is the opposite for the prey death loop L2 and the predator birth loop L3. The minor death 

loop L2 is, however, at least as influential as the major loop around month 20 (Figure 12b). 

 

A word of caution in interpreting loop dominance graphs is in order. In Figure 13, although the two minor 

loops, that is the loops L1 and L2, associated with the state variable Prey seems to be the most dominant 

pair, actually their influences are opposite to each other as revealed in Figure 12a
5
. Because of this and 

the fact that they act upon the same state variable (i.e. stock), their opposite influences actually cancel out 

each other when their magnitudes are approximately equal. This is, of course, valid for the minor loops of 

the state variable Predator too. Thus, the actual influence of minor loops on the behavior of variable of 

interest is in fact revealed by the sum of the influences of minor loops with a common state variable. 

Accordingly, at any analysis time step, if the sum of the influences of the minor loops of Prey(Predator) 

is larger then the sum of the influences of the minor loops of Predator(Prey) then the minor loop of 

Prey(Predator) with the larger magnitude is the dominant loop at that time step. The time segments 

during each of which a different minor loop of the model is dominant are shown on Figures 9 and 13. 

Thus the minor prey birth loop L1, the minor predator birth loop L3, the minor prey death loop L2 and the 

minor predator death loop L4 are each dominant during the fast growth, peaking, slowing decline, and 

grounding phases, respectively. It is worth noting, though, that the shifts in dominance between these 

loops are not instantaneous but gradual. 

 

The above explanation is almost totally in agreement with the one based on the PPM analysis 

(Mojtahedzadeh 1997). The only disagreement may stem from the interpretation of the role of the major 

loop L5. According to the PPM analysis the major loop plays relatively less significant role. The 

significance of its role is actually high, but it becomes evident only when the influences of each loop on 

the frequency of oscillations (i.e. the imaginary part of the eigenvalue pair) are plotted (Figure 12b). This 

fact, however, is not revealed with the PPM approach. It must be emphasized that the oscillations would 

not occur at all if there were no such loop that connects the two stocks (Figure 12b). The major loop's 

overall influence is not prominent compared to the minor loops (see Figure 13) but here the situation is 

certainly not as simple as that by the fact that the minor loops would not function as they do now without 

the presence of a major loop. 

 

Another difference between the EEA and the PPM approaches is that the first gives a more complete 

picture in the sense that one is able to trace the gradual shifts in loop dominance through simulation and 

at the same time observe the relative influences of each loop on the behavior of variable of interest. 

 

On the other hand, this example also shows that one needs to be careful in interpreting the results of the 

EEA. The overall loop elasticity of the oscillatory behavior does not give much detail on how model 

structure generates the behavior (Figure 13). One needs to consider the elasticities of the components of 

the behavior (i.e. the exponential envelope and the frequency) separately in order to reach a better 

understanding of the structure-behavior dynamics. Furthermore, the relations of loops with each other 

also need to be considered. Once again, the formal methods should not be regarded as magical devises 

that reveal all that needs to be known automatically but as tools that merely help to get a better 

understanding of the dynamics of systems under study. 

 

                                                 
5
 Recall that the magnitude of the complex elasticity value gives the overall elasticity of the oscillatory behavior; 

hence, the non-negative loop elasticities in Figure 13. 
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A simple model of Economic Long Wave 
 
The proposed methodology is also applied to a simple long wave model (Sterman 1985). The model is 

chosen for a number of reasons. First it is widely known and therefore serves as a suitable test for the 

proposed methodology. Second, although it has a relatively simple structure it is capable of generating 

complicated dynamics because of the nonlinearities. Third, it was recently used in a concurrent 

application of SILS and PPM approaches (Oliva and Mojtahedzadeh 2004). Therefore, it would be 

interesting to see how the results of a joint application of SILS and the EEA compare to the findings of 

that study. Finally, the model is also used by Kampmann (1996) and Ford (1999) to illustrate the 

applications of their approaches. Thus, the application of the EEA on the long wave will also provide an 

opportunity to compare the proposed approach with the Ford’s behavioral approach. It is assumed that the 

reader is already familiar with the model. The details of the model and its dynamics can be found in 

Sterman (1985). The stock-flow diagram is presented in Figure 14. 
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Figure 14. Stock-flow diagram of a simple Long Wave model. 

 

1. Identify and list all nodes and choose the state variable of interest. 

There are nineteen nodes in the model. The list of the nodes is in Table C.1 in Appendix C.3. Capital is 

chosen as the state variable of interest. 

 

2. Identify and list all causal links (except the ones that involve constants and flow-to-stock links) and 

pathways in the model. 

There are twenty-six such causal links in the model and they are listed in Figure C.4 in Appendix C.3. 

 

There are thirty-six pathways between the state variables. The pathways originating from Capital, Supply 

and Backlog are listed in Tables C.2-4, respectively, in Appendix C.3. 
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3. Identify and list the feedback loops in the Shortest Independent Loop Set (SILS). 

There are sixteen loops in the set (Note that 34 {the total number of links} – 19 {total number of nodes} + 

1 = 16. See Appendix A.2 for a brief discussion on this relationship). The loops are listed in Table C.5 in 

Appendix C.3. The loops are also shown on the stock-flow diagram in Figure 14. The numbers of loops 

that are most influential at one time or another during the simulation are printed with a larger font on the 

figure. In addition, the corresponding pathways are depicted with thicker lines. 

 

4. Form the gain matrix, which represents the links between state variables in their most compact form. 

The model is a third-order nonlinear one. Therefore, the dimensions of its gain matrix are 3×3 and the 

elements of the matrix change continuously over time. The form of the matrix is shown in Eq. 13. The 

partial derivative equations are given in Eqs. C.1-9 in Appendix C.3. 
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5. Simulate the model and read the gain matrix, pathway gains, net flows of state variables over time. 

The behavior of the variable of interest Capital is sustained oscillations with a period of about 45 years 

(Figure 15). Therefore, the following analysis is conducted over a period of 46 years from year 136 to 

182. 

 

 

Figure 15. Reference behavior of state variable of interest, Capital. 

 

6. Determine the characteristics of all elemental behavior modes of the system and the contribution of 

each behavior mode to the behavior of the state variable of interest. 

Like the Predator-Prey model, the observed behavior for this model is sustained oscillations. However, 

the oscillations in the long wave are not caused by a single complex conjugate eigenvalue pair. Rather, 

the oscillatory behavior is composed of various different behavior modes each of which becomes 
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gradually dominant for certain time segments of the simulation (Figure C.5 and Figure 18.a). There are 

five distinct segments in a period; hence, the long-wave cycle will be divided into five phases similar to 

the segmentation of the model behavior in Kampmann (1996).
6
 These phases in sequential order are 

1.“self-order initiation”, 2.“capital growth”, 3.“capital deceleration”, 4.“capital peak-then-decline”, and 

5.“capital depreciation”. They are also shown on the behavior of Capital on Figure 15. 

 

 

Figure 16. Rescaled contributions of behavior modes on behavior of state variable of interest, Capital. 
 

The relative contributions (weights) of the behavior modes that are present at any time step to the overall 

behavior of the variable of interest are provided on Figure 16. The behavior modes corresponding to each 

phase are listed in Table 7. The evolution of these behavior modes over time is shown in Figure C.5. Note 

that there are three convergent behavior modes in the beginning. Two of these modes disappear right after 

year 138. At the same time, an oscillatory mode, which is initially almost instantaneously converging then 

for the rest of the phase diverging, emerges (due to the coalescence of the two real positive eigenvalues to 

give birth to a complex eigenvalue pair) and the “self-order initiation” phase begins. Then oscillatory 

mode gives way to two behavior modes around year 142 (a consequence of the bifurcation of the complex 

pair to two real negative eigenvalues) and the “capital growth” phase is initiated. One of these behavior 

modes is divergent throughout the second phase while the other is convergent for most of the phase 

except the beginning and ending of the phase. Towards year 150 these two behavior modes disappear. 

They are replaced by another divergent oscillatory mode, which heralds the beginning of the “capital 

deceleration” phase. Around year 152, the system enters the “capital peak-then-decline” phase when this 

oscillatory mode too gives way to two convergent behavior modes. The fourth phase, lasts until about 

year 157 and the dominant behavior mode is the one with a time constant that varies from about 6 years to 

1 year during the phase. However, after a short transitional period the convergent behavior mode with the 

time constant of about 20 years becomes dominant; hence, the final “capital depreciation” phase. 

 

                                                 
6
 Kampmann divided the long wave into four segments based on a visual inspection of the model behavior and the 

changes in eigenvalues. However, calculating the contribution of each eigenvalue in this study reveals that there are 

actually five distinct phases of the long wave. 
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Table 7. Behavior modes present in each phase of the long wave. 

 Phase no. Phase name Behavior modes 

 1 Self-order initiation One divergent oscillatory, one convergent mode 

 2 Capital growth One divergent, two convergent modes 

 3 Capital deceleration One divergent oscillatory, one convergent mode 

 4 Capital peak-then-decline Three convergent modes 

 5 Capital depreciation Three convergent modes 
 
7. Compute the eigenvalue elasticities with respect to compact links in the gain matrix. 

The elasticity of each behavior mode is in matrix form as shown in Figure 17. For brevity, the graphs for 

the elasticities are not shown. 
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Figure 17. Elasticity matrices for three real eigenvalues (a, b, and c) and complex pair (d). 
 
8. Compute the eigenvalue elasticities with respect to each causal link. 

The set of equations that gives the elasticities with respect to each causal link are given in Eqs. C.10-35 in 

Appendix C.3. For brevity, the graphs for the link elasticities are not shown. 

 

9. Using the links identified in Step 3 and the loops in SILS form the directed cycle matrix. 

The directed cycle matrix for this model is given in Figure C.4. It is a 16×26 matrix and its rank equals 

16, the number of loops on the SILS. 
 
10. Compute and plot the overall loop elasticity values over time and evaluate the findings. 

The overall loop elasticities are computed and resulting loop dominance dynamics impacting the 

exponential envelope and the observed frequency of oscillations over a whole cycle are shown in Figure 

18.a. The loop dominance dynamics over each phase are given in Figures 18.b-f in sequential order. 
 
As the last phase of the previous cycle gives way to the first phase of the next cycle the capacity falls 

below orders. At this early stage of the self-order initiation phase, the Supply first-order control loop (L2) 

becomes dominant briefly. The reason is that self-ordering mechanism begins to work and increases 

Supply stock. However, acquisitions do not rise fast enough for capacity to catch up with orders and this 

loop quickly loses its influence; the Capital self-ordering loop (L14) becomes the most dominant. After a 

brief period during which there is no markedly dominant loop the first phase ends (Figure 18.b). The 

previous analyses identify the importance of the self-ordering loop in this phase but none of them 

identifies the role played by the Supply first order control loop in the beginning (Kampmann 1996, Ford 

1999, Oliva and Mojtahedzadeh 2004). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 18. Evolution of loop dominance dynamics for a whole cycle (a) and for phase 1 (b), 2 (c), 3 (d), 4 

(e), and 5 (f) of Capital over time. 
 
The capital growth phase is driven by the Capital expansion (L5) loop. In addition, the Economic growth 

(L3) and the Order fulfillment (L8) loops have relatively large positive elasticities and hence they are also 

important in creating the behavior of Capital. The influences of these loops are countered to a certain 

extend by the Supply first order control (L2), the Capital decay (L1), and the Backlog expansion (L6) 
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loops. Nevertheless, their combined effect is not enough to match that of the loops with positive 

elasticities and Capital continues to increase exponentially during this phase. The Capital self-ordering 

loop, however, becomes completely dormant. In addition, the capacity utilization is at its maximum 

effectively keeping the first-order Production scheduling (L4) loop in check (Figure 18.c). This 

explanation regarding the importance of the Capital expansion and the economic growth loops agrees 

with that of Kampmann. However, the two do not agree in the details, the reason probably being that the 

loop sets used in the two studies are not exactly the same. Interestingly, in his comparative analysis, Ford 

confirms that the loop L3 is dominant but concludes that the loop L5 is not. He does not consider other 

influential loops such as the overtime loop (the Production scheduling loop in this study) as mentioned in 

Kampmann. This phase corresponds to the phases II, III, and IV in Oliva and Mojtahedzadeh (2004) 

where they identify the Supply first-order control, the Capital expansion, and the Economic growth loops, 

respectively, as the most influential structures. Their most influential structures agree with the ones 

identified in this analysis. Nevertheless, different from the above analysis, they identify a single dominant 

structure at each phase, a characteristic of the PPM approach. Another difference is that the loops 

identified as the most influential structures in this study continue to be so throughout the second phase, 

which is chopped into three more phases each dominated by another loop in Oliva and Mojtahedzadeh 

(2004). 
 
At the third, capital deceleration phase the net rate of increase in Capital slows down and even begins to 

decrease towards the end of the phase. At the start of the phase, the relatively stronger influences of 

Backlog expansion (L6) and Self-ordering (L14) loops can be distinguished. Then Self-ordering loop 

becomes the most influential one but looses its influence towards the end of the phase. In contrast, the 

influences of Supply first-order, Order fulfillment, Economic growth and Production scheduling loops 

show increase (Figure 18.d). This corresponds to the beginning of the decrease in the rate of increase in 

Capital. This phase is part of phase III in Kampmann. The two studies agree in that the self-ordering is 

the most influential on average over the whole interval but somewhat differs in the details. The same 

conclusion holds regarding the Ford’s analysis. The capital deceleration phase coincides with the 

beginning of the phase V of Oliva and Mojtahedzadeh (2004). They identify the Supply first order control 

loop as the most influential during this phase. 
 
The Production scheduling loop becomes dominant at the first half of the Capital peak-then-decline 

phase. During this phase, the drop in Backlog that began in the previous phase continues; this relaxes the 

capacity utilization and the Production scheduling loop becomes dominant. The loop exerts its influence 

by drawing Capital stock downward thus it first slows down; then the Supply first-order loop takes the 

place of the Production scheduling loop as the most dominant, stops the growth of the stock and then 

causes it to drop precipitously right after it peaks. Nevertheless, this fast decline does not last long 

because the dominance of the loop drops while that of capital decay loop increases enough to shift the 

behavior of Capital to exponential decay. This happens around year 157. This phase coincides with the 

second half of Kampmann’s phase III and most of the phase V of Oliva and Mojtahedzadeh (2004). 
 
It is worth to note that Sterman also reports that when the capacity utilization is at its maximum the 

Capital expansion (L5) is dominant. In time, as excess capacity develops, the capacity utilization drops 

and dominance shifts to the Production scheduling loop which limits the amplitude of the cycle (footnote 

26 on p. 45 of Sterman 1985). This line of events corresponds to the second phase through the first half of 

the fourth phase of the EEA and except the third phase where the Self-ordering loop (L14) is dominant 

the two explanations agree. They differ, however, in the corresponding dominant eigenvalues as discussed 

in the next section. 
 
The transition from the fourth phase to the fifth is not sharp. The loops exchange dominance gradually 

from approximately year 156 to 158. During this phase, most of the feedback loops are shut off by the 

nonlinearities in the system and Capital slowly falls under the influence of capital decay loop until the 

cycle repeats itself. The findings for this phase agree with those from the previous studies. 
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5. Discussion and Conclusion 
 

In spite of the guiding principle of the system dynamics that the behavior is generated as a result of the 

interactions between various feedback mechanisms of the system, the accurate depiction of the 

relationship between a model’s structure and its behavior still rests upon an experimental process of 

hypotheses testing by repeated simulations. This approach is time consuming and prone to error on the 

analyst’s part. Therefore, System Dynamics has much to gain from development of formal methods for 

model analysis. The methodology proposed in this paper consists of ten steps and advances the 

application of the EEA in loop dominance identification. The improvements proposed in this paper are 

summarized in the following. 

 

1. It is possible to relate the loop dominance dynamics directly to any selected state variable through its 

net rate (i.e. slope). One criticism directed to the EEA has been its inability to relate the loop dominance 

to a variable of interest. This improvement addresses this criticism. 

2. An improved approach based on Oliva (2004) in identifying the independent loop set is incorporated 

into the model analysis. The improved approach almost always finds a unique set and hence the problem 

of arbitrary selection of the members of the set is alleviated. 

3. A new loop dominance measure is proposed which takes all behavior modes of the model under study 

into account. 

4. For the selected models, the loop elasticities are actually plotted over time thus allowing for the 

visualization of how loop dominance dynamics unfold over time. 

5. Many parts of the proposed procedure are already codified. Tools for others are either available in 

commercial software packages or it is the author’s opinion that they can be readily codified if sufficient 

interest develops. 

 

In addition, three models selected from the previous loop dominance studies were used to demonstrate the 

implementation of the proposed methodology. This also facilitated the comparison of the proposed 

version of the EEA with other formal model analysis approaches giving an opportunity to identify the 

strengths and weaknesses of each approach. Such comparative studies should continue to be conducted in 

the future in order to refine the existing formal analysis tools. 

 

Of the three analyses, the one on the long wave deserves a closer look. It is generally believed that 

complex eigenvalue pairs are responsible for the turning points in a cycle. In this respect, the EEA of the 

long wave model leads to a rather counterintuitive observation on the generation of the long wave cycle. 

For the minimum of the cycle the analysis confirms the mentioned belief: During the first phase, there is a 

complex conjugate pair of eigenvalues and the pair is responsible for the transition of the Capital from 

decay to exponential growth (see Figures 15-16). 

 

The situation, however, is different for the maximum of the cycle. The Capital reaches its peak within 

Phase four where there are three distinct negative eigenvalues. In order to understand the formation of the 

peak we need to look at what happens earlier, i.e. in the phases two, three, and four. Figure 19 presents 

the eigenvalues together with the Capital and its rate (slope), respectively, through these three phases. In 

Phase two, there are three distinct real eigenvalues of which the largest positive one is the dominant (see 

Figures C.5-16). The result is the ever-increasing rate, which causes the Capital to increase faster and 

faster. Then two of the eigenvalues coalesce and form a complex conjugate pair of eigenvalues. The 

complex pair is almost solely responsible for the behavior of the Capital in this third phase (see Figures 

C.5-16). Their effect can be observed on the behavior of the rate of the Capital, the increase of which first 

slows down; then, reverses and the slope begins to decrease (Figure 19.a). This, of course, exhibits itself 

as an inflection point on the behavior of the Capital after which the increase in the Capital begins to slow 

down (Figure 19.b). The third phase is, then in a sense where the complex pair prepares via its rate the 
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downturn of the Capital, which is to happen in the next, fourth phase. At around year 152, another 

bifurcation occurs resulting in three distinct negative eigenvalues; hence the fourth phase. Now, under the 

influence of the negative eigenvalues the rate exhibits decay until about year 157 which also marks the 

transition from the fourth to the last phase of the cycle (Figure 19.a). The rate exhibits decay; however, as 

long as it is positive the Capital continues to grow albeit slower and slower (Figure 19.b). Towards year 

154, the rate becomes negative continuing its decay. At that instant, the Capital reaches its peak and then 

begins to decrease. The behavior exhibited by the Capital until about year 157 is actually exponential 

decline because its rate becomes more and more negative. In the last phase, the rate no longer drops but 

this time exhibits decay in the opposite direction, i.e. towards zero. Consequently, the behavior of the 

Capital changes from exponential decline to exponential decay. 

 

What the EEA analysis tells us about the peak in the Capital is that the system prepares itself for the 

peaking by entering and then leaving the oscillatory mode well in advance of the time the Capital peaks. 

Rather the complex eigenvalue pair, with some influence from the negative eigenvalue, causes the peak in 

its rate in the third phase. In the forth phase in which the peak in the Capital occurs, the system has 

already left the oscillatory mode and now is in fact in a goal-seeking mode, which is evidenced by the 

behavior of the rate of the Capital. However, the system is so charged during –to some extent- the second, 

-but mainly- third phases that the crossing of the rate from positive to negative during its decay in the 

forth phase causes the Capital to slow down its growth and then to decline, causing the peak in the 

Capital. 

 

Although the loops identified being dominant in this study and that of Sterman’s mostly agree the two 

differ is their findings regarding the dominant behavior modes (i.e., eigenvalues), especially in the second 

through forth phases of the cycle. According to the EEA, the dominant behavior modes for the first and 

third phases are divergent oscillations (i.e., complex conjugate eigenvalue pairs with real parts). These 

phases correspond to the beginning and end of the time interval during which the capacity utilization is at 

its maximum. The rest of this interval constitutes the second phase and the dominant behavior mode is 

monotonic divergent (There are three real distinct eigenvalues the most positive of which is the 

dominant). The second and third phases correspond to what Sterman termed “the expansion phase” for 

which he mentions only the divergent oscillatory behavior mode (i.e., a complex eigenvalue pair with real 

parts) as dominant. In the forth phase as capacity utilization drops, there are three monotonic convergent 

behavior modes (i.e., real and distinct negative eigenvalues). Therefore the dominant behavior mode 

during the peak of the Capital is not a damped oscillation as suggested in Sterman but a combination of 

exponential decay modes. In other words, the amplitude of the Capital is limited by monotonic 

convergent behavior modes, not by a highly damped oscillation. 

 

One of the problems of the earlier EEA applications was the lack of an explicitly specified variable of 

interest in the analysis. Specifying a variable of interest makes the results of the analysis more rigorous 

and relevant. In a typical EEA study, only one behavior mode is regarded as dominant at each analysis 

time step. Hence, the resulting explanation on loop dominance would be based on that behavior mode. In 

this study all behavior modes are considered to the extend of their contribution to the behavior of the 

variable of interest at each time step and a conglomerate measure for loop dominance is devised based on 

this approach. Finally, the previous applications of the EEA fell short of providing results that show the 

continuous and gradual change in loop dominance dynamics over time. That gap is also closed in this 

study. The differences between the proposed methodology and the earlier applications of the EEA are 

demonstrated on the long wave model analysis. 
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(a) 

 
(b) 

Figure 19. The behavior modes (eigenvalues), the rate of change in Capital (a) and Capital (b) in the third, 

fourth phases and parts of second and fifth phases. 

 

There is a close relationship between the eigenvalues and the total participation metric in linear systems. 

Mojtahedzadeh et al. 2004 has shown that for any linear system regardless of the order of the system the 

total participation metric is equal to the largest eigenvalue of the system in the steady-state condition. 
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Still, the most important difference between the EEA and the PPM approaches is that the first approaches 

structure-behavior relations from a system-wide perspective while the latter adopts a localized 

perspective. The results one gets from the two methods may not always be in agreement because of the 

different perspectives the two approaches take on in loop dominance analysis. For instance, although in 

the Predator-Prey example the explanations from the two approaches are mostly in agreement it seems the 

PPM approach do not appropriately relate relevant parts of the model structure to the model behavior in 

case of oscillatory behavior. In another comparative study, a linear oscillatory model was used and there 

was even more disagreement between the results of the two approaches over the structural source of 

oscillations (results not shown). It may be the case that the level of agreement between the two is higher 

when they are applied to nonlinear models. It is, however, worth mentioning that the application of both 

EEA and PPM on a simple long wave model resulted in the same loops as the most influential ones in the 

generation of the cycle. Moreover, these loops are the ones selected by the loop selection algorithm 

(SILS) proposed by Oliva (2004). This suggests that it may be possible for other –more complicated– 

system dynamics models to reach an intuitive understanding of model dynamics (including the loop 

dominance dynamics) based on the loops selected in the SILS of those models. 

 

Although there have been notable improvements in the EEA as a formal model analysis tool since it was 

first advocated more than twenty years ago, there is still need for further refinement of the methodology. 

For instance, the proposed overall loop dominance measure performed well in the examples but their real 

utility will show itself only after many applications on various system dynamics models. SILS approach 

is no doubt useful in loop dominance analysis but needs to be used with scrutiny and may require suitable 

revisions in the future. More importantly, there is still much to be done for fully computerized 

implementation of EEA routines. As an example, setting up equations for the causal link elasticities 

seems to be the routine that is most time-consuming. The successful automation of this step would greatly 

reduce the duration of analysis. In addition, most of the codes presented are either tailored for models of a 

specific order or for a specific model. While useful the set of codes presented in this study only serves as 

a starting point and more elaborate ones are required for the proper computerized implementation of EEA. 

 

The work presented in this paper is part of a larger study. The next phase will focus on understanding how 

uncertainty in parameter values in a model affect its loop dominance dynamics and will look into devising 

ways to differentiate the contribution of each uncertainty source to the uncertainty of dominance 

dynamics by coupling the EEA approach with the error analysis. 

 

Finally, it should be emphasized that existing approaches to loop dominance analysis may have much to 

learn from each other. As a result, it would not be surprising to witness the integration of best aspects of 

the different formal tools in the future. 
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