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Abstract 
This paper addresses the question of whether there is a conceptual model that can explain 
operational risk in a wide range of organizations.  It utilizes case studies and other research 
literature to build on the foundation laid by previous modeling research into system failures.  
The validity of the model is tested by how well it fits the parameters of operational risk failures 
and successes in case studies representing a diverse range of situations in manufacturing, 
mining, financial services and government. 
 
 

1. Introduction 
On October 1, 2003 a truck carrying $10-20 million worth of Biovail’s Wellbutrin XL 
antidepressant drug was involved in a multiple vehicle accident just outside of Chicago.  Two 
days later, the company revealed that Q3 earnings would be $45 – 65 million lower than 
expected for three unrelated reasons.  First was the traffic accident, even though inspection of the 
product was expected to show it to be still saleable, second was the fiercer than expected 
competition for a generic ulcer drug, and third were the late shipments due to order backlogs for 
a heart drug.  Investors responded by knocking 17.7% or just over $1 billion off the company’s 
market capitalization.  The loss in market capitalization was far in excess of the expected 
operational and market losses from the three incidents alone, because they were interpreted by 
investors not just at face value but as signals that operational and market risks facing the 
company were being poorly handled, and that operational problems might run deeper than the 
company was willing to admit.  One analyst who downgraded the stock said that "near-term 
operational uncertainty has eroded our confidence in the stock's ability to outperform" its peers.1  
Clearly, operational risk management matters a great deal in adding value to shareholders. 

Unfortunately, risk management in operations has traditionally played only a supporting 
role, if it played any role at all, in research agendas that have been primarily directed towards 
operational improvement, cost reduction and performance optimization.  A great deal of public 
and academic attention has been given to major failures in operational systems such as the 
Challenger and Columbia space shuttle disasters, the toxic gas release at Bhopal, the major oil 

                                                 

1 http://www.thestreet.com/stocks/robertsteyer/10117398.html 
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spill from the Exxon Valdez, and the core melt-down at the Three Mile Island nuclear power 
plant.  Despite this, the operations management field has not paid much attention to operational 
risk, as it continues to focus on the traditional operational goals of low cost, high quality, and 
effective delivery of goods and services. 

Lewis (2003) concludes from his review of the operations management and risk 
management literature that the subject of operational risk is “relatively under-researched” and 
that “operational risk should be a core concern of OM theory and practice.”  Indeed, since the 
September 11, 2001 terrorist attacks on the USA, there has been a heightened awareness of 
safety and security matters, and several calls for a shift in the operations management research 
agenda towards these issues.  For example, referring to the events of September 11, Starr (2001) 
says that the discipline of operations management must alter its priorities to meet the challenges 
ahead.  According to Starr, one of the new priorities for operations management research must be 
safety and security management. 

Yet safety and security are only two aspects of operational risk management.  The 
failures of Barings Bank, Enron and other financial services companies show that inadequate 
monitoring and control of operations can lead to enormous financial losses even though no one 
was hurt in a safety or security sense.  Similarly, operational failures such as Exxon Valdez can 
cause enormous impacts to the environment and, as Biovail found out, there are significant risks 
to be managed as part of a company’s supply chain activities.  There has been a considerable 
amount of research in the operations management field that has focused on reducing the risks of 
producing defective products or inadequate services, in other words, on quality.  However, for 
the most part, other operational risks have been ignored or assumed to be an implicit component 
of “quality.” We interpret the meaning of “operational risks” quite broadly to include all risks 
associated with the operational activities of the firm including, but not limited to, financial, 
production, safety, quality, environment, security and health risks.  We hope to convince the 
reader that quality is a subset of operational risk, albeit an important one. 

Previous research by Cooke (2003b) has shown that the relationships and organizational 
structures found in the specific case of the Westray mine disaster can be represented in a system 
dynamics model.  Simulation results from this model have shown that the same production 
system can operate safely or in a manner that leads to disaster depending on the choice of 
parameters that influence management’s commitment to safety.  The feedback loop that governs 
system behavior in the Westray case can operate as either a Production Priority over Safety loop 
or a Safety Priority over Production loop depending on the values of system parameters.  But are 
there any examples of success where this loop does indeed operate in a virtuous fashion?  A case 
study of NOVA Chemical’s Decatur plant, briefly described in section 3.7 of this paper, provides 
a contrast to the Westray case by showing that the safety/production feedback loop can indeed 
operate in a mode of positive reinforcement, with increasing safety leading to increased 
production.  Do similar risk dynamics operate in other organizations? 

This paper addresses this and other holistic questions with respect to operational risk.  
Specifically, is there an integrated theoretical framework into which operational risk in a wide 
range of organizations, ranging from manufacturing to financial services, can fit?  To answer this 
question, this research integrates the prior literature from other disciplines with information 
drawn from case studies in order to develop a conceptual dynamic model for operational risk.  In 
striving to answer this question, we hope that our research will contribute towards a richer 
understanding of operational risk dynamics and will ultimately lead to improved strategies for 
risk management and control. 
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2. Research Approach 
Our research approach combines two methods that have been previously used to good effect in 
operations management research.  These are 1) the derivation of operations management theory 
by integrating findings from other fields (Amundson, 1998) and 2) the conceptual induction of a 
theoretical framework by analyzing similar occurrences of a phenomenon being studied 
(Meredith, 1993). 

Importing and using theories from other fields of research outside of operations 
management has been advocated by Amundson (1998), who emphasizes the importance of not 
“reinventing the wheel.”   This approach was practiced to good effect by Stewart and Grout 
(2001) who drew from the fields of psychology and cognitive science to develop a theoretical 
framework for the quality control technique known as poka-yoke (mistake proofing).  Since the 
primary purpose of this paper is theory development, a similar approach was taken here by 
starting with a broad review of the prior literature to identify previous findings for possible 
incorporation into an operational risk conceptual model.  This literature exists not only in the 
field of operations management, but also in the fields of insurance and risk management, finance, 
safety and reliability engineering, organizational theory, sociology, and psychology. 

The second research approach used in this paper is that of conceptual induction. As 
discussed by Meredith (1993):  “In this approach, a number of occurrences of a phenomenon are 
analyzed to infer the nature of the system or treatment which produced them.”  In the research 
presented here, the phenomenon being studied is operational risk, and the research method is to 
draw inferences about the nature of the system by studying cases of operational risk failures and 
successes.  Although failures tend to be better documented than successes, primary data drawn 
from a case study of operational improvement at a chemical plant site, conducted by one of the 
authors, was used to complement the many secondary data sources of failure drawn from the 
literature.   

The case-based conceptual induction approach taken here is similar to that used by Lewis 
(2003).  Lewis developed a preliminary model of operational risk based upon literature research 
and then tested it against an analysis of four original case studies.  The case studies were selected 
to provide different examples of causation, consequence and control.  Another example of 
research using a conceptual induction approach is found in Wiers and van der Schaaf (1997).  
Wiers and van der Schaaf propose a theoretical framework for allocating scheduling tasks 
between human schedulers and machine-based scheduling systems.  They test their proposed 
framework against observations drawn from four case studies of production unit control. 

 

3. Selected Cases in Operational Risk 
This section summarizes the seven case studies that were used to validate the conceptual model.  
The cases discussed below were selected to encompass operational risk situations in a wide range 
of industries.  Some systems, by their nature, are more prone to disaster than others.  However, 
like the generic error-modeling system (GEMS) proposed by Reason (1990) for human problem-
solving failures, we propose that there is a generic operational risk system that underlies success 
and failure in complex operations.  This idea can be developed further by examining the 
organizational systems underlying these cases in order to find common features and structural 
similarities. 
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3.1. The NASA Space Shuttle Program, Houston, Texas 
The NASA Space Shuttle Program has suffered two disasters, the loss of Challenger on January 
8, 1986 and the loss of Columbia on February 1, 2003.  The facts of these disasters are well 
known, and will not be repeated here.  The systemic causes of both accidents, which lie in the 
sociological and cultural fabric of the NASA organization, were not emphasized in the Report of 
the Presidential Commission on the Space Shuttle Challenger Accident  (1986),  but were 
closely scrutinized by the Columbia Accident Investigation Board (2003).  The two shuttle 
disasters lend further support to the notion, discussed in Chapter 5, that the same system will 
continue to produce the same incidents if no changes are made to the system, and that disasters 
will not usually occur spontaneously but rather will result from organizational failure to 
recognize the warning signals from “pre-cursor” incidents.  Furthermore, the conclusions drawn 
by the Columbia Accident Investigation Board (2003) about the NASA system support the 
suggestion by Vaughan (1996), based on her insightful and thorough analysis of the Challenger 
disaster, that “mistake, mishap and disaster are socially organized and systematically produced 
by social structures.”  The NASA disasters did not result from individual wrongdoings or 
managerial misdeeds, but rather from an organization-wide culture that institutionalized 
production pressures and accepted risk as a daily fact of life.  Sad to say, the two shuttle disasters 
appear to have been good examples of what Perrow (1984) calls “normal” accidents. 

3.2. Barings Bank, London, England 
On February 23, 1995 Barings plc, one of the oldest investment banks in England, discovered 
that Nick Leeson, its chief trader and general manager of its Singapore office, had disappeared.  
A few days later they discovered that Leeson had left them with open trading positions in 
Japanese stock and bond derivatives representing mark-to-market losses of over US$900 million.  
The venerable bank’s assets were only $550 million and so bankruptcy was inevitable.  To 
preserve faith in the banking system, a rescue deal was quickly put into place and by March 9, 
1995 the Dutch financial service conglomerate ING had acquired Barings.  As Zhang (1995) 
points out, “it had taken over two centuries to build the Barings family business, yet it took only 
a few days for it to disappear.” 

Nick Leeson had started as a clerk in the back office of the Singapore branch.  When he 
was promoted to the trading floor he did not give up his back office responsibilities.  This broke 
the “cardinal rule” of separating front office trading activities from the back office 
documentation and reporting activities.  Since he played both roles, Leeson was able to set up 
fictitious accounts to hide his losing trades.  Management in London were not aware of Leeson’s 
unauthorized trading activities, even though his abnormally high profits in prior years should 
have alerted them to the fact that unusually large risks were being taken in the Singapore office.  
This ignorance on the part of senior management was compounded by a weak internal audit 
function that did not take a strong enough stand against Leeson carrying out both front and back 
office functions, even though they were aware of it and could not have been blind to the risks 
that this practice created.   

One might conjecture that Leeson’s previous trading successes were also a contributing 
factor to his downfall, as this success convinced him of his superior market knowledge.  
Although the Japanese markets had been trending downwards for several years, Leeson was 
quite certain that a turnaround was imminent.  In fact, all of his trading positions represented a 
one-sided bet on his bullish outlook for the Japanese economy.  However, the Kobe earthquake 
on January 17, 1995 triggered a further erosion of confidence in the economic recovery and a 
1000 point drop in the Nikkei Index, exacerbated Leeson’s losses.  Yet, instead of cutting his 

 - 4 - 



losses at that point, Leeson continued to bet on a recovery by increasing his position.  When he 
could no longer hide the losses from management in London, he fled. 

3.3. Confederation Life Insurance Company, Toronto, Ontario 
McQueen (1996) recounts the tragic tale of Confederation Life Insurance Company (“Confed”), 
which was the fourth largest insurance company in Canada with 4,400 employees and C$19 
billion in assets, at least on paper, when it was seized by regulators on August 11, 1994.  
McQueen found that “Confed didn’t need to fail, but fail it did” because of a complex 
combination of ignorance, greed and human error.  CEO Pat Burns shouldered the greatest 
proportion of blame, and there is no doubt that his flawed belief that “growth is inherently 
profitable” was an important factor in the company’s demise.  However, another important factor 
was the inability of senior management to fully understand the complexity of the company’s 
operations and the consequences of operating leverage.  No other insurance company relied on 
leveraged real estate investments as much as Confed did, and none had a greater percentage of its 
assets invested in real estate as did Confed (73.8% of assets at its peak).  Nevertheless, Burns 
was aided and abetted by a Board of Directors that was weak-willed and ill-informed as to the 
nature of Confed’s operations, and by other company officers who took Confed into businesses 
and investments, such as leasing and real estate, in which they had limited knowledge and 
expertise.  For example, John Heard was a life-insurance expert who served as chairman of 
Confederation Trust despite admitting to Burns that he had no knowledge or understanding of its 
businesses.  In another example, Confed’s system for tracking the flow of funds was so 
inadequate that internal attempts to carry out a forensic audit of Confed Treasury Services were 
abandoned because the system was so complex.  None of the company officers were willing to 
stand up to CEO Burns on the important issues and say “this doesn’t make any sense” and so 
there was little internal opposition to increasingly risky investments, which were duly rubber-
stamped by the Board. 

The slow demise of Confed was not entirely invisible to the Government inspectors who 
were responsible for regulating financial institutions, but they operated in a culture in which 
“stuff that came up from the field would be muted by the time it got to Ottawa” (McQueen, p. 
68) and so regulatory interventions were too little, too late.  Confed’s plight was also quite 
evident to other insurance companies in Canada, but they stood to gain more from eliminating a 
competitor and picking up assets in Confed’s bankruptcy liquidation than they did in coming to 
Confed’s rescue. 

3.4. Curragh Resources’ Westray Mine, Stellarton, Nova Scotia2 
On May 9 1992, 26 miners were killed in an explosion at the Westray mine in Pictou County, 
Nova Scotia.  This was not the first fatal accident in this coalfield, which had claimed over 650 
lives before the Westray mine was even proposed.   

The story started in 1987 when Curragh Resources Inc. created a subsidiary, Westray 
Coal, to operate a proposed coal mine that would create badly needed jobs in Plymouth Nova 
Scotia, a depressed area of the country.  Curragh’s CEO had strong connections to government 

                                                 

2 A system dynamics model of this case can be found in Cooke (2003).  A summary of the case is 

provided here for ease of reference.  The system dynamics analysis of this case had an important 

influence on the overall development of the conceptual dynamic model presented here. 
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officials, which helped them to win a favorable contract from a publicly owned power company 
and favorable government loan guarantees to finance the mine, despite having had no prior 
experience operating coal mines.  The mine had problems from the start, partly because of the 
technical difficulties inherent in the Pictou coal seam and partly because of Curragh taking 
shortcuts to get the mine into production as soon as possible.  Problems included roof falls, 
accumulation of methane and coal dust, and unanticipated geological conditions. 

Although workers complained about the safety conditions in the mine, management did 
not listen, and neither did government regulators.  Some experienced workers quit because of the 
conditions in the mine, but most workers stayed because of desperation for employment.  Some 
government inspectors had concerns about the mine, but their concerns went unheeded by their 
superiors.  The government incentives and subsidies extended to Westray encouraged production 
at the expense of safety. 

Prior to the explosion, the Westray mine had many incidents that could have claimed lives 
but instead ended up as production stoppages.  Inevitably, a source of ignition combined with an 
accumulation of methane and coal dust caused the fatal explosion.  In the words of public inquiry 
chairperson Richard (1996), this was a "predictable disaster". 

3.5. Shell Chemical Company, Deer Park, Texas 
A power surge during a lightning storm on June 22, 1997 caused a transformer to fail at a Shell 
Chemical Company ethylene plant in Deer Park, near Houston, Texas.  As on all such ethylene 
plants, there is a large gas compressor between the “hot side” and the “cold side” of the plant.  
During plant start-up after the power failure, this compressor tripped out several times before it 
eventually stabilized and ran smoothly.  Whenever the compressor tripped out, a 36 inch swing 
check slammed shut.  This large check valve was designed to prevent undesirable back flow 
through the compressor.  Soon after start up, several people in the compressor area heard a loud 
“pop” and then the constant noise of a high pressure gas release, which ignited about four 
minutes after the initial release.  Several people were injured in the explosion, but fortunately no 
one was killed as people evacuated the area as soon as they realized the size of the leak. 

An investigation by EPA and OSHA (1998) showed that a “dowel pin” connecting the 
valve’s drive shaft to the valve disk had fractured and sheared off, allowing the high pressure gas 
in the process to blow the drive shaft out of the casing.  The gas continued to escape at high 
velocity through the resulting hole.   Surging of the compressor during start-up conditions caused 
the valve disk to repeatedly slam shut, creating high stresses on the dowel pin.  Inadequate 
design of the valve caused the dowel pin to receive higher stresses than it was intended to have, 
and embrittlement by hydrogen in the process gas caused acceleration of stress-related fractures 
in the pin.  The valve had not been subjected to regular maintenance inspections, so any 
deterioration in the condition of the valve had not been detected, and operating procedures did 
not require the operators to check the position of the valve before restarting the compressor, 
which may have indicated that something was wrong during the trips.  Lessons learned from 
prior incidents at the same plant and at other locations, involving the same type of check valve, 
were not adequately identified, shared, or implemented.  Coincidently, one of the prior incidents 
had occurred while a process hazard analysis (PHA) was being done.  The PHA was resumed 
after the valves were repaired, but remarkably the PHA did not identify the risks associated with 
a shaft blow-out in these types of check valves. 
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3.6. September 11, 2001 Terrorist Attacks, USA 
This case is different from the previous ones in two important respects.  First, the “operational 
system” is not part of a corporate entity, but rather it is part of the US economy as a whole.  
However, one could consider the relevant “operations” to be those of the US government 
agencies and the civil aviation industry.  Second, the risk to the system is an external security 
threat from outside the system.   

Chomsky (2001) presents what many people would consider to be a controversial unpatriotic 
view of the “9-11” attack as being not a terrorist act but rather an understandable response in 
kind to centuries of Western aggression towards non-Christians.  However, one doesn’t have to 
agree with Chomsky’s views to recognize that the roots of the 9-11 attacks lie in the strong 
feelings among Islamic countries against the US and its policies in the Middle East.  Attacks on 
the USS Cole, US embassies in Africa, and the prior terrorist attack on the World Trade Center 
in 1993 were just some of the pre-cursor incidents signaling a high risk of disaster.  According to 
Rowley (2002), the activities of terrorist cells in the US were known to the CIA and FBI, but 
these agencies were unable to coordinate an effective response because the information systems 
and communication processes in and between local agency offices were poor.  Rowley was a 
veteran agent who complained of the “climate of fear” and “pecking order” in the layers of 
bureaucracy that inhibited effective investigations and suppressed the concerns of low-level 
agents.  However, because of the secrecy surrounding the activities of these agencies, we may 
never know the truth behind what really happened. 

3.7. NOVA Chemicals Corporation, Decatur, Alabama 
Data for this case, which differs from the others because it tells a risk management story that 
ends in success rather than failure, was collected from on-site interviews with 10-12 people in 
plant operations, maintenance, quality control, safety and management.   NOVA acquired the 
Decatur site as part of a major acquisition in 1990.  As it turned out, the previous owners had 
neglected plant maintenance and capital spending over the previous fifteen years, which is quite 
common for such “discontinued operations.”  Employees were poorly trained and had worked for 
many years under a hierarchical management style that had stifled their involvement.  Although 
NOVA wanted to implement a more participative style of management, the site had made little 
progress during the first three years of NOVA ownership, with continuing poor safety 
performance, poor quality, frequent equipment break-downs and many customer complaints. 

Senior management brought in a new site manager in 1994 after the site had hit “rock-
bottom” with a very poor result from a NOVA corporate audit of process safety management.  
The new site manager knew that the first thing that had to change was management itself.  
Members of the site leadership team that couldn’t change were replaced.  Changing leadership at 
the site sent a strong signal to all employees that the company was serious about performance 
improvement.  The new leadership team set up an improvement process that started with 
employee involvement in developing the site mission statement.  Leadership provided training 
and set clear expectations for each employee and then coached them based on the behaviors they 
observed.  Celebration of employee “wins,” no matter how small, reinforced productive 
behaviors and moved the site closer to achieving its objectives.  A virtuous circle emerged, in 
which the more employees were involved in problem-solving and trusted to do the right thing, 
the more improvement opportunities were identified and implemented. 

In the four years after the performance improvement initiatives had been undertaken, the 
Decatur site did not have a lost time injury, had reduced minor injuries from 6-7 per year to 0-2 
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per year, increased production by 70%, improved on-stream time from 84% to 93% and 
improved climate survey results from 20% below norm to more than 10% above norm. 

 

4. A Conceptual Model of Operational Risk 
The following sections describe several concepts, which when taken together will provide an 
integrated model of operational risk that applies to a wide range of types of operations.  The goal 
is to find a theoretical model of operational risk that will apply reasonably well to all types of 
operations, whether in manufacturing or services.  In other words, the theoretical framework 
should fit the failures at Barings Bank or Enron (financial collapse) just as well as it fits the 
failures at Union Carbide Bhopal (gas release) or Westray mine (coal dust/methane explosion). 

4.1. Introducing the Model: A Stochastic, Dynamic View of Risk 
A socio-technical system is a system comprising both a social system and a technical system.  
The social system includes people, their attitudes and behaviors, and their interactions in a 
formal or informal organization.  The technical system includes machines, computers or other 
forms of technology, and rules or procedures.  An “operational system” is a type of socio-
technical system constructed for the purpose of adding value in the process of transforming 
inputs into outputs.  In the most general case, we could say that “operational risk” arises from the 
operation of a socio-technical system.   

To understand the origins of operational risk, we can build on an analogy with the 
thermodynamic property of entropy made by Bar-Yam (1997) and Wolf (2001).  In a 
thermodynamic system, the total number of possible states of the system φ is a function of the 
internal energy, the volume and the number of types of particles of the system.  We may interpret 
the “internal energy” of a socio-technical system to be the overall activity level of the system A, 
as measured by number of transactions or tasks carried out per unit time.  The “volume” of a 
socio-technical system might be simply interpreted as being its size S, which could be measured 
by a number of possible parameters such as enterprise value or replacement cost.  The “number 
of types of particles” is a little more difficult to interpret, but could be construed as being a 
function of number of job types, the number of types of operations,  the number of different 
technologies, and the number of locations at which operations are conducted.  We will call this 
dimension the “diversity” of the system, D.  Based on these analogies, we might expect that the 
“complexity” of a socio-technical system will be a function of its overall activity level, its size, 
and the diversity of its people and operations, i.e. system complexity ( )φgC =  and 

( )DSAf ,,=φ . 
This model can be extended further by recognizing that socio-technical systems have 

dynamic complexity, meaning that their complexity changes over time.  This can be modeled by 
interpreting the parameters A, S and D as being stochastic parameters whose values will follow a 
Brownian-type of motion with respect to time.  Woo and Vicente (2003) have also used an 
analogy with Brownian motion to describe the migration of work practices towards the boundary 
of safety.  Brownian motion is named after Robert Brown who found that particles of pollen in 
water are buffeted by water molecules, causing the pollen to move randomly in three-
dimensional space.  Many models in continuous time finance assume that freely-traded market 
prices are buffeted by “molecules” of information and actions of individual agents, causing 
market prices to move in a stochastic manner that resembles Brownian motion.   
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In the model presented here, we postulate that the operational system is an entity for 
which risk can be measured and represented on a scale of risk.  However, the quantity of 
operational risk at any moment in time will be a random variable whose value depends on the 
values of the parameters of the human, technical, organizational and process characteristics of 
the operation and on the nature of the function by which these parameters are converted into risk.  
Since there are an enormous number of parameters that can affect operational risk, and since the 
values of these parameters can also change randomly in time, we suggest that the risk value for 
the operation as a whole will behave in a manner that is analogous to Brownian motion. 
 Unlike standard Brownian motion, the variance of operational risk will not increase 
linearly with time because it is “tethered” or constrained by some of the system parameters and 
by the controls imposed on the system.  The analogy with Brown’s observations would be that 
while the pollen moves around randomly within the confines of the water, no grains jump out of 
the test tube in which the water is confined.  Thus, we might expect that operational risk will 
fluctuate in a Brownian motion-like manner until it goes outside a safety envelope or “zone of 
safety.”  This safety envelope is a multi-dimensional construct, consisting of both system 
parameters and controls, which is somewhat analogous to the concept of control limits in 
statistical quality control.  However, while the quality of a product might be adequately captured 
by a relatively small number of characteristics, the risks in an operational system might be 
described by perhaps thousands, if not millions, of characteristics.  These risk characteristics may 
take many forms including tangible unsafe conditions that can be revealed by inspection, latent 
conditions that are not yet evident, or intangible risks embodied in the attitudes, behaviors or 
training of managers and employees. 

Breaching of the safety envelope leads to the immediate generation of an incident or to an 
unsafe or latent condition that may lead to an incident later in time. We suggest that one can 
view an incident as “releasing potential energy” from the system, which can cause a range of 
losses depending on the size of release.  The “potential energy” can be interpreted as an accident 
waiting to happen, or as a latent condition that is waiting for a triggering event to unleash its 
potential for loss.  Once the energy is released, the system can “fail safe,” in which case it returns 
to a condition within acceptable limits of safety after corrective actions have been taken, or it can 
“fail unsafe,” in which case the condition of the system can further deteriorate.  It is also possible 
that a latent condition for loss can be discovered by the operations team and corrective action 
taken before an incident occurs.  These ideas are illustrated in the diagram shown in Figure 1. 

 

Brownian-type Motion 
Safety 

Envelope 

 
FIGURE 1: A DYNAMIC, STOCHASTIC VIEW OF SYSTEM RISK 
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This safety envelope concept was investigated by Marcus and Nichols (1999) in a case 
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FIGURE 2: A CONCEPTUAL MODEL OF OPERATIONAL RISK  

                                                

 
study of two nuclear power plants.  They found that organizational drift towards the edge of the
safety envelope was influenced by resource allocation decisions, whereby one of the plants 
which previously had outstanding operational performance moved closer to the edge of the 
safety envelope as resources were withdrawn over time.  Other organizational characteristics
such as resilience (see Wildavsky (1988)), are important for detecting and responding to warni
signals generated as the boundary of the safety envelope is approached. 

4.2. Incorporating Feedback into the Model 
h, Loch, and De Meyer (2002) have proposed a conce

uncertainty, ambiguity and complexity in project management.  Managing operational risk is
ultimately the same as managing project risk except that it deals with an ongoing operation rat
than a project of finite duration, and the outcome of value is not the successful completion of the 
project but rather the ongoing viability and safety of the operation.  Putting together the ideas 
from the previous section, we will now present an overall conceptual model of operational risk
Our model draws inspiration from early control theory/systems theory (see Bekey (1972) for 
example) and from the Pich, Loch, and De Meyer (2002) model of risk in project managemen
Our model, which is summarized in Figure 2, incorporates the idea that the state of the 
operational system can be influenced by both factors of chance (states of the world) and
activities initiated by people acting within the system (operations decisions).  It should be no
that all of the parameters in this model are either stochastic multi-dimensional variables or 
complex functions of these variables, which will be difficult to quantify for all but the simp
of systems.  Also, because we are dealing with an ongoing operation rather than a project with 
defined start and finish dates, operational risk can accumulate over long periods of time as a 
result of feedback, delays and misperceptions, and not just from chance events. 
 

 States of the 
World ω 
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3 This and all other figures are laid out for the benefit of readers who are not familiar with system 

dynamics notation.  A version of Figure 2 using the stock and flow notation of system dynamics is shown 

in the Appendix.  We leave it for the reader to verify that the two models are identical. 

 Operational 
System φ 

States of the 

Causal 

M
Links 
(ω,φ) 

 Information 
Function η 

ωt

φt 

 Operations 
Decisions 
α(yt) 

yt 

Activities At 

True 

True 

Perceived States
States

 Operational 
Performance 
O* = f(φ,ω) 

Dynamic 
States Feedback 

(Coupling) 

 - 10 - 



 
We assume that in any given time period, the management of an operational system wishes 

to ex

 world (risk factors) envisaged by the operations team 
(man e 

ecute a set of activities A to optimize operational performance O* for all possible risk 
factors, or “states of the world,”ω. 

If F represents the states of the
agers, supervisors and employees responsible for and actively engaged in managing th

operation), and each anticipated state of the world occurs with probability P, then F can be 
represented by a standard probability space (Ω, F, P), where Ω∈ω  and F Ω∈ .  If the 
operations team understanding is sufficiently good (perfect in  will con
possible events that could affect the operational performance.  Note that these events can 
originate from both inside and outside the operational system.   

Consistent with previous arguments, the set of possible stat

formation), then F tain all 

es of the system φ will be 
dependent on the set of activities, planned and unplanned, and the size and diversity of the 
system i.e. ( )DSAf ,,=φ .  Note that these three parameters may be adequate for capturing 
“complexity roposed by Perrow (1984), but they do not capture his “coupling 
dimension.”  Both the degree of complexity and the degree of coupling will influence the de
of risk in the system.  The concept of coupling will be discussed in more detail in section 4.5, but 
for now we will assume that it can be represented by a function G, so that the operational 
risk ( )GfR ,

the 

gree 
” dimension p

φ= .  However, the state of the operational system will be dynamic, changing 
response to both internal activities and external events.  The operations team and individual 
operators will change their activities in pursuit of operational objectives (e.g. production, qua
cost reduction, etc.) and in response to changes in the state of the world that affect or are 
expected to affect operational performance.  Some of these activities will also change the 
diversity and degree of coupling of the system itself.  The function M(ω, φ) is a causal model th
captures this relationship, linking the states of the world ω to the states of the system φ.  For any 
given state of the world, operational performance at any moment in time is determined by the 
state of the system. 

Typically, the c

in 

lity, 

size, 
at 

ausal model M will be so complex that only an approximation of it M̂  will 
be known to the operations team.  Similarly, the system itself will also be so complex that the 
operations team will only understand an approximation of itφ̂ .  The team’s perception of 
operational performance, a subset of M̂  andφ̂ , will also be an approximation of the true va
The function y = η(M(ωt, φ t)) is an information function that transforms the “true state of the 
world”  and the “true state of the system” into a signal yt, representing the information availab
to the operations team given ωt the true state of the world at time t and φt the true state of the 
system at time t.  The information function is itself a dynamic structure that evolves and 
accumulates over time as system and environmental observations are normalized and cod
into simplified relationships, and sometimes superstitions, upon which operating decisions are 
based.  It is expected that the effectiveness of the information function will depend on a numbe

lue.  

le 

ified 

r 
of organizational and technological factors such as resource allocation, management-employee 
relations, management information systems, business processes etc.  We can also interpret this 

nd 
nd 

ellent discussion 

information function in terms of the “mindfulness” construct that was defined by Weick a
Sutcliffe (2001) from research into high reliability organizations: The higher the quality a
effectiveness of an organization’s information function, the higher the level of organizational 
mindfulness.  The reader is also referred to Hatfield and Hipel (2002) for an exc
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of how groups with different mental models of the risk system can make quite different 
decisions. 

The operations team has policies or “contingency plans” that update the set of operational 
activities based on current information about the state of the world, thus )( tt yA α=  where α i
the policy function and At is the set of activities at time t.  Like activities, the operations team 
chooses policies to maximize the performance function O*.  Typically, the management team 
only plans for the major contingencies but monitors information signals for specific signs that 
new or upgraded contingency plans are needed.  The value of the information function is
maximum p

s 

 the 

nd the pol
 

it, 

er 
e 

t change the basic conceptual model.  Thus, if 
there

erformance achievable under a set of activities guided by policy compared to the 
performance that could be achieved under a set of fixed activities or “standard operating 
procedures.”  Note that it is the quality of both the information function a icy function 
that determines whether or not the organization will behave as a “high reliability organization”
and be perceived as having a “safety culture.” 

So far in this discussion we have assumed that the “operations team” acts as a cohesive un
whereas in practice this will rarely be the case.  Not only will there be the usual conflicts and 
communication problems between “management” and “labor,” but also there will be many oth
different organizational groups (departments, shift teams, etc.), each with their own uniqu
information functions and policy functions.  However, the fact that the information and policy 
functions for the organization as a whole are actually a composite of the functions employed by 
the different organizational sub-groups does no

 are N organizational sub-groups, the information received and activities performed by the 

organization as a whole will be given by ( )( )∑
=

=
N

n
ttnt wMy

1

,φη  and ∑
=

 

 

ld but also from the dynamic complexity 
operational system, the complexity of the causal relationships between the states of the world 

curity” 
ithin the “safety 

env

he 
d if 

 

=
N

n
tnt yA

1

)(α  respectively. 

These equations assume that the group activities and information functions are independent and
therefore additive for the organization as a whole.  However, depending on the quality of inter-
group relationships, there are likely to be synergies or interferences arising from group 
interactions.  The nature of these relationships is left for further research. 

Summarizing the proposed conceptual model, operational risk arises not only from the 
chance factors under each state of the wor within the 

and the operational system, the quality of the information functions, the effectiveness of the 
policies that translate information into action, and the quality and effectiveness of the activities 
themselves.  In the context of this model, commonly used terms such as “safety” and “se
can be interpreted as being the states of the operational system which fall w

elope” discussed in the previous section.  As the state of the operational system moves 
towards the boundary of the safety envelope, then safety will be preserved if the information 
functions and policy decisions are of sufficient quality to direct activities in a way that causes t
system to move away from the boundary.  With reference to Figure 1, safety will be preserve
latent conditions are detected and corrected and the failures that do occur are either caught by 
“poka yokes” (fail-safe measures) or are of low enough severity to become instances for learning
and system improvement. 

4.3. Applying the Conceptual Model to Specific Cases 
The validity of the model shown in Figure 2 can be assessed qualitatively by how well it fits the 
facts reported in various case studies involving operational risk.  For example, in the case of the 
space shuttle Challenger, the “state of the world” or risk factor outside the control of decision 
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makers or operators that led to the disaster was the low ambient temperature on the day of the 
launch.  The causal links between the state of the world and the operational system included the 
effect of seal the joints in the 

 
, 

e 

e of 

s 
 

 

 this low temperature on the brittleness of the O-rings designed to 
id Rocket Boosters, budget constraints, and production pressures tSol o adhere to the launch 

schedule.  The state of the system resulting from the O-ring embrittlement was one in which 
there was a very high risk of a catastrophic fuel leak soon after launch.  As was thoroughly 
documented by Vaughan (1996), the “information function” in place at NASA was a complex 
organizational structure and culture that normalized the risk assessments of previous O-ring 
failures and discounted or stifled the last-minute pleas by engineers to abort the launch.  The 
output of this information function was a distorted view of the world, leading to a flawed set of 
policies in what Vaughan calls an “incremental descent into poor judgment.”  In this case, the
operations team activities resulting from the flawed policies were the normal launch activities
which ultimately led to disaster. 

The case of the space shuttle Challenger and other selected cases involving operational 
risk were analyzed in the framework of the proposed conceptual model and the results are 
summarized in Table 1.  The case of the Sept 11, 2001 terrorist attacks on the United States 
illustrates the general applicability of the conceptual model.  In this case, the “operational 
system” is that of the US government and its agencies.  A reference source is given for each cas
cited, except for the last case, NOVA Chemicals’ Decatur plant, which is based upon primary 
data collection. 

For all of the cases shown in Table 1, one can envision other circumstances or “states of the 
world” under which a catastrophic failure would not have occurred.  For example, in the cas
the space shuttle Challenger, if the fateful launch had taken place on a warmer day then a 
successful launch would have been just another event to reinforce the normalization process for 
the O-ring seal problem that the engineers had been studying for the previous ten years.  
Similarly, one can also recognize that different information or policy functions may lead to 
different sets of activities, and hence different outcomes, under the same states of the world.  In 
terms of strategies for risk control, the model provides the important insight that since the 
operations team cannot change the states of the world, it should instead focus its attention on 
improving the quality of the information and the policy functions. 

To further validate the general model, we will now show how the model can be applied to the 
cases discussed by Lewis (2003) which involved a mismatch between operational capabilitie
and market requirements.  Lewis’s capability/requirements “fit” model postulates that the line of
best fit falls on a 45° line from the origin of a graph with the level of operational capability on 
one axis and the level of market requirements on the other (see Figure 3).  Operational losses 
occur when there is a mismatch between requirements and capability.  “External” losses occur
when operational capabilities are less than market requirements, and “internal” losses occur 
when operational capabilities are more than market requirements. 
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TABLE 1: APPLYING THE MODEL TO SELECTED CASES OF OPERATIONAL RISK 
 

Case & 
Reference 

State of 
World 

Causal Links State of 
System 

Information 
Function 

Decision 

Space Shuttle 
Challenger 
 
Vaughan (1996) 

Low ambient 
temperature 

Effect of low temp. on 
O-rings, budget 
constraints, 
production pressures, 
poor communications 

High risk of fuel 
leak soon after 
launch 

Complex 
organizational 
structure and culture 
that downplayed risk 
and suppressed 
dissent 

Ignored engineers’ 
concerns and 
proceeded with 
normal launch 
activities 

Space Shuttle 
Columbia 
 
Columbia 
Accident 
Investigation 
Board (2003) 

Large chunk 
of foam 
breaks off 
external fuel 
tank 

Foam hits shuttle 
wing, no external 
inspection & repair of 
damage prior to re-
entry, poor 
communications, 
production pressure 

High risk of 
excessive heating 
of aluminum skin 
during re-entry 

No significant change 
from the time of the 
Challenger disaster 

Ignored engineers’ 
concerns and 
proceeded with 
normal re-entry 
activities 

Barings Bank 
 
Zhang (1995) 

Earthquake in 
Kobe, Japan 

Earthquake causes 
sharp drop in the 
Japanese stock market 

Trader Leeson has 
an unauthorized 
multi-$billion 
long position in 
the Nikkei index  

No separation 
between trading and 
back-office functions, 
so Leeson was able to 
feed false information 
to head office 

Lacking accurate 
information about the 
state of the system, 
management took no 
corrective action until 
it was too late 

Confederation 
Life Insurance 
Co. 
 
McQueen (1996) 

Inflated real 
estate prices 

Pressure for growth, 
high returns in real 
estate in previous 
years encouraged 
more investment in 
this sector, weak 
regulatory oversight 

Company’s 
investment in real 
estate peaked at 
73.8% of assets 

With no checks and 
balances, power was 
concentrated in a 
CEO who had a 
narrow view of the 
business and markets 

Company made 
increasingly risky 
investments in the 
pursuit of growth 

Curragh 
Resources’ 
Westray Mine 
 
Richard (1996) 

Poor 
geological 
conditions in 
coal seam 

Production pressures, 
weak regulatory 
oversight, incentives 
to create jobs 

High 
concentrations of 
methane and coal 
dust in mine, 
poorly trained 
miners 

Parent company had 
only “hard rock” 
mining experience, 
and saw all of 
Westray’s problems 
as production delays 

Pressed for 
production right up to 
the time the mine 
exploded 

Shell Chemical 
Co., Deer Park, 
TX 
 
EPA and OSHA 
(1998) 

Operation 
start up after a 
power outage 

Compressor surging 
under start-up 
conditions, check 
valve flapper 
repeatedly slams shut 
during surging 

Inadequate valve 
design, 
compressor trip 
due to high 
vibration 

Failure to learn from 
prior incidents, status 
of equipment not 
verified after 
unexpected trip 

Proceeded with 
normal start up 

9/11/2001 USA 
terrorist attacks  
 
Chomsky (2001) 

Strong anti-
US feelings in 
Islamic 
countries 

Weak US reaction to 
prior attacks, sense of 
security within US 
borders 

Complacency, 
fragmented 
intelligence, and 
poor systems 
integration 
between govt. 
agencies 

See Challenger It was “business as 
usual” as concerns, if 
any, expressed by 
low-level officials 
were ignored 

NOVA 
Chemicals 
Corporation, 
Decatur, AL 

Acquisition of 
plant with 
poor record of  
performance 

Leadership, culture, 
employee 
involvement,  

Improvement over 
time in 
production, safety, 
quality and morale 

Learning & training, 
performance 
management system, 
multi-source feedback 

Held leadership 
accountable first, 
involved employees 
in dealing with 
performance issues  
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Level of market requirements

 
FIGURE 3: LEWIS (2003) MODEL OF CAPABILITY/REQUIREMENTS “FIT” 

 
In terms of the proposed operational risk model, presented in Figure 4, “market 

requirements” are a subset of the “state of the world” and operational capability is a subset of 
“state of the operational system.”  Operational performance derives from the degree of “fit” 
between the state of the world (market requirements) and the state of the system (operational 
capability), and its calculation is a subset of the “information function.”  This is an enhancement 
to Lewis’s model because it recognizes that operational performance is a subjective measure that 
depends on the quality of the information function.  Figure 4 also recognizes that market 
requirements are never truly “known” as Lewis’ more deterministic model would suggest.  The 
“causal links” component of the general model is still appropriate to this specific case because, 
for example, operational capability is often affected by product mix, and product mix is 
determined by market requirements.  Note that in the completed model for this specific case, 
shown in Figure 4, states of the world (risk factors) other than market requirements are still in 
play and will randomly affect operational capability. 

 
FIGURE 4: APPLYING THE GENERAL MODEL TO THE CASE OF LEWIS (2003) 
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The operational situation resulting from an unexpected event or from a mismatch between 

mar re 

 

is 

e Context of the Conceptual Model 
Coo t on the 

d as 
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FIGURE 5: MODEL OF OPERATIONAL LOSS PROPAGATION 

 
To help interpret incidents in the context of the conceptual model for operational risk, we 

will 
n 

 

s 
whose magnitude is governed by separate transformation functions. 

ket requirements and operational capability can be interpreted as an “incident.”  Since we a
dealing with a dynamic stochastic system, we would expect that “mismatch” situations will 
inevitably happen, despite the best efforts of the operational team to take corrective actions. 
Thus, the occurrence of “incidents” would be expected as a normal consequence of system 
operation, with severe incidents becoming “normal accidents.”  The next section explores th
concept in more detail. 

4.4. Interpreting Incidents in th
ke (2003a) argued that the long-term success of an organization depends in par

effectiveness of the organization’s system for learning from incidents.  An incident is define
an unexpected and unwanted event that represents a deviation from normal system behavior and 
which may or may not result in a loss.  In terms of the conceptual model of operational risk, it 
can also be argued that an organization’s system for learning from incidents is an important 
component of the information function that the operations team uses to gather information ab
the state of the operational system: the better the system for learning from incidents, the better 
the understanding of system performance. 
 

Precursor 

first introduce a model of operational loss propagation.  Our model is an adaptation and 
extension of an operational risk model proposed by Lewis (2003).  The extended model, show
in Figure 5, contains the idea that “transformation functions” serve to moderate the translation of
incidents into actual operational losses and to govern the conversion of operational losses into 
other losses experienced by the various stakeholders.  These other stakeholder losses are not 
linear, sequential events as suggested by Lewis (2003), but are complex interdependent event
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The proposed model in Figure 5 incorporates the observation that environmental factors 
beyond the boundary of the operational system can not only influence the occurrence and 
seve

rsor 
ture that 

 
 reference to 

the i

 
ODEL OF OPERATIONAL R

 
In the context of perational system.”  

Each incident contains information about the overall condition of the system, and this 
infor

 
 effective 

rity of incidents, but also influence the transformation functions and hence the size and 
nature of losses.  For example, in the space shuttle Challenger disaster, the low ambient 
temperature on the day of the launch was an environmental factor that contributed to a pre-cu
incident in the form of O-ring seals that were more brittle than expected.  The NASA cul
normalized risk and diminished the importance of expertise from low-ranking engineers was an 
information function that failed to convert the information from this and other pre-cursor 
incidents into informed decisions that could have prevented or mitigated the loss.  Note that 
NASA’s culture is part of the operational system and not an environmental factor. 

The conceptual model of operational risk shown in Figure 2 is fully compatible with the
operational loss propagation model shown in Figure 5 as we will now explain, with

ntegrated model shown in Figure 6. 
 

Precursor 

Incident

FIGURE 6: INTEGRATED M ISK 

 Figure 2, incidents can be interpreted as “states of the o

mation is integrated with information coming from the external environment and interpreted 
by the operations team according to their “information function” and then translated into 
activities according to their “policy function.”  These activities can affect the strength of the 
causal relationships linking the network of precursor incidents and can also affect the 
transformation functions that determine the magnitude of operational and other losses arising
from an incident.  This is why it is so important for an organization to have in place an
management system for learning from incidents as discussed in Cooke (2003a). 
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Using the terminology of risk control, the activities associated with weakening or eliminating
the causal relationships between states of the world and incidents, and among pre

 
-cursor 

inci

ed as 

s 
 to 

tor 

 the framework of the 
con re 

eral, 
 set of 

 

 process.  As the activities acting on the system 
acc

ement in 
ion of the 

rporates two conceptual properties of socio-
tech re capable 

upled 
e, 

nd 

dents, can be interpreted as “prevention.”  Those activities associated with minimizing the 
transformation of an operational incident into operational losses can be interpreted as 
“mitigation.”  Finally, activities associated with minimizing the transformation of operational 
losses into other losses beyond the boundary of the operational system can be interpret
“recovery.”  Note that transformation functions can be interpreted as business processes, for 
example “emergency response” or “preventive maintenance,” so that the magnitude of the los
will depend on the quality and effectiveness of the business processes involved in responding
the incident or loss.  Note also that the effectiveness of the operations team in influencing the 
recovery process downstream from the operation itself depends on the effectiveness of other 
corporate functions such as sales management, crisis management, communications, and inves
relations, and the quality of the communication processes between them. 

The observation by Haunschild and Sullivan (2002) that specialist airlines are better than 
generalist airlines at learning from complex incidents can be interpreted in

ceptual model as meaning that specialist airlines have a better information function or a mo
focused “lens” through which to see the world.  Standardized equipment and procedures allow 
the specialist airlines to focus more clearly on the improvement opportunities created by 
thorough analyses of complex incidents.  Haunschild and Sullivan also observed that 
experiencing incidents with heterogeneous causes led to better learning for airlines in gen
which can be interpreted to mean that for a given set of information functions, a richer
signals from the operational system leads to a better set of decisions and activities that are more
likely to cause system improvement over time. 

The final insight to be drawn from the integrated model shown in Figure 6 is how system 
resilience grows from a continuous improvement

umulate over time they change the nature of the system and its response.  This response is 
processed by the information function and the operations team makes a judgment as to whether 
or not the response represents improvement or deterioration in performance.  Policies 
determining the choice of activities in subsequent time periods may serve to reinforce 
improvement or correct deterioration, thereby repeating the cycle of continuous improv
system performance.  This process, whereby system improvement comes from explorat
“system response space,” creates resilience to future shocks that would not arise if operating 
policies and procedures remained static. 

4.5. Extending the Model to include Perrow’s concept of “Coupling” 
The “normal accident” model of Perrow (1984) inco

nical systems: complexity and coupling.  According to Perrow, complex systems a
of exhibiting behaviors and interactions that are unplanned, unexpected and which may not be 
immediately visible or comprehensible.  Coupling in a system refers to the degree of 
connectivity between components of the system.  A tightly coupled system has more time-
dependent processes, more invariant process sequences, and little slack.  A loosely co
system is resilient to delays or unexpected problems, provides many ways to get the job don
and has catch-up capability.  The preceding sections have dealt mostly with the concept of 
complexity, and this section will extend the model to include the concept of “coupling.” 

With reference to Figure 5, the degree of coupling determines the rate at which events 
propagate through the network of pre-cursor incidents leading to an operational incident a
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mately to operational and other losses.  This “degree of coupling” concept can be interp
in a number of ways. 

One way to operationalize this coupling concept is to interpret the degree of coupling as the 
size of the time consta

io-technical system.  In other words, the rate of propagation of an effect from point A to point
B will be governed by the size of the time constants embedded in the structure of the system tha
connects point A to point B.  For example, a “tightly” coupled system will have small time 
constants governing the rate of accumulation of stocks in the system.  Conversely, a “loosely” 
coupled system will have large time constants.  Note that “stocks” can include both tangible
stocks that characterize the technical system, such as inventory, assets or number of employees
and intangible stocks that characterize the social system, such as management commitment, 
organizational culture, or employee motivation.  Cooke (2003b) and Melara, Sarriegi, Gonzalez, 
Sawicka, and Cooke (2003) show how dynamic models can be used to simulate the effect of 
number of competing causal relationships on the performance under risk in an operational 
system.  Further research would be required to help quantify the intuition behind what is meant
by “small” versus “large” time constants in a dynamic system. 

A second way to represent the concept of coupling is by the number and strength of causal 
pathways connecting event A to event B.  A tightly coupled sys

ng causal connections between the system components while a loosely coupled system wou
contain few and/or weak causal relationships.  Clearly, this representation provides for a 
continuum in which one extreme would be a system that behaves like a single component and the 
other extreme would be a system in which the behavior of each component is independen
behavior of other components.  This model may be seen as being somewhat analogous to the 
“dynamic fault tree” approach used by Ren and Dugan (1998), Bouisseau and Bon (2003) and 
other probabilistic risk researchers for analyzing the reliability of computer systems.  The norm
“static” fault tree approach assumes that component failures are independent, whereas a 
“dynamic” fault tree allows for sequential dependencies between events.  In a related application 
of this approach in a chemical processing operation, Aneziris, Papazoglou, and Lygerou (
use Markov chain models to simulate the dynamic intermediate events occurring between the 
initial event and the ultimate catastrophic failure.  Although the Markov model yields failure 
probabilities that are reported to be more accurate than those from static models, the systems 
analyzed by Aneziris et al. contain only the technical elements of the process and are therefore
much simpler than the sociotechnical systems under consideration here. 

Another interpretation of coupling might be to view it as a relative rather than an absolute 
property of the socio-technical system.  In other words, the degree of cou

how fast the social system needs to respond in order to keep up with changes in the technica
system so as to maintain control of the overall system.  In other words, perhaps there are two 
dimensions of coupling: 1) the rate at which change propagates through the operational system 
and 2) the rate of information flow with respect to these changes. 

This definition of coupling, shown in the conceptual model of Figure 2 as “Dynamic 
Feedback (Coupling)”, would compare the rate of change in states

rate at which the information about the operation is interpreted by the information fun
and acted upon by the operations team.  In a tightly coupled system, the states of the operational
system would change at a rate that is orders of magnitude faster than the response time of the 
information-policy-decision feedback loop.  In a loosely coupled system, the converse would be 
true.  Note that a tightly coupled system could be converted to a loosely coupled system by eit
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slowing down the rate of change of states in the operational system or by speeding up the rate at 
which information is processed and decisions are made. 

Figure 7 below shows a simple model of coupling between two operations. The time delays 
represented by the double hatches on the links determine how closely coupled are the operations. 
If w

cidents, as discussed in 
Cooke (2003a), would benefit from a faster rate of information flow with respect to system 

roblems and their resolution, thereby reducing the degree of coupling and hence the level of 
ope

y 

ormal accident theory would suggest.  Although events such as roof-falls, the 
bui

he 
 

dination systems allow inventory reduction, and other improvements in 
ope er 
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stem performance.  For example, Alles, Amershi, 
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FIGURE 7: A SIMPLE MODEL OF COUPLING 

p
rational risk. 
This insight about coupling being a relative property of a system may help to explain wh

complex failures occur even in “loosely coupled” systems like the Westray mine, which is 
contrary to what n

ld-up of methane gas, the deterioration in “stone-dusting,” and disregard for other safety 
procedures occurred slowly over time, the proposed theory of coupling would suggest that t
information and policy-decision systems used by the operations team were too slow to respond to
the growing evidence of unsafe conditions in the mine.  In other words, by their lack of 
responsiveness, management turned what would otherwise be a loosely coupled system into a 
tightly coupled system. 

Another example of how better information flow allows for tighter coupling of the 
operational system can be found in supply chain management.  Namely, the use of “point of 
sale” data and flow coor

rational performance, as a result of faster and more accurate transmission of custom
demand data to upstream members of the supply chain.  Sahin and Robinson (2002) provide a
extensive review of the literature in this area.   

One would expect the theoretical dimensions of coupling to be consistent with the 
implications of Just in Time (JIT) production theory, which suggests that tight coupling provides
an incentive for improvements in production sy

ar, and Sarkar (2000) provide empirical evidence that lower inventories (i.e. tighter
“improve workers’ ability to identify and isolate the underlying causes of defective production 
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by providing instantaneous, context-specific feedback about manufacturing problems.”  Besides 
this information role, Alles et al. found that lower inventories (i.e. tighter coupling) gave workers 
an incentive to think more creatively about ways to improve process reliability and yield.  At 
first glance, this result seems to be inconsistent with what we have discussed so far about the 
concept of coupling.  However, the JIT result can be explained by considering the two 
dimensions of coupling as follows: 

1. The manufacturing operations considered by Alles et al. were characterized as “worker-
paced line flow.”  In Perrow’s terminology, the processes would be considered l
coupled.  Using the two-dime

oosely 
nsional definition under discussion here, changes would be 

2. 

ry caused an improvement in the information function.  

r 

 
Ind

improv h station (which may be limited in continuous flow settings such as 
harmaceuticals and chemicals).”  However, the two-dimensional theory of coupling would 

sug n system, 
 think 

se ideas about coupling might be incorporated into dynamic models 
of r

avior 
 

nical 

This paper has presented a conceptual model of operational risk which suggests that risks arise 
arket requirements as proposed by 
reated by the information 

tem” 
re 

expected to propagate through the operational system only slowly and to remain under 
the control of the worker. 

Alles et al. found that reducing inventory caused a faster rate of information flow and a 
greater incentive for worker innovation.  In the terminology of the conceptual model in 
Figure 2, reducing invento
Furthermore, the incentive effect on the workers is consistent with the fact that the 
workers are part of the feedback loop depicted in Figure 2.  The workers make many of 
the quality improvement decisions and carry out the activities that improve system 
performance.  Lower inventories cause this feedback loop to operate at a much faste
cycle time. 

eed, Alles et al. acknowledge that their result holds because “there is scope for 
ement at eac

p
gest that improvements could be made in continuous flow settings if the informatio

policy decisions and activities could respond at fast enough rates.  While it is intuitive to
that a tightly coupled system could have a fast information system, it is the visibility of this 
information and the speed at which decisions are made and actions taken that will determine the 
level of operational risk.   

This discussion has shown that Perrow’s concept of “coupling” has value in helping to 
explain the risk behavior of operational systems.  However, further research is needed to 
determine how some of the

isk in operational systems.  The challenge with developing such models, apart from the 
problem of gathering reliable data, is in how to incorporate human and organizational beh
factors into the models.  Ensuring system integrity will remain an extremely difficult problem to
solve by technical methods alone, and so operations managers must always supplement tech
controls with managerial methods and strategies for risk control, both formal and informal. 

 

5. Conclusions and Direction of Future Research 

not just from a mismatch between operational capability and m
Lewis (2003).  Risks also arise from the filtering or distortion c
function or “lens” through which the operations team (management and employees) view the 
state of the operation and its environment, and from the effectiveness of the policies that translate 
this information into activities performed on the operational system.  The “operational sys
includes the equipment, people, business processes and systems, tangible and intangible, that a
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put in place for conducting the operation.  The activities performed on the operational system 
change it for the better or for the worse and the effects of these changes are interpreted through 
the lens of the information function in a continuous feedback loop.  The operational risks 
generated by this process are dynamic and so are the controls that the operations team puts in 
place.  The operational system can be visualized as moving stochastically in time through an 
“envelope of safety,” breaches of which will result in latent or unsafe conditions and incid
varying severity. 

The usefulness of the proposed conceptual model is that it captures the modern view of ris
as being a subjective phenomenon in the eye of the beholder and that it shows how actions taken 
as a result of decis

ents of 

k 

ions based on this subjective view operate through feedback loops to change 
bot

 
l 

 
Alles M., Amershi A., Datar S., Sarkar R. 2000. Information and incentive effects of inventory in 

JIT production.  Management Scien 28-1544. 

Management 16(4) 341-359. 

s 

the Process Industries 13 153-165. 

Bar-Ya

Bekey G. A. 1972. The human operator in control systems, in Beishon J, Peters G (eds): Systems 

rkov processes.  Reliability Engineering and 
System Safety 82 149-163. 

Choms

h the risk in the system and the perception of that risk.  The model presents a “system view” 
of risk that is validated by the characteristics of several well known cases of operational risk 
failure.  An example of a success story that also fits the same conceptual model was found in the
case of safety and production improvements at NOVA Chemicals’ Decatur site.  Thus, the mode
fits both successes and failures, which is consistent with a feature of feedback loops in complex 
systems whereby they can often operate in two ways, one being a “vicious” circle resulting in 
failure, the other being a “virtuous” circle resulting in success.  Also, there are often structures in 
these systems called “tipping points,” as discussed by Repenning and Sterman (2001), that can 
shift the virtuous/vicious cycle from one mode to another. 

The concepts presented in this paper have suggested several approaches to us for operational 
risk control.   In future research, we intend to develop these ideas into an integrated risk control 
framework. 
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Appendix: A Conceptual Model of Operational Risk (Figure 2) Using System 
Dynamics Notation 
 
The model shown in Figure 2 can be easily transformed into the system dynamics model shown 
in the diagram below (constructed using Vensim): 
 

States of the
World

Random
Events

States of the
Operational

System

Causal
Links

Operational
Performance Information

Function

Operations
Activities

Operations
Decisions

Dynamic
Coupling

 
States of the world and states of the operational system are both level variables.  The states of the 
world change randomly, causing the states of the operational system to also change randomly 
depending on the number and nature of the causal links between them.  If there are i states of the 
world, j states of the operation and k causal links between them, where i, j and k are very large 
numbers, then system complexity will be enormous.  The states of the operational system are 
also changed by operations activities directed by operations decisions.  Operations decisions are 
guided by the “information function,” which is the operations team’s perception of the states of 
the world and of the operational system.  The speed at which this feedback loop operates 
determines the degree of dynamic coupling that the system exhibits. 
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