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Abstract

Laboratory studies have shown that people cannot handle the time
constants in dynamic tasks. Yet they obviously cope with such tasks
with some success outside the laboratory. This study is one iesa se

of studies that examine the hypothesis that people cope by relying on
heuristics that allow them to simplify the task. The heursticlied

here was that of relying on frequency differences, i.e., whatoReas
(1990) calls frequency gambling. It examines the effects ofreatlie
relative frequency of scenarios that require different responding, and
where relying on frequency rather than learning the actual time con-
stants will lead to some success. The results show that the peamtei

did not learn the time constants, but the heuristic used did not seem t
be frequency as much as a heuristic that could be called “betfer sa
than sorry”, i.e., they sent out more than the minimum necesasapts

to fight the fire. A variant of this heuristic involving rapid and masssi
responding has also been identified in earlier studies.
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The business of system dynamics (SD) is modelling dynamiasysiiehe purpose is
to provide aids that can help people cope better with sucknsyst

This business could certainly be conducted without any reference tpduple actu-
ally deal with such systems, except, perhaps, the convictiorthéna are so bad at
doing it that SD is their only hope of salvation. So why should Zfotioners be
interested in studies of how people actually handle dynamiersgssuch at that pre-
sented in the paper now before the reader’s eyes?



We think that there are at least two reasons. The fiteaisSD modelling sometimes
involves modelling human behaviour in dynamic systems. Such magelilihbe as
successful as the understanding of human behaviour upon which iets ltais all
too easy to believe that people’s understanding of dynamics ia pmrupt version
of the “true” understanding provided by, e,g., a proper STELLA mnddewe will
show here, there are alternative views that point to subshadiiferent ways of han-
dling dynamic systems.

A second reason is that studies of what people actually do magemew inputs to
SD modelling of dynamic systems. In fact, people actually edge (at least some)
dynamic systems successfully also without the aid of SD anddwne so for centu-
ries (see Mayr, 1970, for some interesting examples). Theiquésthow they man-
age to do this despite the obvious lack of understanding of dynasiidscumented
in numerous studies (e.g., Boot Sweeney & Sterman, 2000; JerBexh&er, 2003;
Moxnes, 2000). Perhaps there is a lesson for SD modellers heperaags there are
alternative ways of handling dynamics, alternatives to eh@dl understanding pro-
vided by, for example, SD or control theory. This is not to déay D modelling
would be useful or needed, for it is obvious that people do not cope dutigesth
all dynamic systems. Rather, alternative forms of understabdisgd on what people
actually do may provide important new sources for modelling dynaysiems. An
understanding of these alternatives may also be important for woicating with
users of SD models, as well as in the process of developing sagdishwith coop-
eration between modellers and users. Specifically, such stmdigprovide a better
understanding of intuitive modes of handling dynamics, which sorestiead to in-
surmountable barriers in communication.

The importance of time constants

In the real world, everything takes time, so feedback nenlkwfs upon action im-
mediately. While this is a trivial insight, and something ti@person would dispute,
understanding its consequences for the proper strategy in a dyaakgeems to be
far from trivial. There is now quite a number of studies that stihatveven minimal
delays wreak havoc with a person’s decision making strategye(geeBrehmer,
1995, Sterman, 2000).

What needs to be done to cope with feedback delays depends afute of the de-
lay. It is therefore important to identify, not only that thare delays, but also the
nature of the delays. Basically, there are three kindslaystelead timg(the interval
between the moment when a decision is made and that wherstémghat the deci-
sion maker wants to affect starts to respotid)e constantgthe time required for a
decision to take effect), andformation delays(the interval between the moment
when an action has taken effect and that when the decision makes &bout this
effect). All three kinds of delays are revealed to the dacisiaker in the same way:
some time will pass until he/she learns about the resultaftecision has been made.
To identify the nature of the delay requires additional informadioout the decision
task. It is therefore also important to identify what infoinratbout the nature of the
delays that may, or may not, be available to the decisikema

Like last year's paper (Brehmer & Nahlinder, 2004) the prepapér is concerned
with the second of the kinds of delays mentioned above: the timeantmsiVvhen a



decision maker tries to control a process (such as a fire) aswitper process (such
as a fire fighting process) and when the control process hasipedime constants
(as a fire fighting process has), the process he or she teeekatrol will develop
before the decision takes effect. In fire fighting, the fivill spread while the fire
fighting units get ready to move out, while they travel to treednd until they have
brought the fire under control. This means that when the decisiernmakes his
decision, he/she has to compensate for what happens afteg hasmade that deci-
sion. Specifically, the fire chief cannot only send only the numbeni$ that seem
to be sufficient at the time of the decision, he/she must sendumber that will be
required when the units reach the fire.

In the fire fighting task, the time constant is due to the spatdwvhich the FFUs get
going, the speed with which they travel to the fire, dreddpeed with which they ex-
tinguish fire. Knowing these, and the fire conditions, and a mofdeow fires be-
have, a decision maker can compute the number of FFUs requisrdtirdse units
reach the fire. Even when using a computational approach, cogimgh&itime con-
stants is clearly not a trivial task. In the experiment ilesd here, however, the par-
ticipants had to use a more intuitive approach, and base thieiates of the time
constants on what they could actuabe,and they could actually see the time con-
stants happen, so to speak, for the movement of the FFUs anddinéties were
shown directly on the computer screen.

Earlier studies have shown that people seem to employ a @eeyad rule for coping
with the time constants in this kind of task: they respond rapiuilynaassively, i.e.,
they learn to send as many FFUs to the fire as rapidly asbfgssice they have
learned of a fire’s location (e.g., Brehmer, 1989; 1995). Bezhand Nahlinder
(2004) wanted to learn whether this expressed a general heuriatiwedr calibrated
strategy where the number of units was matched to the futurefsize fire. They did
this by comparing how people responded to fires requiring differentensnolb FFUs
in an experiment using a microworld called NEWFIRE (Lgvborg &Brer, 1991)
that simulates forest fire fighting. Their results showed tifia subjects did not seem
to have a well-calibrated strategy for coping with the timaastants, but that they
used a heuristic. Specifically, they, used a heuristic wimeblved positioning their
FFUs in such a way that they would not have to distinguish batfes requiring
encirclement with multiple FFUs and fires requiring diretaak with one FFU; all
fires could be handled in approximately the same way. Incidgntii$ is a heuristic
used in real fire fighting as well. Many U.S. cities reguhat fire stations be located
so that any burning house in the city can be reached within aisgecifmber of
minutes. When the participants were prevented from using thisstie by requiring
them to keep their FFUs at their base until a fire had brokertraait, performance
grew worse, and there was no evidence that they sent the apigropinaber of FFUs
to a fire. In short, they seemed unable to compensate fambeonstants, except by
their heuristic.

Now, coping with dynamic tasks is very much a question of beirggtalthandle the
feedback delays, and if people cannot handle even the simplesoffatatay, time
constants (these delays can be considered as simple becgusantieseento hap-
pen as the FFUs move to the fire and fight it), except by hiegrisind since other
kinds of delays that have been studied experimentally have alsedprbfficult
(Brehmer, 1995), this leads to the hypothesis that people may ctpdeatiback



delays generally by the use of heuristics, if they cope atlai$, in turn, raises the
question of what other heuristics people are able to use in dymasks as a substi-
tute for handling the delays as such. The heuristic redéalthe Brehmer and Nah-
linder (2004) study, although successful in that experiment, is ob&oguite spe-
cific, and if a person is to cope with delays generally heishdave to rely on more
general heuristics.

Reason (1990) has described two “primitives” that the human cogisyistem uses
as “fallback positions” when it cannot find the actual rule faask:similarity match-
ing andfrequency gamblingAs the name implies, similarity matching means finding
a task that is similar to the current one and doing what one uslog$yin that situa-
tion. Frequency gambling involves relying on what one has Idaaheut differences
in frequency of success for different behaviours in the pagtgambling on that
whatever has been successful in the past will prove usefuhalse present situation.
It is not clear if this means that they would be maximizingags choosing the alter-
native with the highest frequency, or if they would exhibit probabiligtching, i.e.,
matching the relative frequency of their decisions to thativel frequency of the
relevant outcomes in the task. Both kinds of behaviour would be tamsigth Rea-
son’s (1990) frequency gambling hypothesis.

The present paper is concerned with the frequency gamblimgadite. Our question
is whether people would use frequency gambling as a heuristasaandalternative to
learning the more complex structure required to cope adequatblythei time con-
stants in the fire fighting task. That people would choose the fatmgnative, given
a chance, is likely according to earlier results by Lindaév4). Lindahl showed that
in a complex problem solving task, the presence of an opportumigimplification
in the form of task dimensions that were correlated with thegigo would mask the
more complex general rule for the task Thus, people who could leagsgond on
the basis of just one dimension of a task would not learn the toutedor the task
as well as people who did not have this opportunity and who could onlyesubge
learning a more complex rule.

Frequency is a candidate for such a simplification. HasherSaietis (1984) have
shown that learning frequencies is automatic. In tasks where &he differences in
frequency with which different behaviours are required, thdtereices are likely to
be picked up, and could then be used as a basis for frequencyrgambReason’s
(1990) sense. Incidentally, real fire fighting is a task wiieeee are frequency differ-
ences. The first author has heard fire chiefs remark thatfirestare alike, and that
they therefore know what to do about them without thinking much abo8bihe
have also remarked that the rest (in some cases given asb&boate very difficult
indeed.

If the decisions required by a dynamic task differ in frequeraihat some decisions
are successful more often than others, this may seraebasis for learning how to
handle these tasks. Since frequency coding is automatic and tmesdleatside con-

sciousness, mastery of a dynamic task based on such learnimgwalpbe the basis
of what is usually called intuition (see also Hogarth, 2001, fdrsaussion of fre-

quency learning as a basis for intuition).



The purposes of the present study was to investigate whetbyge peould learn fre-
guency differences and rely on frequency gambling as a bagtsefodecisions in a
dynamic task rather than learning the actual time cons@péifically, the task was
forest fire fighting as represented in a computer simulatabed NEWFIRE
(Levborg & Brehmer, 1991, NEWFIRE is described in detdibwg Subjects extin-
guished a series of fires, some requiring just one fire fighimg (FFU) and some
requiring two FFUs with a marked difference in frequency (8G%20%, or vice
versa). They were then tested on a new set of fires cfaiime kind to assess whether
they would discriminate between the two kinds of fires or just respornlle basis of
the differences in frequencies in the learning set.

Method
Participants

Forty-six undergraduate students from the University of Uppsala pad 100 sek
(about USD 12) to participate. There were 24 women and 22 men andvitiage
age was 24.3 years.

Microworld

The experiment used NEWFIRE (Lgvborg & Brehmer, 1991). The RIRE con-
cept is illustrated in Figure 1. NEWFIRE requires the pigdiat to assume the role of
a fire chief charged with the task of fighting forest firelg/she receives information
about a fire from a spotter plane and on the basis of this infamdug/she sends out
the FFUs. These then report back to him/her about the theiroloGatd activities,
and he/she then uses this information and further information froapttier plane to
issue new commands to the FFUs and the process goes on untiefbehfas been
extinguished. Figure 1 shows the general concept, and Figurau8ehmterface. As
can be seen from this description, the task facing thecipant has all the character-
istics of a dynamic decision task as defined by Brehmeil&d\(1991):

* It requires a series of decisions

» These decisions are not independent (sending the FFUs to one location pr
cludes or at least delays using them elsewhere)

* The state of the task changes both autonomously (due to the strenglih and
rection of the prevailing wind, the character of the forest,sandn)and as a
result of the decision maker’s actions (i.e., where hegshd the FFUS)

» Decisions must be made in real time, i.e., when the develupnrethe fire
requires action, rather than when the decision maker feels gmoready to
make them




Figure 1 The NEWFIRE concept

(For a general discussion of dynamic decision making and the userofvorids to
study it, see Brehmer, 2005; Brehmer & Ddérner, 1993).

In NEWFIRE, the participant sees a map depicting a f@¢sest Figure 2). In this ex-
periment, the forest was homogenous and there were no vilbagebker objects to
protect. The only task was to put out the fire as quickly as pessibing as few
FFUs as feasible. Forest was represented by an 18x18 grid esth ¢gells. The start
of a fire was signalled by a tone and the cell where thetimted turned red. The fire
then spread in the direction of the prevailing wind and with a spexxbiional to
the strength of the wind according to a general fire model fostféire propagation.
The cells in which FFUs were located were coloured blue.pHngcipant could di-
rect the FFUs to new locations by pointing to a FFU, clickingptpw to the new
location, and then clicking on it. The unit then started to movkeahext update of
the system. To the right of the map, there was an indisatmwing the strength and
direction of the prevailing wind, and below this indicator a ngesg@nel where mes-
sages about the activities and location of each FFU could beBslew the message
panel was a panel that displayed the last command givenhaie#gi.e., the location
to which it has been ordered to go. If there was fire iellanhen the FFU arrived, or
if fire spread to a cell where a FFU was positioned, itesiafighting the fire auto-
matically but only after a delay of one time unit. The time meguio extinguish the
fire in a cell is a parameter in the program, as is pleed at which the FFUs move.
NEWFIRE is a clock driven simulation. The update rate forgitreen picture is a
parameter in the program.
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Figure 2 The NEWFIRE interface

In this experiment, NEWFIRE was used in a new way. Rakizar having the partici-
pants fight every fire until it was extinguished (or until thest control and the whole
forest was destroyed), we studied only the initial commandsadb &re. This was
because the initial commands very much determine the rest¢ @fehfighting proc-
ess. If these first commands are correct, and the appropuiatieer of FFUs is sent to
the appropriate locations, no more needs to be done by the partitheaiite will be
extinguished without further work. If they are not correct, thetssislly a long proc-
ess where the participant tries to achieve control. Thelictiimmands are thus the
particularly diagnostic of the extent to which a person has ldameompensate for
the time constants of the task.

Fire scenarios

Two kinds of scenarios were constructed by positioning the FFUs andirap@os
starting location for the fire: scenarios in which the fire dolé extinguished by
sending jusibne (but the appropriate one, of course) FFU to the fire, and sosnar
that required two FFUs to extinguish the fire because it would spread to two
cells as the FFUs moved into position. The number of FFUs relquiaie determined
by the time constants: for the 1-FFU scenarios, the FFUs leeated in relation to
the fire in such a way that it was possible to send onkeoh Wirectly to the fire and
have it extinguish the fire in the burning cell before it would &g the neighbour-
ing cells. In the 2-FFU scenarios, this was not possible.p&hicipant had to send
out two FFUs so as to cover the two cells that would be burning WigeFFUs ar-
rived. The participants were informed that there welg trese two kinds of fire
scenarios, and that their task was to learn to distinguishebatéhem and send out
the appropriate number of FFUs to the appropriate location(s) eldygas possible.
As soon as the participants had sent out their FFUs, the scevagiterminated, the



program computed what the correct response should be and feedbackemas the
form of the word “good” being displayed on the screen if the partitgpaecision
conformed to the optimal decision as computed by the program. Thapaarticould
then choose to see the program actually play the scenaheirlfiecision was wrong,
they were required to do so before they were allowed tingo the next fire.

Design

The experiment was conducted in two stagelgarning stageand atest stageln the

learning stage, the participants made decisions for 60 fiithstlae opportunity for
feedback, in the test stage, they responded to 30 fires widmyubpportunity for
feedback. There were two experimental conditions, and theyediffenly with re-

spect to the relative frequency of 1-FFU and 2-FFU scenaribe ile&rning stage: In
the 80-20 condition, there were 80% 1-FFU scenarios and 20% 2-FFUissgima
the 20-80 condition, there were 20% 1-FFU scenarios and 80% 2-FRbrisse In

the test stage, there was an equal number of 1-FFU sceaadi@FFU scenarios.

Procedure
Mouse practice session

In this experiment, it is critical that the participants able to respond quickly and
accurately when using the mouse. The experiment thereforedstaith a mouse
practice session. An 18x18 matrix similar to the map in NEWRNRE presented.
Blue fire fighting units would appear in randomly chosen cells ointhag&ix with a
new FFU being presented every 3 seconds until 99 units have been prke$arte
participant’s task was to point and click on each FFU as it apgheanrd move it to a
designated area with 10x10 cells to the right of the mater Brehmer & Lavborg,
1992 for further description of this facility in NEWFIRE). The 10x1Gnraould be
filled in an arbitrary order.

Learning stage

As noted above, there were two kinds of scenarios in thaimgastage: scenarios
where the fire could be extinguished with one FFU and scenaria$ wdqguired two
FFUs. In all scenarios, eight FFUs were located in difter@ndomly chosen cells of
the 18x18 map, but in such a way that the fire, when it appeared, l®wddtin-
guished by either one or two of the FFUs. The scenarios diffeitbdespect to the
strength (between 1 m/sec and 20 m/sec) and direction (North,Joash, West) of
the prevailing wind. The participant’s task was to decide whkeld or FFUs to send
to the fire, and to click on the respective units and their déisiisa The program
only allowed them to send out a maximum of two FFUs in each isoceithe NEW-
FIRE program then calculated the optimal deployment of FFUs onsthemgtion
that each mouse command required 2.5 sec and provided feedback tditihgapar
in the form of the message “good” if he/she had selected theadmombination of
FFUs and destinations. If the message was not “good”, the shbjgdo click on the
word “demonstrate” and the optimal solution, i.e., which one/two EFtHould have
been positioned where was displayed and the scenario was playddheul¢arning
stage consisted of 60 trials consisting of either 20% 1-FFU sosraand 80% 2-FFU
scenarios, or vice versa, but before starting the 60 taahileg session, the partici-



pants were given two supervised practice trials. The leastagg required about 35
min.

Test stage

The test stage was the same in both conditions. In this statjeippats were given
30 trials, 15 1-FFU scenarios and 15 2-FFU scenarios, but intéigs, she partici-
pants were given no information about whether their decisiondéail optimal or
not, and they did not have the opportunity to view the optimal solutiois. Stage
required about 15 min.

Results
Learning stage
There was no significant blocks effect when response frequeneiesanalysed in
terms of six blocks of 10 trials each. This suggests, |#zahing was very rapid, or
that there was no learning at all and that the participamigysresponded in the same
manner throughout the learning stage. Since there was no signbficaks effect,
data were pooled over blocks for the subsequent analysis
Table 1 shows the conditional probabilities for 1-FFU and 2-FFU idasidor sce-
narios requiring 1-FFU and 2-FFU decisions respectively for thddarming condi-
tions.

Table 1 Learning stage conditional probabilities for the two learnomngtions.

80% 2-FFU, 20% 1-FFU condition

FFU used/FFU required p(FFU |p(FFU p (FFU p (FFU
used/FFU | used/FFU used/FFU used/FFU
required) | required) required) required)
Actual if partipants |if participants |if participants
results had learned |rely onfre- rely onfre-
time constants | quency gam- | quency gam-

bling by bling by
matching maximizing
2-2 0.92 1.00 0.80 1.00
2-1 0.55 0.00 0,80 0.00
1-2 0.08 0.00 0.20 0.00

1-1 0.43 1.00 0.20 0.00




80% 1-FFU, 20% 2-FFU condition

FFU used/FFU re-|p (FFU p (FFU p (FFU p (FFU
quired used/FFU used/FFU used/FFU used/FFU
required) required) required) required)
Actual results |if partipants |if participants |if participants
had learned |rely onfre- rely onfre-
time constants | quency gam- | quency gam-

bling by bling by
matching maximizing
1-1 0.83 1.00 0.80 1.00
1-2 0.42 0.00 0.80 1.00
2-1 0.17 0.00 0.20 0.00
2-2 0.58 1.00 0.20 0.00

If the participants had learned to compensate perfectlyhfoitime constants, they
should have responded with the high frequency decision when it was reajui¢de
low frequency decision when it was required, and there should hawenbekigh
frequency decisions when low frequency decisions were required af@vnive-
guency decisions when a high frequency decision were required, asishinrthird
column in Table 1. The actual distribution of decisions clearlys dag conform to
this pattern in either condition. Nor does it conform to the patgpected if the par-
ticipants had frequency gambled by maximizing, i.e., alwalectseg the high fre-
guency decision. In this case, they would always have respondetheiitiigh fre-
guency decision, so that the probability of that decision would havelb@ee for both
scenarios requiring the high frequency decision and the low freguksuision, and
0.00 for the low frequency decision for both those scenarios ehatred that deci-
sion and those requiring a high frequency decision. Instead, itharmarked differ-
ence between the high and low frequency scenarios. For the fdhaguattern of
decisions is close to what would have been expected if the partisihad made their
decisions on the basis of frequency gambling by means of frequeaitching. For
the low frequency scenarios, on the other hand, the patterncisictes resembles
what would be expected on the basis of random responding, the condgitiaimaibili-
ties for both decisions are close to 0.50. However, no strongusiboes can be drawn
from the results from the learning stage since the decisiterpas still being learned
from feedback in this stage. For more definitive conclusionsanwst turn to the test
stage, where the participants were tested without feedbaclwizer® we have less
reason to expect that they are changing their decision rules.

Test stage

Table 2 shows the overall decision probabilities for 1-FFU anB2-dfecisions in the
two learning conditions.

Table 2 Overall probabilities of 1-FFU and 2-FFU decisions in tine earning con-
ditions




Condition p(2-FFU decisions) p(1-FFU decisions)

80% 2-FFU, 20% 1-FFU 0.73 0.27

80% 1-FFU, 20% 2-FFU 0.44 0.56

As the reader will recall, the percentage of scenarigsitiag one and two FFUs was
the same in both conditions, i.e., 50%. Therefore, if the paatitsphad learned the
time constants, we would have expected 50% 1-FFU decisions and 50t @&EF
sions in both conditions. As the table shows, the results do not supponténpreta-
tion, and they are different for the two conditions. For the 80%W,.R20% 2-FFU
condition, the results come close to the 50% 1-FFU, 50% 2-FFUWiales, but for the
80% 2-FFU, 20% 1-FFU condition, the results agree with what wowle been ex-
pected if the participants had used a frequency matching str&@ag possible expla-
nation for this would be that the participants learned differengs in the two condi-
tions. There is, however, an alternative explanation. Lookitigeaiable, we note that
both conditions are alike in that there are too many 2-FFU conditongpared to
what would have been expected, albeit on different grounds in theotweitions. In
the 80% 2-FFU, 20% 1-FFU condition there are too many 2-FFU decwiomzared
to what would have been expected if the participants had learnéidhtheonstants,
suggesting frequency matching. In the 80% 1-FFU, 20% 2-FFU condiierg are
too many 2-FFU decisions compared to what would be expected if theipzats
were frequency matching, suggesting that they learned the dinstants. A possible
explanation for this apparent difference is that the partigpantboth conditions
failed to learn, but used a different heuristic, which we maly “better safe than
sorry”. There is an important difference between making an erfor the two kinds
of fire scenarios. i.e., making a 1-FFU decision when a 2-FFlisida is required,
and making a 2-FFU decision when a 1-FFU decision is required. forther case,
the participant will loose control over the fire. In the lattase, the fire will be extin-
guished, albeit at a higher cost, i.e., by using more FFUsdgaired.

Table 3 shows conditional probability of 1-FFU and 2-FFU decisionsckemagios
requiring 1-FFU and 2-FFUs for the two learning conditions in thestage.

Table 3 Test stage conditional probabilities for 1-FFU and 2-FFU decisfonsce-
narios requiring 1-FFU and 2-FFUs for the two experimental conditomether with
the probabilities that would have been expected if the panitspaould have learned
the time constants, if they had frequency gambled by matelnidgnaximizing.

80% 2-FFU, 20% 1-FFU condition

FFU used/FFU required p(FFU |p(FFU p (FFU p (FFU
used/FFU | used/FFU used/FFU used/FFU
required) | required) required) required)
Actual if partipants |if participants |if participants
results had learned |rely onfre- rely on fre-
time constants | quency gam- | quency gam-

bling by bling by
matching maximizing
2-2 0.92 1.00 0.80 1.00

2-1 0.49 0.00 0,80 1.00




1-2 0.08 0.00 0.20 0.00

1-1 0.51 1.00 0.20 0.00

80% 1-FFU, 20% 2-FFU condition

FFU used/FFU required |p (FFU |p (FFU p (FFU p (FFU
used/FFU | used/FFU used/FFU used/FFU
required) | required) required) required)
Actual if partipants |if participants |if participants
results had learned |rely onfre- rely onfre-
time constants | quency gam- | quency gam-

bling by bling by
matching maximizing
1-1 0.84 1.00 0.80 1.00
1-2 0.27 0.00 0.80 1.00
2-1 0.16 0.00 0.20 0.00
2-2 0.73 1.00 0.20 0.00

The results for the test stage are similar to those fde#iraing stage. Thus, there is a
marked difference between the high and low frequency scenarioshd-bigh fre-
quency scenarios, the response pattern is close to what woekpdeted on the basis
of frequency gambling by means of frequency matching, and éolotl frequency
scenarios, the pattern looks more like random responding. FuribBsia shows,
however, that for the latter scenarios, there is a tendencyake more 2-FFU deci-
sions than 1-FFU decisions in both conditions. The mean condipootzdbility of 2-
FFU decisions for the low frequency scenarios is 0.49 for the 86%2 20% 1-
FFU while for the 80% 2.FFU, 20% 1-FFU condition, it is 0,74. Huggests that
there is more to the decision making than just relying on frexyutm the low fre-
qguency scenarios. Specifically, the results suggest that imhgoubt, the participants
send two rather than one FFU, as discussed above.

Discussion

The results of the present experiment agree with thosartiér experiments in show-
ing that participants do not compensate very well for the torestants, even after
considerable practice (compared to the amounts of practicamvexpect in the real
world). If the participants had learned this, we would not haveroeed the marked
difference between the high and the low frequency scenarios:rigetgae constants
apply to both.

However, the participants obviously discriminate between the Inighoav frequency
scenarios in both learning conditions, and this implies some leashihg time con-
stants, even though it is far from perfect. Indeed, the paatits learned to cope rea-
sonably well with the high frequency scenarios. For these sosn#iney seem to
match the relative frequency of their 1-FFU and 2-FFU decidmmige relative fre-
guency of 1-FFU and 2-FFU scenarios. For the low frequency scerheos is no
evidence of frequency gambling, even though these scenaritseanest candidates




for this, since there was less practice for these kindsemiasios and thus less oppor-
tunity to learn. Instead, the decision making appears to be randanfirat look.
Closer study suggests, however, that the decisions for tbesar®s rely on a princi-
ple of caution, in that the participants respond with a 2-FRtisde rather than 1-
FFU decision. This is true, to some extent also for the maduéncy scenarios. Even
for these scenarios, there is a high frequency of 2-FFU deci@d@ in the condi-
tion where there had been 80% scenarios requiring 2-FFUs inatitménig stage, and
0.16 in the condition where there had been 20% 1-FFU in the leataigg. For the
latter condition, there is also a much higher probability ofdhefrequency decision
(0.74 2-FFU decisions for the scenarios requiring 2 FFUs thahdaandition where
there had been 80% 2-FFU scenarios, where the probability abwh&dquency 1-
FFU decision for the low frequency 1-FFU scenarios was 0.%lhofed above, a 2-
FFU decision is, of course, safer, because whereasréhanfa 1-FFU scenario can
always be extinguished with two FFUs, that in a 2-FFU scenamnnat be extin-
guished with one FFU. This may be seen as example of the reweastiad observed
in earlier studies (Brehmer, 1989; 1995), i.e., that of rapidassive responding, i.e.,
sending out as many FFUs as possible to a fire as rapidgipsssble, which is, of
course, exactly what responding on the basis of a “better safestingy” heuristic
would lead to.

This study failed to support the hypothesis that the participants weseldrequency
gambling, but this does not mean that they would never use thistlee@ne reason
may be that the participants actually did learn to distitgnetween the two kinds of
scenarios, i.e., they learn to compensate for the timeasdesib some extent, espe-
cially for the high frequency scenarios. In addition, there avasbvious (to the par-
ticipants) alternative to the frequency heuristic: the “betade than sorry” heuristic.
Together, the albeit imperfect learning of the time conistand the “better safe than
sorry” heuristic, the participants actually succeeded reasomeell and actually
managed to extinguish most fires, albeit at a higher cosintbeassary. When there is
no such alternative, or when the time constants are more difficidarn than they
appear to have been in the present scenarios, frequency maevaellalternative. It
is an important task for future studies to find the conditions untatwva frequency
heuristic may operate, as well as the conditions under whicleipartis resort to the
other “cognitive primitive” described by Reason (1990), i.emilarity matching”.

Although we did not find the frequency gambling heuristic we had exgetie re-

sults of this study, as well as those of Brehmer and Nahlira€4] nevertheless
suggest that the hypothesis that people cope with time conbtanmeans of heuris-
tics may have considerable explanatory value. However, thestieun operation

here is a “better safe than sorry” heuristic”. As the fs#iarfound by Brehmer and
Nahlinder (2004), it works quite well in that gets the job donbpatih not at mini-

mum cost. But then optimal responding may be of greater coreelecision theo-
rists than it is to people in general, and may provide a useful tuidederstanding
what people actually do in dynamic tasks.

References

Booth Sweeney, L. & Sterman, J.D. (2000). Bathtub dynamicsallmésults of a
systems thinking inventorggystem Dynamics Review, 289-286.



Brehmer, B. (1989). Feedback delays and control in complex dynamarnsydn P.
M. Milling & E. O. K. Zahn (Eds.),Computer-based management of
complex systemgépp. 189-196). Berlin: Springer-Verlag.

Brehmer, B. (1995). Feedback delays in complex dynamic decision tasle.
Frensch & J. Funke (Eds.jomplex problem solving: The European
perspective(pp.103-130). Hillsdale, NJ: Lawrence Earlbaum.

Brehmer, B. (2005). Micro-worlds and the circular relation betwgeople and their
environmentTheoretical Issues in Ergonomics Scienge394.

Brehmer, B. & Allard, R. (1991). Dynamic decision makingeet§ of complexity
and feedback delays. In J. Rasmussen, B. Brehmer & J. L(&ulat),
Distributed decision makinghichester: Wiley.

Brehmer, B.& Dorner, D. (1993).Experiments with computer-simdlateroworlds:
Escaping both the narrow straits of the laboratory and theldeesea
of the field study. Computers in Human Behavior, 9, 171-184.

Brehmer, B. & Nahlinder, S.(2004). Achieving what cannot be dGoging with the
time constants in dynamic decision tasks. Proceedings of tAe@2r-
national Conference of the System Dynamics Society, OXdfd, July
25-29.

Hasher, I. & Zacks, R. T. (1984). Automatic processing of fundaaherformation:
The case of frequency of occurrenéenerican Psychologis89, 1372-
1388.

Hogarth, R. M. (2001)Educating intuition Chicago: University of Chicago Press.

Jensen, E. & Brehmer, B. (2003). Understanding and cafitaosimple dynamic

syster8ystem Dynamics Revigi®, 119-137.

Lindahl, M.-B. (1974) Conceptual learning effects of the intradimensional variation
of the instancedJppsala: Uppsala University: Ph.D. Dissertation.

Lovborg, L. & Brehmer, B. (1991INEWFIRE — A flexible system for running simu-
lated fire fighting experimentsRisg National Laboratory, Denmark,
Risg-M-2953.

Levborg, L. & Brehmer, B. (1992New facilities in NEWFIREWorking papers in
cognitive science and HCI (Ed. O. Ravnholt). Roskilde, Denmagk: C
tre for Cognitive Science, University of Roskilde WPCS-92-8.

Mayr, O. (1970)The origins of feedback contr@@ambridge, Mass.: MIT Press.

Moxnes, E. (2000). Not only the tragedy of the commons: mispercepfid@sdback
and policies for sustainable developmestem Dynamics Review, 16,
325-348.

Reason, J. (1990Human error Cambridge, Mass: Cambridge University Press.

Sterman, J. D. (2000Business dynamics. Systems thinking and modelling for a com-
plex world Boston, Mass.: Irwin McGraw-Hill.



