Using Multiple Objective Optimisation to Generate Policy
Ingghtsfor Sysem Dynamics Models

Jim Duggan,

Department of Informetion Technology,
Nationd Univeraty of Irdand, Gaway,
Galway,

Irdland.

Phone 353-91-524411 Ext. 3336

Email: jim.duggan@nuigalway.ie

KEYWORDS: Sysem Dynamics Methodology, Optimisation, Multiple Objective
Optimisation, Genetic Algorithms

ABSTRACT

Multiple objective optimisation (MOO) is an optimisaion approach that has been widdy
used to solve optimisation problems with more than one objective function. The benefit
of this gpproach is that it generates — usng gendtic dgorithms - a set of non-dominated
solutions which a policy maker can explore and evduate before meking a find optimd
sdection. This paper demondrates that MOO can be used to assg policy makers explore
a richer st of dternatives when deciding on a range of vaues for key parameters in ther
sysem dynamics modd. In order to demondrate the approach, a wdl-known case sudy —
The Domestic Manufacturing Company — is used, and a sock and flow modd and a
multiple objective optimiser ae desgned and coded. The resllts show tha vdid
solutions are generated, and that each of these solutions can be examined independently —
and hence give gregter ingght into the problem a hand - before a decision is made as to
the most gppropriate solution.

Introduction

The am of this pgper is to demondrate how multiple objective optimisation can be used
to support policy andyds for sysem dynamics The peper has the following Structure
fird, a summay literaure review of sygem dynamics optimistion, and multiple
objective optimisation; second, a case dudy is presented based on a wdl-known system
dynamics madd, and the genetic agorithm is specified; third, a sdection of experimenta
results are presented; and findly, conclusions and future work are described.

System Dynamics, Optimisation, and Multiple Objective Optimisation

The complimentary roles of sygem dynamics and optimistion are explored in detal by
Coyle (1996). In this book he makes the point that “it would be highly desrable to have
some automated way of peaforming paameter vaiaions’, and explans that,
theoreticdly, the number of possble combinations and concelvable vadues of parameters
is “colossl” and possbly “infinite” Within this context, some form of guided search is
needed whereby good gpproximations to optima solutions can be found, and Coyle
employsahill dimbing heurigtic dgorithm to find optima solutions.

The andogy of a hill or mountan range provides a ussful way of thinking about
optimisation. The most basc darting point is to condgder two parameters that need to be
optimised. For example, in a sock management structure problem, these parameters
could be the desred sock and the stock adjugment time. When optimisdtion is to be
paformed, an additiond vaiable mus be added to the modd, and this represents the
payoff for a given dmulation. The idea is that an optimisation agorithm will run the
modd many times, compare the payoffs for different parameter vaues and record the
combination of parameters that produces the best payoff.

Figure 1 illudrates the idea mapping paameges dong with ther payoff vdues to
produce what Coyle terms the “response surface’, which can be likened to a mountain
range, with peeks and dips in unpredictable places. In this diagram, we have noted two

possble solutions (p2a, pla) and (p2b, plb). Each of these have an associated payoff, and
in this case we can see that payoff a (p2b, plb) is a a “higher dtitude’ than the payoff
for (p2a pla), ad o, if our god is to maximise the payoff, (p2b, plb) is the optimd
Lolution.

Payoff

(p2b, plb)

P2

Figure 1: Thehypothetical response surfacefor an optimisation problem with two parameters

The chdlenge, then, for an optimisaion dgorithm is to find the best posshle
combination of parameters tha maximises (or minimises) a payoff function. To date in
addition to the work of Coyle, there have been a number of research papers that have
explored the use of optimisaion in syssem dynamics Dangefidd and Roberts (1996)
present an overview of drategy and tactics in sysem dynamics optimisation. Here they
meke a useful diginction between the two different uses of optimisgion in modd
devdopment. One is to use optimisation techniques in delermining the best fit for
higoricd daa, while the other use (and the one employed in this paper) is “policy
optimisation to improve system peformance.”

Keohaju and Wolgenholme (1989) present “the use of optimisation as a tool for policy
andyss and design in sysems dynamics modds’, and demondrate their gpproach using
the “Project Modd”, which was deveoped ealier by Richardson and Pugh (1981).
According to Kdhaju and Woldenhome, one of the mgor benefits of usng

optimisation with sysem dynamics modds is “the saving in computaiond effort
required by the andys in producing policy indghts in enormous” They dso suggest tha
one of the most important issues is “that of careful sdection of parameters and ther
dlowable ranges” and that, ggnificantly, “dl vaues within ranges must be feesble and
practica from amanagerid point of view.”

This concern is supported by Coyle (1996), who cautions that “it is not usudly a good
idea to throw dl parameters into the optimiser and take the results on trust” as to do this
would be to effectivdy “aandon thought and rdy on computation.” He acknowledges
that the power of optimisation is “to provide a much more powerful guided seerch of the
paamee space that could possbly be achieved by ordinary experimentation.” However,
he dso recommends that sSmple expeimentaion is a “fundamenta precursor to
optimistion” and that “one cannot devise an intdligent objective function without
having firda ‘played with the modd,” and tha, mos importantly perhaps, “an
unintelligent objective function isworse than usdess”

More recently, a number of papers have been published that focus on the use of genetic
dgorithms for policy optimisation. Grossman (2002) comments thet treditiond gradient
dgorithms “typicdly fal once they have reached a locd optimum” and that “genetic
dgorithms if properly implemented, do not essly midake locd optima for globd ones”
He devedoped a tool that can trandorm High Peformance Sysgem's Sdla modd
equations into C++ code. Additiond code is added that specifies an objective function, as
well as marking those variables to be used as parameters.

Chen and Jng (2004) propose a “policy desgn method for sysem dynamics modds
based on neura networks and genetic dgorithms” Unlike other agpproaches, they write
that ther sysdem does not need an “objective function as required by optimisation
dgorithms” They show how a sysems dynamics modd can be trandformed into a partid
recurrent neurd network, and they effectively trandform the policy desgn problem into a
learning problem, which is solved usng a combinaion of the gendic dgorithm and
neud network.

In recent years a newer form of optimisation technique has emerged: multi-objective
optimization (MOQO). This gpproach fadlitates the solutions of problems with multiple
objectives that “aise in a naturd fashion in mog disciplines and their solution has been a
chdlenge to researchers for a long time’ (Codlo Codlo 2002). Deb (2001) writes thet “in
the palance of management, such search and optimisation problems are known as
multiple criteria decison meking (MCDM)”, and he explans tha multiple objective
optimisation problems can dso be reduced to a sngle weighted objective function.

However, the disadvantage reducing these problems to a sngle weghted form is tha
“unless a rdiable and accurate preference vector is avalable, the optima solution
obtained by such methods is highly subjective to the particular user.”” Therefore, the key
benefit of MOO dgorithms is that the process of finding the optima solution is less
subjective, because “a user does not need any redive preference vector information.”
The idea is tha what Deb (2001) terms “higher-levd information” can be gpplied to the
problem once the st of optimd solutions ae cdculaed, where this higher levd
information is basad on the sKill, judgement and experience of the decision maker.

In MOO, the idea of dominance plays a key role in ariving a these optimd solutions. To
illusrate this, condder figure 2, which graphs a st of possble solutions to an
optimisation problem. In this case, the decison maker wants to purchase a house, and the
two objectives are (1) to minimise costs and (2) to minimise the digance from the city

centre.

25
B

2 N

15
[}
(&)
c
8
(2]
8 A “m

10 u

D
; »
C
. -
0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000

Cost

Figure 2: Set of conflicting alter nativesfor a house purchase scenario

By comparing al solutions, we can condruct a set d solutions that are not dominated by
any other solution — this is cdled the Pareto-optimd sst. A solution is not dominated
when it cannot be bettered by another solution on both objectives For example, in our

house-purchase decison:

= Soluion A is non-dominaied because no other solution exids that has a lower
cost and a shorter distance to the city centre.

= Solution B is dominated because there is a solution that has both a lower cost and
iscloser to thecity (i.e Solution A).

» Therefore, A is a bettar solution to B, and it will get a higher ranking in the
solution process.

= By going through a dmilar andyss of the other solutions the non-dominated set
can be composad, and will be made up of three solutions A, D and C. A more
detailed working of this solution processis contained in the case study section.

450,000

The MOO approach can now be gpplied to any sysem dynamics modd where more than
one objective needs to be optimised, and where a sdection of paamees and ther
quiteble ranges can be specified. There ae many examples of such scenarios. For
example, in the dassc beer game modd (Sterman 1989), each actor is trying to minimise
their cogts, and if a supply chain coordinator has the task of trading off these objectives
then it could be formulated as a multiple objective optimisstion problem. Smilaly, in a
project management scenario for a software company, a policy maker might be interested
in exploring the different range of solutions that would involve minimisng the often
conflicting objectives of time to market and defect retio.

System Dynamics and MOO —A Case Study

The example is divided into two pats Frd, the sock and flov modd is described,
including the payoff functions that are used in the optimisaion process Second; the
mutiple objective optimisation agorithm that performs the optimisationsis presented.

The Stock and Flow Model

In Coyl€s (1996) textbook on System Dynamics, he presents a varigy of case dudies
induding one for the Domedic Manufecturing Company (DMC), which manufactures
washing machines, and this example forms the bass of our expaiment with multiple
objective optimisation. The features of this case Sudy are:

» Cugomers tend to order large batches of machines with a ddivery required sSx
weeks after an order.

= Each machine requires a supply of raw materids, and fresh supplies of raw
materias take Sx weeksto arive.

» Demand is unpredictable, and the DMC tries to maintain the backlog down to a
target leve.

= The production rate is set usng two factors. Fire, the discrepancy between actud
and target backlog is diminate over a four week period. Second, to keep up with

the current order leve, the production rate includes the expected order rate for the
coming wesk.

» The backlog target is Six times the smoothed average orders (over four weeks).

» The target rav maerid levd is based on smoothing production variaions over 4
weeks and aming to have sufficient docks to cover 8 weeks of average
production.

» Raw maeids sock is kept to its average levd by ordeing enough to cover
discrepancies between the actud and target, and dso ensuring that there is
aufficient raw materias to copy with expected raw materia demand.

A Stock and flow representation of this modd is shown in figure 3. It comprises two
sock management control dructures, one to manage the backlog and production darts,
the other to manage the acquigition of rav materids.

S—] Expected
Orders PrDAT

CEO /
/ Desired - EPRAT
Desired Starts

EO Backlog
EOAT Error /
CEPR

<

<Raw Materials

CRM

Backlog Week Backlog
Multiplier Discrepancy PRE Expected Payoff Raw
ror Productior Material
Rate Delta
Order
Customer Backlog Production Desired Raw
Orders ~~ Rae Material Stock
Stock
Stock Week
Multiplier Discrepency
X Payoff
Backlog
CBD Delta
- Raw
Consumption Arrival Rate [Supply Ling RM Order Rate
Rate
<Desired)
<Okr|der Backlog> N Desired Stock
Backlog> CR Error Shipping Delay Orders
Expected RMOR AT
Consumption
CECR ol

ECRAT

Figure3: Thestock and flow model for the Domestic M anufacturing Company

For the backlog management aspect of the mode, the equetions are;

(D | Order Backlog = INTEG(Cugtomer Orders - Production Rate , 120)

(@ | Customer Orders = Exogenous variadle, can vary from run to run

(@ | Production Rate = min (Desred Starts, min (Order Backlog , Raw Materids))

The Order Backlog (1) is the integrd of the Cusomer Orders minus the Production Rate.
Cugtomer Orders (2) are shown as condant, but as with any exogenous variadle, this can
vay for any given run of the modd. The Production Rate (3) is determined by a stock
management dructure, dbeit condrained s0 that there will be no darts if there are not
enough raw materias present or the Order Backlog is less than the Desred Starts.

Desred Sats (4) is the sum of Expected Orders (8) and the Backlog Discrepancy (5)
adjused by the production adjusment time (12). Expected Orders ae based on a
smoothing of Customer Orders, where the adjusment time is defined in equation (11).

(@ | Dedred Starts=max (0, (Backlog Discrepancy / PrDAT) + Expected Orders)

(® | Backlog Discrepancy = Order Backlog - Desired Backlog

(6) | Dedred Backlog = Backlog Week Multiplier * Expected Orders

(7) | Backlog Week Multiplier =6 (optimisation parameter)

© | Expected Orders= INTEG(CEO , 20)

© | CEO=EO Error/ EOAT

(20 | EO Error = Customer Orders - Expected Orders

(11) | EOAT =4 (optimisation parameter)

(12 | PrDAT = 1 (optimisation parameter)

Dedred Backlog (6) is based on the vdue specified in the problem nardive, and is a
product of Expected Orders ard Backlog Week Mulltiplier (7).

The rawv maeids management section of the modd is made up of the following
equations.

(13) | Raw Materids = INTEG(Arriva Rate- Consumption Rae, 0)

(14 | Consumption Rete = Production Rate

(15 | Arrivd Rate = Raw Materids Supply Line/ Shipping Delay

(16) | Sipping Dday =6

Raw Maeids (13) ae an integrd of the Arrivd Rae (15) minus the Consumption Rate
(14). The Consumption Rate equas the Production Rae (3), and assumes a one-to-one
correspondence between orders and raw materid consumption. The Arrival Rate is a firg
order dday on the Raw Maerids Supply Line (17), divided by the Shipping Dday (16).
The reason for choodng a fird order dday was to smplify the actud coding of the modd
a a later sage, dthough a higher-order or pipdine deay may wel be more gppropriate in

red-life circumstances.

(17) | Raw Materids Supply Line = INTEG(RM Order Rate- Arrivd Rate, 2)

(18) | RM Order Rate = Desred Stock Orders

(19) | Desred Stock Orders = max (0, (Stock Discrepancy / RMOR AT) + Expected
Consumption Rate)

(20) | Stock Discrepancy = Desired Raw Materid Stock - Raw Materids

(2D | Expected Consumption Rete = INTEG(CECR , 20)

(2 | RMORAT =4 (Optimisation Parameter)

(23) | CECR=CR bEror / ECRAT

(24) | CR Error = Consumption Rate - Expected Consumption Rate

) | ECRAT =4

The Raw Materids Supply Line (17) is an integrd of the Rawv Maerid Order Rae (18)
minus the Arrivd Rae (15). The Rawv Maerid Order Rate is smply the Desred Stock
Orders (19), which is based on a sock management sructure based on the Expected
Consumption Rate (21) and the Stock Discrepancy (20), adjusted by the RMOR AT (22).

Working further back through the decison logic for the Desred Stock Orders of raw
materids, a number of equations remain. Fire, the Desred Rawv Maerids Stock (26) is a
product of the Expected Production Rate (27) and the Stock Week Multiplier (28).

(26) | Dedred Raw Maerid Stock = Expected Production Rate * Stock Week Mulltiplier

(27) | Expected Production Rate = INTEG(CEPR , 20)

(28) | Stock Wesk Multiplier = 8 (Optimisation Parameter)

(29 | CEPR=PRError/ EPRAT

0 | EPRAT =4

(3D | PR Error = Production Rate- Expected Production Rate

Findly, as one of the modd’s gods is to be used to optimise the set of parameters (7),
(11), (12), (22) ad (28), and dlow the user to trade-off between two different objectives,
and a st of payoff functions are needed 0 that these can be minimised. [Note: there is no
theoreticad limit on the number of objectives that can be optimised. Two are sdected for
reedability purposes 0 tha they can be compared and dudies by the reader in two
dimensons]

The firg payoff function is the Payoff Backlog Ddta (32), which keeps track of the
cumulative squared distance of the Order Backlog (1) from the Desired Backlog (6). The
assumption here is that in this control system, the doser the actud is to the god (over
time), the better the result.

(3) | Payoff Backlog Delta= INTEG(CBD , 0)

(33 | CBD = (Dedired Backlog - Order Backlog) * (Desired Backlog - Order Backlog)

The second payoff function is the Payoff Raw Materid Ddta (34), which amilarly keeps
track of the squared digance of the Dedred Raw Materids Stock (26) and the Raw
Materids (13).

(3D | Payoff Raw Maeid Ddta= INTEG(CRMD , 0)

(3®) | CRMD = (Dedred Raw Maerid Stock - Raw Maerids) * (Dedred Raw
Materid Stock - Raw Materids)

To summaise, for a given paameer set, equations (32) and (34) are effectivdy the
output of the amulation, and these are used to cdculate the payoff for each objective in
the multiple objective optimiser. Therefore, the two objectives for the optimisation can be
Sated as.

Find the optimum vaues of the parameters.
» Backlog Week Multiplier
» Expected Order Adjusment Time (EOAT)
* Production Starts Adjusment Time (PrDAT)
= Stock Wesk Multiplier
» Raw Materids Order Adjusment Time (RMOR AT)

That minimisssthe vadues
» Payoff Backlog Ddta

» Payoff Raw Maeria Ddta

Thisisthe god of the multiple objective genetic agorithm, which is now detalled.

The Multiple Objective Optimisation Algorithm

MOO dgorithms usudly employ genetic dgorithms (GAs), which have been widdy used
to solve optimisation problems in many differet domains GAs goply the Dawiniat
related concepts of sdection, crossover and mutation on an initid population of random
solutions. Over many generations, these solutions converge towards the “best fit”, where
the srong solutions survive and the week @es are “weeded out”. In effect, this process is
used to discover the pesks (or optima) for each combination of parameter. The mutation
operaor endbles new random points of the solution space to be explored, and is designed
to ensure that solutions do not converge too quickly to loca optimum points.

The fird gep in deveoping a GA is to decide on the representation of the solution. In
many examples, bit grings (ones or zeros) are used, but integers and red numbers may
do be employed. Soutions are typicdly represeted by a one-dimensond aray.
Returning to our case dudy, the representation of a solution for this case is a one
dimensond aray of five places, where each location represents a vaue for one of the
parameters — in each case areal number in therange [1.0-15.0]

PL P2 P3 P4 P5
Backlog EOAT PrDAT RMOR AT Backlog
Week Week
Multiplier Multiplier
Equation (7) Equation (11) Equation (12) Equation (22) Equation (28)

The task of the optimisation process is to discover the best combingtion of vaue
paamees that optimises the two payoffs described in equaions (32) and (34). To
illustrate how the process works, let's assume tha five solutions are randomly generated,
and each solution contains a vaue for each parameter. These initid solutions are shown
below.

Solution P1 P2 P3 P4 PS
1 14 8.2 14.7 49 7.2
2 5.3 11 9.7 14.1 42
3 4.2 8.9 14 17 21
4 7.3 118 10.8 19 32
5 4.9 1.9 2.7 17 149

The next gep in the GA solution process is to evduate the payoff for each of these
solutions, and this can only be accomplished by running the smulaion modd Specified
ealier (equations 1 — 35) for each of the parameler sets contained in a given solution.
This ds0 means that the process is computationdly intensve, as the smulaion modd
has to be run for each possble solution (normdly 100) for every generaion (dso

normaly 100), so that 10,000 individud smulations are needed to arrive at the optimum.

When the gmulaion is complete, only two results are of interes to the optimiser, and
these are the vaues of the two payoff functions, each representing an objective to be
optimised (equations 32 and 34). In this sample illudration, we assume that, for each
individud smulation of a solution, the payoff vaues are returned, as shown bdow in the

next table.
Solution P1 P2 P3 P4 P5 Payoff | Payoff
Backlog | RM
Delta Delta
1 14 8.2 14.7 49 7.2 3712 150.98
2 5.3 11 9.7 141 4.2 220.0 65.0
3 4.2 8.9 14 17 21 150.12 85.18
4 7.3 118 10.8 19 3.2 78.65 110.8
5 4.9 19 2.7 17 14.9 100.0 20.8

14

Payoff RM Delta

This payoff vdues are now criticaly important for the GA, as they are a measure of the
fitness of each solution. In this case, both our objectives are minimisation, SO our next
task is to compare our solutions to see which ones are non-dominated (i.e. not bettered on
both counts by any other solution). As explaned ealier, non-dominated solutions ae
given the highest ranking, and this ranking is then used to cdculate ther probability of
section for the next generdtion. It is useful to represent each solution grgphicdly on a
scatter diagram, where each payoff is represented on a separate axis.

160
Solution 1 #37.12)150.98

140

120

Solution 4 ¢ 78.65, 1108

100
Solution 3

¢ 150.12, 85.18

80
Solution 2

¢ 220, 65

60

40

on

olution 5

20 1 nn’ 20.8

0 50 100 150 200
Payoff Backlog Delta

Figure 4: Determining whether solutionsare not dominated

The dominance rdationships are shown in the next table, ad should be read from left to
right, i.e solution 1 does not dominate solution 1, solution 1 dominates solution 2, etc.

250

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5
Solution 1 Doesnot Dominetes Dominates Does not Does not
dominate dominete dominete
Solution 2 Isdominated Does not Does not Isdominated | |sdomingted
by dominate dominate by by
Solution 3 Isdominated Does not Does not Isdominated | Isdominated
by dominate dominate by by
Solution 4 Does not Dominates Dominates Does not Does not
dominate dominate dominate
Solution 5 Does not Dominates Dominetes Does not Does not
dominate domineate dominete
Overall Dominated Dominated Not Not Not
Dominated dominated dominated
Ranking 2 2 5 5 5

For these five solutions, three are non-dominated, so0 they share the highest ranking, while
the two dominated solutions are ranked joint lowest (because, when teken as a par of
solutions, solutions 1 and 2 do not dominaie eech other.) As a gened rule, the highest
ranking is determined by the actud population Sze, which is normaly 100.

This purpose of the ranking process is to assgn probabilities for sdection to each
solution. This is because the next dage of the GA process is cdled sdection, and this
involves randomly sdecting solutions from the current populaion, where the probability
of sdection is proportiona to their ranking (i.e the higher the rank, the higher the

probability of being sdected). The sdection probabiliies for a given solution

caculated asfollows

is

Sdection Probability (Solution i) = Rark (i) / Sum (Rank(2).... Rank(N))

Where N isthe totd number of solutions (in this example N=5).

Solution Payoff Payoff RM Is Ranking Probability
Backlog Delta Dominated of Selection
Delta for New
Generation
1 3712 150.98 NO 5 519
2 2200 65.0 YES 2 2/19
3 150.12 85.18 YES 2 2/19
4 7865 1108 NO 5 519
5 1000 208 NO 5 519

Based on this ranking process, the srongest solutions (i.e. those with the highest ranking)
have the highest probability of “surviva” when the next generation of solutions gets
sected. Within the dgorithm, a technique known as roulette whed sdection is used,
where a random uniform number between [0,1] is sdected, and, depending on where this
fdls on the “whed”, the gppropriate sdution is sdected and placed in a new st known as
the mating pool. For example if the random number was in the range [0, 5/19], then
solution 1 would be sHected and placed in the mating pool.

Once the sdection process has occurred, two important transformations then take place
which result in a modification of the mating pool. The fird of these is cdled crossover,
where a proportion of solutions are sdected and “crossedtover” in a par-wise manner,
and the “offring” then replace ther parents in the solution set. A random crossover
point is sdected. Each solution is “spliced” a this crossover point, and the firs pat of
one solution is combined with the second hdlf of the other, and vice versa

17

To illugrate this point, if solutions 1 and 5 had been sdected for the mating pool, and if
they then had been marked for crossover, these solutions would then be conddered to be

“

parents.”

Solution P1 P2 P3 PA P5
1 14 8.2 14.7 49 1.2
5 4.9 19 2.7 17 14.9

Furthermore, if we assume that the crossover location was randomly sdected as location
3, the crossover process would give rise to two new solutions, which would then replace
their parents. Welabd these 1’ and 5'.

Solution P1 P2 P3 PA PS5
r 14 8.2 14.7 17 14.9
5 4.9 19 2.7 49 7.2

Thee are new solutions, and during the next generation of the GA, thar fitness will be
decided on by running the smulation modd, and ranking the solutions based on whether
or not they are dominated by others.

Findly, before the next generdtion can be processed, the find transformation, caled
mutation, is goplied to a smdl proportion of solutions (normdly less than 0.05). For a
given solution sdected for mutation, one of its parameters will be assgned a new random
vadue from the range [1-15]. For example, if solution 1' was sdected for mutaion, first
one of its locations would be randomly sdected, and then tha location would be
randomly changed to a new vdue For example if the location sdected was 3, and the
new value was 1.2, then solution 1" would have the following vaues

Solution P1 P2 P3 PA PS5
r 14 8.2 12 17 14.9

When the mutation dage is completed, the mating pool now becomes the new population,
and the process of ranking, sdection, crossover and mutetion is repested for up to 100
generations, and the solution will converge to produce a set of solutions that comprise the
Pareto front. These are then the optima solutions, and the decison maker can andyse
these before sdecting the most suiteble dternative (based on the decison maker's
judgement and priorities). A sample set of results is documented in the next section, but
before that, the overdl agorithm for the multiple objective GA is summarised.

Random sePopul ation();
for(genNumber = 0; genNunmber < number Generations; genNunber ++)
Cal cul at ePayoffs();
RankAl | Sol utions();
Cal cul at eSel ecti onProbabilities();
Gener at eMat i ngPool () ;
Crossover Mat i ngPool () ;
Mut at eMat i ngPool () ;

CopyMat i ngPool ToPopul ation();
}

SavePar et oFront () ;

500

450

400

350

300

250

Raw Material Delta

200

Experimental Results

A sample solution st is now explored. In figure 5, the entire solution set is shown firg,
and the duder of points near the x and y axes is an indication of how the solutions
converge over time While the initid generations would contan solutions that are
dominated, through successve generaions of sdection, crossover, and mutation, a find
Pareto set emerges that contains the set of optimal solutions.

50 100 150 200 250 300 350
Backlog Delta

Figure5: The complete se of solutions produced by an optimisation run wher e parametersremain

constant

After the find generdtion, the st of nondominated solutions is generaied, as shown in
figure 6. Each solution conggts of the optima vaues of the parameters that were used to
run the smulaion modd. In theory, any one of these solutions can be sdected by the

decison maker.

Raw Material Delta

0.7

The Pareto Front

S1

Extreme

0.6

Points

0.5

o
i

o
w

\

‘e

0.2

0.1

¢ @ o * .\SZ

®> &

T T T T T T T
10 20 30 40 50 60 70 80
Backlog Delta

Figure 6: The Pareto front for an optimisation run

We now consder two solutions from the optimad set, where these solutions are the two
extreme points Solution 1 (S1) has coordinaes (0522, 0.622), while solution 2 (2) has
the vaues (74.94, 0.005). [These numbers are scded down using a payoff reference
vdue gmilar to the goproach used by Coyles (1996) optimisations] These sdected
lutions have the following characteridtics:

Sl peforms best on the Backlog Ddta payoff function. This means tha if the
decison meker sdects this solution, they effectivey give greater importance to
having the backlog doser to its god than having the raw maerid vadue closer to

its corresponding god.

X paforms best on the Raw Materid Ddta payoff function. This means that if
the decson meker sdects this solution, the decison meker places the
minimisation of raw materid varigbility as a higher priority than order varighility.

Further information may then be obtained on each solution, and these are shown below.

Solution P1 P2 P3 P4 P5
Ean (7) Egn(11) | Egn(12) | Egn(22) | Egn(28)
Sl 1421 473 1103 111 1.39
Y 1421 6.46 1103 i1 139

Interegtingly, in this case, the only parameter vadue that makes the extreme solutions
different is P2 (Expected Order Adjusment Time — EOAT), but it would be difficult to
prove any causa rddionship here. Additiond solutions from the Pareto front from this
particular optimisation run are summarised below.

BacklogWeekMult

P1
13.96
14.21
14.21
14.21
13.96

8.08
13.96
14.21
13.96

EO_AT
P2
9.69
6.47
6.47
6.47
9.69
6.47
9.69
6.47
9.69

P3
7.62
11.03
7.62
11.03
11.03
11.03
11.03
10.21
11.03

PrD_AT RMOR_AT

P4
1.11
1.11
5.27
1.11
3.24
1.11
1.11
111
111

StockWeekMult

P5
1.40
1.02
1.40
1.40
1.40
1.02
2.42
1.40
1.40

Payoffl

59.44577
37.78219
37.78219
37.19301
37.78219
37.78219
37.19301
37.78219
0.905484

Payoff2

0.021629
0.027973
0.027973

0.02889
0.027973
0.027973

0.02889
0.027973
0.259402

An assumption made in the modds to date was that the vdue of a parameter does not
change over the course of the smulation. The underlying GA sructure was designed in

such as way 0 that the vaues of parameters can change over time. This is achieved by

increesing the dze of the solution so that it can hold parameter data for each time

interval. For example, if we were to run this five parameter an optimisation for 50 time
units, our solution array has 5 x 50 = 250 dements. The shape of the overdl solution s,
shown in figure 7, is makedly different to the patern from the earlier run where the
optimum parameter values remained condant for the entire smulation.

RAw Material Delta

140

120

100

80

Backlog Delta

Figure7: ThePareto front for an optimisation run wher e parameter s change every time unit

In comparing figure 7 with figure 5, it is dear that:
» Theoverdl solutionsin figure 5 produce results that are better on both objectives.
» The solutions in the earlier optimisaion run have a greaster goread and are more
diverse, and s0 will give the decison maker a great degree of choice is trading off
the different solutions.

Further work needs to be done on the possble reasons for this sgnificant difference, but
on the face of it, it does suggest that having congancy in the choice of parameters — for
this modd — does lead to better payoffs. This obsarvation seems to confirm Coyl€'s
(1996) view that “it is a rule of thumb in control enginesring that reducing gains and
increasng ddays is likdy to increese dability.” Sample output from an optimisaion run
where parameters change frequently is shown in figure 8.

16

| N AR AN
/%&/V\ A M
AV

10

Figure8: An optimisation run with frequently changing parameter values

Conclusions

The am of this pgoer was to demondrate that multiple objective optimisation can be
employed with sysem dynamics models in order to asis decison makers sdect ther
prefared optimd solution. A sample modd, based on the Domedic Manufacturing
Company was implemented, and tets showed that vdid and feesble results were
generated. Future work will extend the gpplication of this technique to a new st of
problems, for example, those involving the cdassc trade off of time, defects and codt, and
it is hoped tha these future modds will dso provide a useful basis to evauate whether or
not that having condancy in the values of parameters leads to better overdl payoffs.
Another research chalenge is to incorporate more efficent and effective genetic
dgorithms, through the use of ditism, archiving and more advanced forms of crossover.

24

References

Dangefidd, B. and C. Roberts. 1996. “An Overview of Straegy and Tactics in Sysem
Dynamics Optimisation.” Journal of the Operational Research Society, 47, pp 405-423.

Chen, YaoTaung, and Bingcheng Jeng. (2004). “Policy Dedgn to Ftting Desred
Behaviour Pettern for System Dynamics Models” Proceedings of the 22" International
Conference of the System Dynamics Society, Oxford, England.

Codlo Codlo, CA., Van Vddhizen, DA, and Lamont, G.B. 2002. Evolutionary
Algaiithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New
York, NY 10013.

Coyle, R.G. 1996. System Dynamics: A Practical Approach. Chapman and Hall, London,
UK.

Deb, K. 2001. Multi-Objective Optimisation Using Evolutionary Algorithms. John Wiley
and Sons, Baffins Lane, Chichester, UK.

Grossman, B. 2002. “Policy Optimization in Dynamic Modds with Genetic Algorithms’
Proceedings of the 20" International Conference of the System Dynamics Society,
Pdermo, Itay.

Kdohaju, R. and EF. Wodgenhome 1989. “A Case Sudy in Sysgem Dynamics
Optimisation.” J. Ops. Res. Soc., Val. 40, No.3,, pp 221-230.

Richardson, G.P and A.L Pugh Ill. 1981. Introduction to Systems Dynamics Modding
with DYNAMO. MIT Press.

Serman, J 1989. “Modding managerid behaviour: Misperceptions of feedback in a
dynamic decison making experiment.” Management Science. 35 (3), pp 321-339.

