
 1

Using Multiple Objective Optimisation to Generate Policy

Insights for System Dynamics Models

Jim Duggan,

Department of Information Technology,

National University of Ireland, Galway,

Galway,

Ireland.

Phone: 353-91-524411 Ext. 3336

Email: jim.duggan@nuigalway.ie

KEYWORDS: System Dynamics Methodology, Optimisation, Multiple Objective

Optimisation, Genetic Algorithms.

ABSTRACT

Multiple objective optimisation (MOO) is an optimisation approach that has been widely

used to solve optimisation problems with more than one objective function. The benefit

of this approach is that it generates – using genetic algorithms - a set of non-dominated

solutions which a policy maker can explore and evaluate before making a final optimal

selection. This paper demonstrates that MOO can be used to assist policy makers explore

a richer set of alternatives when deciding on a range of values for key parameters in their

system dynamics model. In order to demonstrate the approach, a well-known case study –

The Domestic Manufacturing Company – is used, and a stock and flow model and a

multiple objective optimiser are designed and coded. The results show that valid

solutions are generated, and that each of these solutions can be examined independently –

and hence give greater insight into the problem at hand - before a decision is made as to

the most appropriate solution.

 2

Introduction

The aim of this paper is to demonstrate how multiple objective optimisation can be used

to support policy analysis for system dynamics. The paper has the following structure:

first, a summary literature review of system dynamics, optimisation, and multiple

objective optimisation; second, a case study is presented based on a well-known system

dynamics model, and the genetic algorithm is specified; third, a selection of experimental

results are presented; and finally, conclusions and future work are described.

System Dynamics, Optimisation, and Multiple Objective Optimisation

The complimentary roles of system dynamics and optimisation are explored in detail by

Coyle (1996). In this book he makes the point that “it would be highly desirable to have

some automated way of performing parameter variations”, and explains that,

theoretically, the number of possible combinations and conceivable values of parameters

is “colossal” and possibly “infinite.” Within this context, some form of guided search is

needed whereby good approximations to optimal solutions can be found, and Coyle

employs a hill climbing heuristic algorithm to find optimal solutions.

The analogy of a hill or mountain range provides a useful way of thinking about

optimisation. The most basic starting point is to consider two parameters that need to be

optimised. For example, in a stock management structure problem, these parameters

could be the desired stock and the stock adjustment time. When optimisation is to be

performed, an additional variable must be added to the model, and this represents the

payoff for a given simulation. The idea is that an optimisation algorithm will run the

model many times, compare the payoffs for different parameter values, and record the

combination of parameters that produces the best payoff.

Figure 1 illustrates the idea mapping parameters along with their payoff values to

produce what Coyle terms the “response surface”, which can be likened to a mountain

range, with peaks and dips in unpredictable places. In this diagram, we have noted two

 3

possible solutions (p2a, p1a) and (p2b, p1b). Each of these have an associated payoff, and

in this case we can see that payoff at (p2b, p1b) is at a “higher altitude” than the payoff

for (p2a, p1a), and so, if our goal is to maximise the payoff, (p2b, p1b) is the optimal

solution.

Figure 1: The hypothetical response surface for an optimisation problem with two parameters

The challenge, then, for an optimisation algorithm is to find the best possible

combination of parameters that maximises (or minimises) a payoff function. To date, in

addition to the work of Coyle, there have been a number of research papers that have

explored the use of optimisation in system dynamics. Dangerfield and Roberts (1996)

present an overview of strategy and tactics in system dynamics optimisation. Here they

make a useful distinction between the two different uses of optimisation in model

development. One is to use optimisation techniques in determining the best fit for

historical data, while the other use (and the one employed in this paper) is “policy

optimisation to improve system performance.”

Keloharju and Wolstenholme (1989) present “the use of optimisation as a tool for policy

analysis and design in systems dynamics models”, and demonstrate their approach using

the “Project Model”, which was developed earlier by Richardson and Pugh (1981).

According to Kelharju and Wolstenholme, one of the major benefits of using

P2

P1

Payoff

(p2a, p1a)
(p2b, p1b)

 4

optimisation with system dynamics models is “the saving in computational effort

required by the analyst in producing policy insights in enormous.” They also suggest that

one of the most important issues is “that of careful selection of parameters and their

allowable ranges,” and that, significantly, “all values within ranges must be feasible and

practical from a managerial point of view.”

This concern is supported by Coyle (1996), who cautions that “it is not usually a good

idea to throw all parameters into the optimiser and take the results on trust” as to do this

would be to effectively “abandon thought and rely on computation.” He acknowledges

that the power of optimisation is “to provide a much more powerful guided search of the

parameter space that could possibly be achieved by ordinary experimentation.” However,

he also recommends that simple experimentation is a “fundamental precursor to

optimisation” and that “one cannot devise an intelligent objective function without

having first ‘played’ with the model,” and that, most importantly perhaps, “an

unintelligent objective function is worse than useless.”

More recently, a number of papers have been published that focus on the use of genetic

algorithms for policy optimisation. Grossman (2002) comments that traditional gradient

algorithms “typically fail once they have reached a local optimum” and that “genetic

algorithms, if properly implemented, do not easily mistake local optima for global ones.”

He developed a tool that can transform High Performance System’s Stella model

equations into C++ code. Additional code is added that specifies an objective function, as

well as marking those variables to be used as parameters.

Chen and Jeng (2004) propose a “policy design method for system dynamics models

based on neural networks and genetic algorithms.” Unlike other approaches, they write

that their system does not need an “objective function as required by optimisation

algorithms.” They show how a systems dynamics model can be transformed into a partial

recurrent neural network, and they effectively transform the policy design problem into a

learning problem, which is solved using a combination of the genetic algorithm and

neural network.

 5

In recent years a newer form of optimisation technique has emerged: multi-objective

optimization (MOO). This approach facilitates the solutions of problems with multiple

objectives that “arise in a natural fashion in most disciplines and their solution has been a

challenge to researchers for a long time” (Coello Coello 2002). Deb (2001) writes that “in

the parlance of management, such search and optimisation problems are known as

multiple criteria decision making (MCDM)”, and he explains that multiple objective

optimisation problems can also be reduced to a single weighted objective function.

However, the disadvantage reducing these problems to a single weighted form is that

“unless a reliable and accurate preference vector is available, the optimal solution

obtained by such methods is highly subjective to the particular user.” Therefore, the key

benefit of MOO algorithms is that the process of finding the optimal solution is less

subjective, because “a user does not need any relative preference vector information.”

The idea is that what Deb (2001) terms “higher-level information” can be applied to the

problem once the set of optimal solutions are calculated, where this higher level

information is based on the skill, judgement and experience of the decision maker.

In MOO, the idea of dominance plays a key role in arriving at these optimal solutions. To

illustrate this, consider figure 2, which graphs a set of possible solutions to an

optimisation problem. In this case, the decision maker wants to purchase a house, and the

two objectives are (1) to minimise costs and (2) to minimise the distance from the city

centre.

 6

0

5

10

15

20

25

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000

Cost

D
is

ta
nc

e

A

B

C

D

E

Figure 2: Set of conflicting alternatives for a house purchase scenario

By comparing all solutions, we can construct a set of solutions that are not dominated by

any other solution – this is called the Pareto-optimal set. A solution is not dominated

when it cannot be bettered by another solution on both objectives. For example, in our

house-purchase decision:

§ Solution A is non-dominated because no other solution exists that has a lower

cost and a shorter distance to the city centre.

§ Solution B is dominated because there is a solution that has both a lower cost and

is closer to the city (i.e. Solution A).

§ Therefore, A is a better solution to B, and it will get a higher ranking in the

solution process.

§ By going through a similar analysis of the other solutions, the non-dominated set

can be composed, and will be made up of three solutions: A, D and C. A more

detailed working of this solution process is contained in the case study section.

 7

The MOO approach can now be applied to any system dynamics model where more than

one objective needs to be optimised, and where a selection of parameters and their

suitable ranges can be specified. There are many examples of such scenarios. For

example, in the classic beer game model (Sterman 1989), each actor is trying to minimise

their costs, and if a supply chain coordinator has the task of trading off these objectives,

then it could be formulated as a multiple objective optimisation problem. Similarly, in a

project management scenario for a software company, a policy maker might be interested

in exploring the different range of solutions that would involve minimising the often

conflicting objectives of time to market and defect ratio.

System Dynamics and MOO – A Case Study

The example is divided into two parts: First, the stock and flow model is described,

including the payoff functions that are used in the optimisation process. Second; the

multiple objective optimisation algorithm that performs the optimisations is presented.

The Stock and Flow Model

In Coyle’s (1996) textbook on System Dynamics, he presents a variety of case studies,

including one for the Domestic Manufacturing Company (DMC), which manufactures

washing machines, and this example forms the basis of our experiment with multiple

objective optimisation. The features of this case study are:

§ Customers tend to order large batches of machines, with a delivery required six

weeks after an order.

§ Each machine requires a supply of raw materials, and fresh supplies of raw

materials take six weeks to arrive.

§ Demand is unpredictable, and the DMC tries to maintain the backlog down to a

target level.

§ The production rate is set using two factors. First, the discrepancy between actual

and target backlog is eliminate over a four week period. Second, to keep up with

 8

the current order level, the production rate includes the expected order rate for the

coming week.

§ The backlog target is six times the smoothed average orders (over four weeks).

§ The target raw material level is based on smoothing production variations over 4

weeks and aiming to have sufficient stocks to cover 8 weeks of average

production.

§ Raw materials stock is kept to its average level by ordering enough to cover

discrepancies between the actual and target, and also ensuring that there is

sufficient raw materials to copy with expected raw material demand.

A Stock and flow representation of this model is shown in figure 3. It comprises two

stock management control structures, one to manage the backlog and production starts,

the other to manage the acquisition of raw materials.

Figure 3: The stock and flow model for the Domestic Manufacturing Company

Order
BacklogCustomer

Orders
Production

Rate

Expected
OrdersCEO

EO
Error

EOAT
Desired
Backlog

Backlog
Discrepancy

Desired Starts

PrDAT

Raw
Materials

Raw
Materials

Supply LineConsumption
Rate

Expected
Production

Rate

CEPR

PR Error

EPRAT

Arrival Rate

Shipping Delay

RM Order Rate

Expected
Consumption

RateCECR
ECRAT

CR Error

Desired Raw
Material Stock

Backlog Week
Multiplier

Stock Week
Multiplier

Stock
Discrepency

Desired Stock
Orders

RMOR AT

Payoff
Backlog

DeltaCBD

Payoff Raw
Material

Delta

CRMD

<Order
Backlog>

<Desired
Backlog>

<Raw Materials>

 9

For the backlog management aspect of the model, the equations are:

(1) Order Backlog = INTEG(Customer Orders - Production Rate , 120)

(2) Customer Orders = Exogenous variable, can vary from run to run

(3) Production Rate = min (Desired Starts , min (Order Backlog , Raw Materials))

The Order Backlog (1) is the integral of the Customer Orders minus the Production Rate.

Customer Orders (2) are shown as constant, but as with any exogenous variable, this can

vary for any given run of the model. The Production Rate (3) is determined by a stock

management structure, albeit constrained so that there will be no starts if there are not

enough raw materials present or the Order Backlog is less than the Desired Starts.

Desired Starts (4) is the sum of Expected Orders (8) and the Backlog Discrepancy (5)

adjusted by the production adjustment time (12). Expected Orders are based on a

smoothing of Customer Orders, where the adjustment time is defined in equation (11).

(4) Desired Starts = max (0, (Backlog Discrepancy / PrDAT) + Expected Orders)

(5) Backlog Discrepancy = Order Backlog - Desired Backlog

(6) Desired Backlog = Backlog Week Multiplier * Expected Orders

(7) Backlog Week Multiplier = 6 (optimisation parameter)

(8) Expected Orders = INTEG(CEO , 20)

(9) CEO = EO Error / EOAT

(10) EO Error = Customer Orders - Expected Orders

(11) EOAT = 4 (optimisation parameter)

(12) PrDAT = 1 (optimisation parameter)

Desired Backlog (6) is based on the value specified in the problem narrative, and is a

product of Expected Orders and Backlog Week Multiplier (7).

 10

The raw materials management section of the model is made up of the following

equations.

(13) Raw Materials = INTEG(Arrival Rate - Consumption Rate , 0)

(14) Consumption Rate = Production Rate

(15) Arrival Rate = Raw Materials Supply Line / Shipping Delay

(16) Shipping Delay = 6

Raw Materials (13) are an integral of the Arrival Rate (15) minus the Consumption Rate

(14). The Consumption Rate equals the Production Rate (3), and assumes a one-to-one

correspondence between orders and raw material consumption. The Arrival Rate is a first

order delay on the Raw Materials Supply Line (17), divided by the Shipping Delay (16).

The reason for choosing a first order delay was to simplify the actual coding of the model

at a later stage, although a higher-order or pipeline delay may well be more appropriate in

real-life circumstances.

(17) Raw Materials Supply Line = INTEG(RM Order Rate - Arrival Rate , 2)

(18) RM Order Rate = Desired Stock Orders

(19) Desired Stock Orders = max (0, (Stock Discrepancy / RMOR AT) + Expected

Consumption Rate)

(20) Stock Discrepancy = Desired Raw Material Stock - Raw Materials

(21) Expected Consumption Rate = INTEG(CECR , 20)

(22) RMOR AT = 4 (Optimisation Parameter)

(23) CECR = CR Error / ECRAT

(24) CR Error = Consumption Rate - Expected Consumption Rate

(25) ECRAT = 4

The Raw Materials Supply Line (17) is an integral of the Raw Material Order Rate (18)

minus the Arrival Rate (15). The Raw Material Order Rate is simply the Desired Stock

Orders (19), which is based on a stock management structure based on the Expected

Consumption Rate (21) and the Stock Discrepancy (20), adjusted by the RMOR AT (22).

 11

Working further back through the decision logic for the Desired Stock Orders of raw

materials, a number of equations remain. First, the Desired Raw Materials Stock (26) is a

product of the Expected Production Rate (27) and the Stock Week Multiplier (28).

(26) Desired Raw Material Stock = Expected Production Rate * Stock Week Multiplier

(27) Expected Production Rate = INTEG(CEPR , 20)

(28) Stock Week Multiplier = 8 (Optimisation Parameter)

(29) CEPR = PR Error / EPRAT

(30) EPRAT = 4

(31) PR Error = Production Rate - Expected Production Rate

Finally, as one of the model’s goals is to be used to optimise the set of parameters (7),

(11), (12), (22) and (28), and allow the user to trade-off between two different objectives,

and a set of payoff functions are needed so that these can be minimised. [Note: there is no

theoretical limit on the number of objectives that can be optimised. Two are selected for

readability purposes so that they can be compared and studies by the reader in two

dimensions.]

The first payoff function is the Payoff Backlog Delta (32), which keeps track of the

cumulative squared distance of the Order Backlog (1) from the Desired Backlog (6). The

assumption here is that in this control system, the closer the actual is to the goal (over

time), the better the result.

(32) Payoff Backlog Delta = INTEG(CBD , 0)

(33) CBD = (Desired Backlog - Order Backlog) * (Desired Backlog - Order Backlog)

The second payoff function is the Payoff Raw Material Delta (34), which similarly keeps

track of the squared distance of the Desired Raw Materials Stock (26) and the Raw

Materials (13).

 12

(34) Payoff Raw Material Delta = INTEG(CRMD , 0)

(35) CRMD = (Desired Raw Material Stock - Raw Materials) * (Desired Raw

Material Stock - Raw Materials)

To summarise, for a given parameter set, equations (32) and (34) are effectively the

output of the simulation, and these are used to calculate the payoff for each objective in

the multiple objective optimiser. Therefore, the two objectives for the optimisation can be

stated as:

Find the optimum values of the parameters:

§ Backlog Week Multiplier

§ Expected Order Adjustment Time (EOAT)

§ Production Starts Adjustment Time (PrDAT)

§ Stock Week Multiplier

§ Raw Materials Order Adjustment Time (RMOR AT)

That minimises the values:

§ Payoff Backlog Delta

§ Payoff Raw Material Delta

This is the goal of the multiple objective genetic algorithm, which is now detailed.

 13

The Multiple Objective Optimisation Algorithm

MOO algorithms usually employ genetic algorithms (GAs), which have been widely used

to solve optimisation problems in many different domains. GAs apply the Darwinian-

related concepts of selection, crossover and mutation on an initial population of random

solutions. Over many generations, these solutions converge towards the “best fit”, where

the strong solutions survive and the weak ones are “weeded out”. In effect, this process is

used to discover the peaks (or optima) for each combination of parameter. The mutation

operator enables new random points of the solution space to be explored, and is designed

to ensure that solutions do not converge too quickly to local optimum points.

The first step in developing a GA is to decide on the representation of the solution. In

many examples, bit strings (ones or zeros) are used, but integers and real numbers may

also be employed. Solutions are typically represented by a one-dimensional array.

Returning to our case study, the representation of a solution for this case is a one

dimensional array of five places, where each location represents a value for one of the

parameters – in each case a real number in the range [1.0-15.0]

P1 P2 P3 P4 P5

Backlog

Week

Multiplier

Equation (7)

EOAT

Equation (11)

PrDAT

Equation (12)

RMOR AT

Equation (22)

Backlog

Week

Multiplier

Equation (28)

The task of the optimisation process is to discover the best combination of value

parameters that optimises the two payoffs described in equations (32) and (34). To

illustrate how the process works, let’s assume that five solutions are randomly generated,

and each solution contains a value for each parameter. These initial solutions are shown

below.

 14

Solution P1 P2 P3 P4 P5

1 1.4 8.2 14.7 4.9 7.2

2 5.3 1.1 9.7 14.1 4.2

3 4.2 8.9 1.4 1.7 2.1

4 7.3 11.8 10.8 1.9 3.2

5 4.9 1.9 2.7 1.7 14.9

The next step in the GA solution process is to evaluate the payoff for each of these

solutions, and this can only be accomplished by running the simulation model specified

earlier (equations 1 – 35) for each of the parameter sets contained in a given solution.

This also means that the process is computationally intensive, as the simulation model

has to be run for each possible solution (normally 100) for every generation (also

normally 100), so that 10,000 individual simulations are needed to arrive at the optimum.

When the simulation is complete, only two results are of interest to the optimiser, and

these are the values of the two payoff functions, each representing an objective to be

optimised (equations 32 and 34). In this sample illustration, we assume that, for each

individual simulation of a solution, the payoff values are returned, as shown below in the

next table.

Solution P1 P2 P3 P4 P5 Payoff

Backlog

Delta

Payoff

RM

Delta

1 1.4 8.2 14.7 4.9 7.2 37.12 150.98

2 5.3 1.1 9.7 14.1 4.2 220.0 65.0

3 4.2 8.9 1.4 1.7 2.1 150.12 85.18

4 7.3 11.8 10.8 1.9 3.2 78.65 110.8

5 4.9 1.9 2.7 1.7 14.9 100.0 20.8

 15

This payoff values are now critically important for the GA, as they are a measure of the

fitness of each solution. In this case, both our objectives are minimisation, so our next

task is to compare our solutions to see which ones are non-dominated (i.e. not bettered on

both counts by any other solution). As explained earlier, non-dominated solutions are

given the highest ranking, and this ranking is then used to calculate their probability of

selection for the next generation. It is useful to represent each solution graphically on a

scatter diagram, where each payoff is represented on a separate axis.

Figure 4: Determining whether solutions are not dominated

The dominance relationships are shown in the next table, and should be read from left to

right, i.e. solution 1 does not dominate solution 1, solution 1 dominates solution 2, etc.

37.12, 150.98

220, 65

150.12, 85.18

78.65, 110.8

100, 20.8

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

Payoff Backlog Delta

P
ay

o
ff

 R
M

 D
el

ta

Solution 1

Solution 2

Solution 4

Solution 5

Solution 3

 16

 Solution 1 Solution 2 Solution 3 Solution 4 Solution 5

Solution 1 Does not

dominate

Dominates Dominates Does not

dominate

Does not

dominate

Solution 2 Is dominated

by

Does not

dominate

Does not

dominate

Is dominated

by

Is dominated

by

Solution 3 Is dominated

by

Does not

dominate

Does not

dominate

Is dominated

by

Is dominated

by

Solution 4 Does not

dominate

Dominates Dominates Does not

dominate

Does not

dominate

Solution 5 Does not

dominate

Dominates Dominates Does not

dominate

Does not

dominate

Overall

Dominated Dominated Not

Dominated

Not

dominated

Not

dominated

Ranking 2 2 5 5 5

For these five solutions, three are non-dominated, so they share the highest ranking, while

the two dominated solutions are ranked joint lowest (because, when taken as a pair of

solutions, solutions 1 and 2 do not dominate each other.) As a general rule, the highest

ranking is determined by the actual population size, which is normally 100.

This purpose of the ranking process is to assign probabilities for selection to each

solution. This is because the next stage of the GA process is called selection, and this

involves randomly selecting solutions from the current population, where the probability

of selection is proportional to their ranking (i.e. the higher the rank, the higher the

probability of being selected). The selection probabilities for a given solution is

calculated as follows:

 17

 Selection Probability (Solution i) = Rank (i) / Sum (Rank(1)… Rank(N))

 Where N is the total number of solutions (in this example N=5).

Solution Payoff

Backlog

Delta

Payoff RM

Delta

Is

Dominated

Ranking Probability

of Selection

for New

Generation

1 37.12 150.98 NO 5 5/19

2 220.0 65.0 YES 2 2/19

3 150.12 85.18 YES 2 2/19

4 78.65 110.8 NO 5 5/19

5 100.0 20.8 NO 5 5/19

Based on this ranking process, the strongest solutions (i.e. those with the highest ranking)

have the highest probability of “survival” when the next generation of solutions gets

selected. Within the algorithm, a technique known as roulette wheel selection is used,

where a random uniform number between [0,1] is selected, and, depending on where this

falls on the “wheel”, the appropriate solution is selected and placed in a new set known as

the mating pool. For example, if the random number was in the range [0, 5/19], then

solution 1 would be selected and placed in the mating pool.

Once the selection process has occurred, two important transformations then take place

which result in a modification of the mating pool. The first of these is called crossover,

where a proportion of solutions are selected and “crossed-over” in a pair-wise manner,

and the “offspring” then replace their parents in the solution set. A random crossover

point is selected. Each solution is “spliced” at this crossover point, and the first part of

one solution is combined with the second half of the other, and vice versa.

 18

To illustrate this point, if solutions 1 and 5 had been selected for the mating pool, and if

they then had been marked for crossover, these solutions would then be considered to be

“parents.”

Solution P1 P2 P3 P4 P5

1 1.4 8.2 14.7 4.9 7.2

5 4.9 1.9 2.7 1.7 14.9

Furthermore, if we assume that the crossover location was randomly selected as location

3, the crossover process would give rise to two new solutions, which would then replace

their parents. We label these 1’ and 5’.

Solution P1 P2 P3 P4 P5

1’ 1.4 8.2 14.7 1.7 14.9

5’ 4.9 1.9 2.7 4.9 7.2

These are new solutions, and during the next generation of the GA, their fitness will be

decided on by running the simulation model, and ranking the solutions based on whether

or not they are dominated by others.

Finally, before the next generation can be processed, the final transformation, called

mutation, is applied to a small proportion of solutions (normally less than 0.05). For a

given solution selected for mutation, one of its parameters will be assigned a new random

value from the range [1-15]. For example, if solution 1’ was selected for mutation, first

one of its locations would be randomly selected, and then that location would be

randomly changed to a new value. For example, if the location selected was 3, and the

new value was 1.2, then solution 1’ would have the following values:

 19

Solution P1 P2 P3 P4 P5

1’ 1.4 8.2 1.2 1.7 14.9

When the mutation stage is completed, the mating pool now becomes the new population,

and the process of ranking, selection, crossover and mutation is repeated for up to 100

generations, and the solution will converge to produce a set of solutions that comprise the

Pareto front. These are then the optimal solutions, and the decision maker can analyse

these before selecting the most suitable alternative (based on the decision maker’s

judgement and priorities). A sample set of results is documented in the next section, but

before that, the overall algorithm for the multiple objective GA is summarised.

RandomisePopulation();

for(genNumber = 0; genNumber < numberGenerations; genNumber++)
{

 CalculatePayoffs();

 RankAllSolutions();

 CalculateSelectionProbabilities();

 GenerateMatingPool();

 CrossoverMatingPool();

 MutateMatingPool();

 CopyMatingPoolToPopulation();

}

SaveParetoFront();

 20

Experimental Results

A sample solution set is now explored. In figure 5, the entire solution set is shown first,

and the cluster of points near the x and y axes is an indication of how the solutions

converge over time. While the initial generations would contain solutions that are

dominated, through successive generations of selection, crossover, and mutation, a final

Pareto set emerges that contains the set of optimal solutions.

Figure 5: The complete set of solutions produced by an optimisation run where parameters remain

constant

After the final generation, the set of non-dominated solutions is generated, as shown in

figure 6. Each solution consists of the optimal values of the parameters that were used to

run the simulation model. In theory, any one of these solutions can be selected by the

decision maker.

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350

Backlog Delta

R
aw

 M
at

er
ia

l D
el

ta

Payoff2

 21

Figure 6: The Pareto front for an optimisation run

We now consider two solutions from the optimal set, where these solutions are the two

extreme points. Solution 1 (S1) has coordinates (0.522, 0.622), while solution 2 (S2) has

the values (74.94, 0.005). [These numbers are scaled down using a payoff reference

value similar to the approach used by Coyle’s (1996) optimisations.] These selected

solutions have the following characteristics:

§ S1 performs best on the Backlog Delta payoff function. This means that if the

decision maker selects this solution, they effectively give greater importance to

having the backlog closer to its goal than having the raw material value closer to

its corresponding goal.

§ S2 performs best on the Raw Material Delta payoff function. This means that if

the decision maker selects this solution, the decision maker places the

minimisation of raw material variability as a higher priority than order variability.

The Pareto Front

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80

Backlog Delta

R
aw

 M
at

er
ia

l D
el

ta

Series1

Extreme
Points

S1

S2

 22

Further information may then be obtained on each solution, and these are shown below.

Solution P1

Eqn (7)

P2

Eqn (11)

P3

Eqn (12)

P4

Eqn (22)

P5

Eqn (28)

S1 14.21 4.73 11.03 1.11 1.39

S2 14.21 6.46 11.03 1.11 1.39

Interestingly, in this case, the only parameter value that makes the extreme solutions

different is P2 (Expected Order Adjustment Time – EOAT), but it would be difficult to

prove any causal relationship here. Additional solutions from the Pareto front from this

particular optimisation run are summarised below.

BacklogWeekMult EO_AT PrD_AT RMOR_AT StockWeekMult Payoff1 Payoff2
P1 P2 P3 P4 P5

13.96 9.69 7.62 1.11 1.40 59.44577 0.021629
14.21 6.47 11.03 1.11 1.02 37.78219 0.027973
14.21 6.47 7.62 5.27 1.40 37.78219 0.027973
14.21 6.47 11.03 1.11 1.40 37.19301 0.02889
13.96 9.69 11.03 3.24 1.40 37.78219 0.027973
8.08 6.47 11.03 1.11 1.02 37.78219 0.027973

13.96 9.69 11.03 1.11 2.42 37.19301 0.02889
14.21 6.47 10.21 1.11 1.40 37.78219 0.027973
13.96 9.69 11.03 1.11 1.40 0.905484 0.259402

An assumption made in the models to date was that the value of a parameter does not

change over the course of the simulation. The underlying GA structure was designed in

such as way so that the values of parameters can change over time. This is achieved by

increasing the size of the solution so that it can hold parameter data for each time

interval. For example, if we were to run this five parameter an optimisation for 50 time

units, our solution array has 5 x 50 = 250 elements. The shape of the overall solution set,

shown in figure 7, is markedly different to the pattern from the earlier run where the

optimum parameter values remained constant for the entire simulation.

 23

Figure 7: The Pareto front for an optimisation run where parameters change every time unit

In comparing figure 7 with figure 5, it is clear that:

§ The overall solutions in figure 5 produce results that are better on both objectives.

§ The solutions in the earlier optimisation run have a greater spread and are more

diverse, and so will give the decision maker a great degree of choice is trading off

the different solutions.

Further work needs to be done on the possible reasons for this significant difference, but

on the face of it, it does suggest that having constancy in the choice of parameters – for

this model – does lead to better payoffs. This observation seems to confirm Coyle’s

(1996) view that “it is a rule of thumb in control engineering that reducing gains and

increasing delays is likely to increase stability.” Sample output from an optimisation run

where parameters change frequently is shown in figure 8.

0

20

40

60

80

100

120

140

0 5 10 15 20 25

Backlog Delta

R
A

w
 M

at
er

ia
l D

el
ta

 24

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P1
P2

Figure 8: An optimisation run with frequently changing parameter values

Conclusions

The aim of this paper was to demonstrate that multiple objective optimisation can be

employed with system dynamics models in order to assist decision makers select their

preferred optimal solution. A sample model, based on the Domestic Manufacturing

Company was implemented, and tests showed that valid and feasible results were

generated. Future work will extend the application of this technique to a new set of

problems, for example, those involving the classic trade off of time, defects and cost, and

it is hoped that these future models will also provide a useful basis to evaluate whether or

not that having constancy in the values of parameters leads to better overall payoffs.

Another research challenge is to incorporate more efficient and effective genetic

algorithms, through the use of elitism, archiving and more advanced forms of crossover.

 25

References

Dangerfield, B. and C. Roberts. 1996. “An Overview of Strategy and Tactics in System

Dynamics Optimisation.” Journal of the Operational Research Society, 47, pp 405-423.

Chen, Yao-Tsung, and Bingchiang Jeng. (2004). “Policy Design to Fitting Desired

Behaviour Pattern for System Dynamics Models.” Proceedings of the 22nd International

Conference of the System Dynamics Society, Oxford, England.

Coello Coello, C.A., Van Veldhuizen, D.A., and Lamont, G.B. 2002. Evolutionary

Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New

York, NY 10013.

Coyle, R.G. 1996. System Dynamics: A Practical Approach. Chapman and Hall, London,
UK.

Deb, K. 2001. Multi-Objective Optimisation Using Evolutionary Algorithms. John Wiley

and Sons, Baffins Lane, Chichester, UK.

Grossman, B. 2002. “Policy Optimization in Dynamic Models with Genetic Algorithms”

Proceedings of the 20th International Conference of the System Dynamics Society,

Palermo, Italy.

Keloharju, R. and E.F. Wolstenholme. 1989. “A Case Study in System Dynamics

Optimisation.” J. Ops. Res. Soc., Vol. 40, No.3., pp 221-230.

Richardson, G.P and A.L Pugh III. 1981. Introduction to Systems Dynamics Modeling

with DYNAMO. MIT Press.

Sterman, J. 1989. “Modeling managerial behaviour: Misperceptions of feedback in a

dynamic decision making experiment.” Management Science. 35 (3), pp 321-339.

