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Abstract 
Demand Conditioning is one of the methods used to address imbalances between supply and 
demand in supply chains. This requires the manufacturer to adjust the demand plan to respond 
to supply issues. The supply chain has several sources of delays and uncertainties such as lead 
times at different stages, forecast error, supply yield variability etc. that could potentially trigger 
or influence the conditioning process. In this paper, we examine dynamical effects in the 
conditioning process to study potential instabilities. We developed a Systems Dynamics model of 
a PC manufacturing supply chain to examine instabilities in the supply chain. This model 
provides insight on supply chain risks and error propagation due to unsynchronized execution. 
We also use the model to study the effect of different countermeasures to stabilize the supply 
chain. 

Keywords: System Dynamics, Demand Conditioning, Supply Chain, Stability, on-demand 
operation. 

 

1. Introduction 
Managing uncertainties and dynamics in enterprise supply chains require an ongoing emphasis in 
aligning supply with demand. With the objective of using the supply chain as a source of 
competitive advantage, many enterprises are endeavoring not only to reactively responding to 
customer demand, but are also aspiring to proactively condition the supply chain to improve 
profits. A common example of this is the cross-selling of goods, using marketing promotions to 
avoid overstocking of specific products. The act of conditioning demand may have other 
consequences in the supply chain - in particular, due to lead times and uncertainties in the supply 
chain. Our objective in this paper is to research the dynamics of demand conditioning in supply 
chains using systems dynamics models. 

The dynamic behavior of supply chains have been studied extensively, starting with the 
pioneering work of Forrester [1] in using systems dynamics models to demonstrate demand 
amplification in supply chains (otherwise known as bullwhip effect).  Sterman [2] provides a 
nice overview of how systems dynamics can be used to study business dynamics. The sources of 
oscillations such as a failure to account for time delays are nicely illustrated for a variety of 
systems such as supply chains, labor markets etc. It is shown that perfectly rational strategies at a 
local level can cause system-wide oscillations, and control strategies to stabilize the system are 
proposed. Lee [3] has identified four drivers of the bullwhip effect – namely demand forecast 
updating, order batching, price fluctuation, rationing and shortage gaming and proposed 



strategies to counter them. The bullwhip effect is also taught in different management courses, 
due to its important practical implications. 

From the perspective of demand conditioning it has been generally assumed that it is beneficial 
and little research has been done into dynamical effects associated with demand conditioning. 
Like any human system, conditioning demand in the supply chain is subject to time lags. If the 
demand can be conditioned very quickly relative to the time scale of supply variability, it is 
intuitive that demand conditioning can lead to supply chain benefits. However, the benefits are 
less clear if the time scale for conditioning is large compared with the time scale of supply 
variability. This scenario is very likely, since in many organizations, demand conditioning 
processes involve significant manual components such as instructing the sales force to tune what 
they are selling. In some situations, this may even involve developing new offerings that can be 
sold to the marketplace. Our main objective in this paper is to examine the dynamical effects if 
there are significant time lags in the conditioning process. 
 
In the next section, we describe dynamical aspects of demand conditioning. In Section 3, we 
describe a systems dynamics model of demand conditioning actions in a PC supply chain. In 
Section 4, we discuss computational results from our Systems Dynamics model and discuss 
implications. We finish with our closing remarks in Section 5. 

2. Demand Conditioning Dynamics 
The conditioning processes in IBM PC Division are explained in [4] and can serve as a good 
example. When imbalance between demand and supply of components and products is detected, 
proactive actions can be taken to correct the situation [6]. The basic supply chain structure with 
conditioning process is shown in Figure 1. There are three decision points in this figure 
representing different types of conditioning. 

• Supply conditioning: When the committed supply cannot meet the demand, it is possible 
that we can chase additional suppliers or adjust supply among different supply chain 
components.  

• Demand conditioning: Through price change and promotion, we can provide incentives 
to customer to choose product alternatives.  

• Offering conditioning: When there are some excessive parts, we can create and offer new 
configuration models to consume these parts. 

We refer to assembled products as Machine Type Models (MTM). Components procured from 
suppliers are assembled to form major building blocks, which can be further assembled to make 
the MTM. Customer order creates demand on the MTMs and is backlogged into the order system 
(a pull model). The incoming part supply replenishes the inventory and makes parts being 
available for assembling (a push model). The demand-supply imbalance would be measured by 
the following expression: 
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• where m is the vector representing demand amount for each MTM, p the vector of 
available parts for major building blocks, and c the BOM (bill of material) matrix – how 
a MTM is built-up from multiple parts.  



When component supply is constrained, we have the option of choosing the allocations of 
components to different MTMs using different policies, such as priority, proportional allocation 
and optimizing allocations to maximize profit. Which rule is used might effect the long term 
instability and overall profit measure. 

 
Figure 1: Supply Chain Conditioning Process 

3. System Dynamics Model 
In what follows, we study some instability issues related to the demand conditioning process. In 
particular, we examine the dynamic effects relating to time delays in the demand conditioning 
process. To gain a fundamental understanding, we only include uncertainty parameters related to 
synchronization in the conditioning process without explicitly including incentive actions to 
trigger demand shifting. We also further simplify the model by only considering two products in 
our model. We also do not consider allocation issues related to constrained supply between 
products. We present the stock and flow structure in section 3.1 and decision rules in section 3.2.  

3.1. Stock and flow structure 

The System Dynamics Model for demand conditioning process is shown in Figure 4. There are 
two basic stocks - order backlog and product inventory, in the model. The Backlog has in-and-
out flows: DemandRate and FulfilmentRate. The Inventory has in-and-out flows: ReplenishRate 
and ShipmentRate. So the system would be formulated as the following 
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where t is time, is the initial time for the processing, and i=1,2 is subscripted for product 1 and 
2 in the model. The system consists of four equations here because two products are included. 
Note that both BackOrder and Inventory would enter the integrands on the right hand side since 
in-and-out flows are actually functions of them. In most cases, the in-and-out flows are 
nonlinearly dependent on the stocks variables with time-delays. As a result, the model cannot be 
solved analytically, but is amenable to solution through numerical methods. 

0t

In the system of equations, the ReplenishRate will be given and DemandRate will be adjusted 
based on decision rule given in the next subsection. In order to determine ShipmentRate, we 



introduce two variables (for each product, we omit subscripts from now on unless it is necessary): 
DesiredShippingRate and MaximalShippingRate defined by 
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Since the DesiredShippingRate is determined by BackOrder and MaximalShipping is restricted 
by current Inventory level, it is obvious that ShipmentRate should be less than or equal to both in 
(2). The DesiredShippingTime is related to transportation delay, and the MaximalShippingRate is 
related to the time to process the order. Then ShipmentRate and FulfilmentRate are defined as 
follows: 
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The FulfilmentRatioFunc is given graphically as in Figure 2. When MaximalShippingRate is 
greater then DesiredShippingRate, ShipmentRate is close to DesiredShippingRate (BackOrder 
dominates the rate) since the value the fulfillment ratio function approaches one. When 
MaximalShippingRate is less then DesiredShippingRate, ShipmentRate is close to 
MaximalShippingRate since the slope of the curve is close to one (Inventory dominates the rate). 
As a lookup supported in Vensim [7], FulfilmentRatioFunc returns the nearest extreme value 
when the input goes outside the range of the lookup. 

In this formulation, the following inequality holds 
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and ShipmentRate is a smooth function of  the ratio of MaximalShippingRate over 
DesiredShippingRate. 

 

 
Figure 2: Fulfillment Ratio Function 

 



3.2. Decision rules of conditioning process 

Figure 3 shows the demand conditioning process. We periodically review the potential for 
demand conditioning – ConditioningCycleTime represents the review frequency, which triggers 
checking of the differences between Inventory and BackOrder (IBDifference) for both product 1 
and 2. A positive IBDifference suggests an overage situation and a negative IBDifference 
suggests a shortage situation (we do not consider safety stock policy). When the shortage in one 
product can be compensated by an overage in the other product, and if both volumes are greater 
than the specified Threshold, the conditioning action is triggered and will initiate demand 
shifting between two products through some incentive means. We do not model the incentive 
process in our systems dynamics model, but directly compute the demand to be shifted and 
assume that the demand shift is somehow accomplished. The start and finish time for 
Conditioning would relate to the effectiveness of the mechanism to shift demand and may 
experience delays due to manual organizational process, etc. We do not investigate causal factors 
for synchronization of the conditioning process, but demonstrate the overall supply chain effects 
due to time delays in demand conditioning. 

 
Figure 3: Demand conditioning process for two products 

 



 
Figure 4: System Dynamics model of demand conditioning process 

Now, we discuss the decision rules in the system dynamics model, shown in Figure 4. We have 
implemented the model through Vensim [7], and use the Vensim syntax to describe the decision 
rules. We start with periodic review of the difference of inventory and back order to determine 
the potential for demand conditioning. The demand shifting from product 1 to 2 Shift1to2 is 
estimated based on the following: 
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where T is for Time, CCT for ConditioningCycleTime, and IBD for IBDifference. The review 
time constraint is expressed in the first part of equation (4). Note that the formulated condition 0 
< Modulo(T+1,CCT) <= 1 guarantees that the system behavior does not depend on the time step 
chosen for numerical simulation. The second line is to check whether product 1 has overage and 
product 2 has shortage. Similarly, the third is to check whether product 1 has shortage and 
product 2 has overage. In both cases, the value would be the minimum of amplitudes of both 
overage and shortage. Otherwise, the value would be zero. The shifting is turned off by adding 
the negative of Shift1to2 with delay CCT+TurnOffDelay. So the total possible shifting from 
product 1 to 2 would defined as 
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By introducing TurnOffDelay, we could study the influence from the uncertainty associating 
with the switching off of the conditioning process. The DesiredRateInChange, which causes the 
demand change, is formulated as  
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When the ModifiedShift1to2 is greater then Threshold, demand for product 1 is increased by 
ModifiedShift1to2[1]/CCT and demand for product 2 is decreased by ModifiedShift1to2[2]/CCT. 
Our formulation implies that we intend to correct the situation in a time period of duration CCT. 
To model delays in the execution of conditioning actions, we introduce another parameter 
ExecutionDelay. The real DemandRateInChange would be delayed with respect to 
DesiredRateInChange 
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Finally, the Demand is determined through integrating DemandRateInChange 
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DemandRate is non-negative and can be expressed as 
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Without the above constraint, Demand could become negative with execution delay and turnoff 
delay, This can happen because the effects of previous conditioning actions may not be seen due 
to the delays. 

3.3. Cost formulation 
We associate excessive inventory with holding costs and backlogged order with penalty costs. 
The excessive inventory is represented by the positive part of IBDifference and the backlogged 
order is represented by the negative part of IBDifference. So the cost is given by 
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where IBD is for IBDifference. And CumulatedCost will be integrated from Cost 

∫=
t

t

diCostiostCumulatedC
0

.)]([][ ττ  

As seen from formulation that, we end up with the system of differential equations (four from 
subsection 3.1, two from 3.2 and two from 3.3) with nonlinearities, time delays and uncertainty. 
The work on the stability of stochastic delay differential equations in literature [8] is related to 
our context here and may be applicable to study the stability of demand conditioning processes. 
In this paper, we limit ourselves to a system dynamics study of the stability of demand 
conditioning processes.  



4. Computational Results and Implications 
In order to study dynamical effects in Demand Conditioning, we consider a simple two product 
supply chain. We introduce a supply spike in one product, along with a corresponding shortfall 
in another product that can trigger conditioning actions. We then explore the dynamics of 
inventories, backorders and costs for different values of the delays in the start and finish of the 
conditioning actions. These delays can be interpreted to be the result of different manual 
processes in Demand Conditioning. 

4.1. Ideal case 
We use the following for ReplenishRate 
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which is shown in Figure 5. The function Pulse has two parameters: starting time (10) and 
duration (20). We use the Pulse function here to introduce spike in product 1 and drop in product 
2 that can trigger conditioning actions. The initial inventory levels are set to be 200 and 100 for 
two products, and the initial backorders are set to be 100 and 90. 
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Figure 5: Replenishing rate from suppliers 

For the demand rate, initially we also have 100 for product 1 and 90 for product 2. Because of 
the change in supply (Pulse in equation (7)), IBDifference for product 2 becomes negative and 
the imbalance occurs at Time=11 as shown in the right of Figure 6. First we demonstrate system 
behavior in an idealized case in which there are no execution delay (ExecutionDelay=0) and no 
conditioning turnoff delay (TurnOffDelay=0). We also set the conditioning cycle time (CCT) to 
be 7 and threshold to be 0. When Time reaches 14, demand conditioning is triggered  based on 
decision rules expressed in (4), as shown in the left of Figure 6. In fact, there are subsequent 
demand conditioning actions at Time=21 and 28. Finally, the conditioning action is totally turned 
off at Time=42. The right of Figure 7 shows corresponding IBDifference curve for both products. 
The IBDifference roughly returns to the initial state after Time=42. 
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Figure 6: Demand conditioning effect in ideal case 

 

4.2. Influence from delays 
In reality, we do not have control on execution delay and conditioning turnoff delay. Figure 7 
shows the demand rate and IBDifference profiles, when the execution delay is 4 and turnoff 
delay is 5. Due to the execution delay, the demand rate changes at Time=18 instead of 14. The 
IBDifference for product 1 changes from a large positive number to zero. In the other words, the 
product 1 changes from an overage to being just on the verge of a shortage situation.  

If we continue to increase the turnoff delay, we end up with oscillations alternating with 
overages and shortages for products 1 and 2. Figure 8 shows the IBDifference for different 
TurnOffDelay with given ExecutionDelay=4. When the turnoff delay is 8, oscillation is 
dampened after two cycles and both products end up in an overage state, as shown in the left of 
Figure 8. However, when the turnoff delay is 10, the oscillation continues, growing in amplitude 
as shown in the right of Figure 8. 
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Figure 7: Demand conditioning effect in  
the case of ExecutionDelay=4 and TurnOffDelay=5 
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Figure 8: IBDifference in case of ExecutionDelay=4 and TurnOffDelay=8, 10 

Figure 9 shows the IBDifference profile for a longer time horizon, under the same parameter 
settings as in Figure 8. The oscillation stops at a point with both products experiencing large 
shortages. In the context of this paper, we refer to this as unstable, even though the values 
converge to a large product shortage. The reason is that the inherently unstable parameter 
selection converges to a large shortage due to the demand non-negativity constraint on the 
demand rate (Equation. 6). Interestingly, if we remove this constraint, the oscillation continues 
with growing amplitude as shown in the right of Figure 9. However, it is unrealistic to remove 
equation 6 from the formulation. Hence, the model ends up with both products having shortages 
with amplified magnitudes for the unstable case compared with both products stabilizing to a 
reasonable profile for the stable case.  
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Figure 9: IBDifference in case of ExecutionDelay=4 and TurnOffDelay=10 

If we study the effect of varying the execution delay keeping the turnoff delay fixed, we observe 
the same qualitative behavior. Figure 10 shows IBDifference for different ExecutionDelay with 
given TurnOffDelay=4. When the execution delay is 6, oscillation dampens after one cycle in the 
left of Figure 10; when the execution delay is 8, the oscillation continues to grow in amplitude, 
as shown in the right of Figure 10. 
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Figure 10: IBDifference in case of ExecutionDelay=6, 8 and TurnOffDelay=4 

The right of Figure 11 shows the phase plot of IBD[1] versus IBD[2] for the case where the 
execution delay is (4, 5) (i.e. 4 for product 1 and 5 for product 2) and the turnoff delay is (8,9). It 
starts as a big oval and then shrinks in its diameter, ultimately stabilizing at the point (65.55, 
56.06). The left of Figure 11 is the corresponding state plot. Since this choice of parameters 
corresponds to a stable case, both products stabilize to an overage state. Note that if we use the 
delay parameter settings (4,4) instead of (4, 5), the phase plot ends up as a straight line, 
oscillating between line segments of smaller lengths before converging to a point. 
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Figure 11: IBDifference for ExecutionDelay=(4,5) and TurnOffDelay=(8,9) 

The right of Figure 12 shows the phase plot of IBD[1] versus IBD[2] for the case where the 
execution delay is (4, 5) and the turnoff delay is (9, 10). It starts a small oval, then continues to 
grow in diameter, ultimately stabilizing to the point (-126.27, -2476). The left of Figure 12 is the 
corresponding state plot. Since this parameter setting corresponds to an unstable case, both 
products stabilize to a shortage state with increased magnitude. 
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Figure 12: IBDifference for ExecutionDelay=(4,5) and TurnOffDelay=(9,10) 



 

4.3. Cost Impacts 
The left of Figure 13 shows the cost plot for ExecutionDelay=(4,5) and TurnOffDelay=(8,9). The 
cost curves have several peaks with the sum of amplitudes gradually becoming smaller, and then 
the costs stabilize at certain levels. Note that if the first bump is due to overage and holding cost 
of excessive inventory, then the next bump would be due to shortage and the penalty cost of 
backlogged order. The points at which the curves cross zero are switching points between 
overage and shortage. Starting at Time=14, the first bump for product 2 is shortage cost and the 
first bump for product 1 is overage cost.  
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Figure 13: Cost for ExecutionDelay=(4,5) and TurnOffDelay=(8,9) 

The left of Figure 14 shows the cost plot for ExecutionDelay=(4,5) and TurnOffDelay=(9,10). 
The cost curves keep growing in amplitude, ultimately stabilizing at very high levels due to a 
large shortage. The right is the corresponding phase plot of Cost[1] vs. Cost[2]. The phase 
change range becomes bigger and bigger before stabilizing at a point far away from the origin. 
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Figure 14: Cost for ExecutionDelay=(4,5) and TurnOffDelay=(9,10) 

These simulations suggest that there exists a transition point at which the system transitions from 
a stable behavior to an unstable behavior. Figure 15 shows the plot of the average cost versus 
turnoff delay with given ExecutionDelay=4 and initial inventory level being (200,100). When the 
turnoff delay is less than or equal to 9, the average cost has small variation and is small. When 
the turnoff delay is beyond 9, the average cost has a sharp transition. 
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Figure 15: Cost Jump during Transiting from Convergence to Divergence 

4.4. Countermeasures 
Both subsections 4.2 and 4.3 demonstrate dynamical effects for different values of time delays in 
the conditioning process. We now discuss how these instabilities can be potentially managed.  

4.4.1. Inventory level influence 

Increasing inventory levels would in general increase the time before product shortages are seen 
and further reduce the frequency of oscillations. Figure 16 shows that, when we change initial 
inventory for product 2 from 100 to 150 and keep TurnOffDelay=10 and ExecutionDelay=4, 
behavior of IBDifference changes significantly comparing with the right of Figure 8 in which 
inventory baseline is (200,100) and oscillates one cycle, before stabilizing.  
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Figure 16: IBDifference after increasing inventory level  

for ExecutionDelay=4 and TurnOffDelay=10 

Figure 17 shows plot of average cost versus the turnoff delay for different initial inventory levels. 
When the initial inventory is (100, 90), average cost will jump when the turnoff delay is 3. When 
the initial inventory is (200,100), average cost will jump when the turnoff delay is 9. When the 
initial inventory moves up to (200,150), average cost will jump when the turnoff delay is 13. It 
implies that, in order to make the system more stable, a potential countermeasure is to increase 
the inventory level (safety stock level). However, notice from Figure 17 that the average costs 



are higher when the inventory levels are increased. This suggests a tradeoff between operational 
costs and risk of instability. This also suggests that stability issues need to be considered when 
enterprises drive cost reduction initiatives, because inventory reduction brings along with it an 
increased risk of instability. 
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Figure 17: Cost Transition Change for Different Inventory Levels 

4.4.2. Conditioning line consideration 
Another countermeasure is to avoid excessive conditioning which could happen if conditioning 
actions are done based on partially or completely ignoring the effects of earlier conditioning 
actions. This is important because in the presence of time delays, the effects of past conditioning 
actions may not be immediately manifested in the inventories and backlogs that drive 
conditioning actions according to equations (4) and (5). In the ideal case, this situation never 
happens since there are no delays and the effects of past conditioning actions are seen before any 
further conditioning actions are decided upon. This situation is not unlike the systems dynamics 
models in Reference [2], where it is shown that ignoring the supply lines partially or completely 
is an important source of amplifications. Hence, the decision rule for new conditioning actions 
should account for the conditioning line, as shown in Figure 18. 



 
Figure 18: Decision Rule with Conditioning Line 

Instead of using IBDifference to determine Shift1to2 in Eq. 4, we used AdjustedIBD (this is 
adjusted by the current conditioning pipeline), 
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By choosing Adjuster=1, we take the last CCT period conditioning lines into account. The 
conditioning line is calculated as the following 
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where DRIC is for DesiredRateInChange. Figure 19 shows the result for the execution delay 
being 4 and turnoff delay being 19. We observe stable behaviors even for large turnoff delays.  
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Figure 14: IBDifference after Conditioning Line Adjustment 



5. Closing Remarks  
In this paper, we have discussed dynamical effects arising out of demand conditioning in the 
supply chain, using a systems dynamics model.  We showed the presence of oscillations in 
supply shortages created due to the conditioning actions, if the time delays in managing the 
conditioning are long. There are other interesting dynamical issues relating to demand 
conditioning, arising from the presence of uncertainties in the supply chain. For instance, we 
may forecast a future inventory surplus for a specific product and trigger conditioning actions to 
sell the excess inventory. However, since supply is uncertain, it is possible that the inventory 
surplus may not materialize due to a number of reasons – for example, the suppliers yield may be 
variable. If this happens, we may have triggered the conditioning action too soon and as a result, 
create an inventory shortage instead of a surplus, as an unintended consequence of the action 
taken. An interesting question for future work in this regard is how to trigger the conditioning 
actions, given the supply and demand uncertainty and lead times in the supply chain.  
 
We suspect that the instabilities discussed in this paper are equally applicable to supply 
conditioning. This is particularly relevant, since all the suppliers in different tiers are not 
integrated; hence, it is likely that some of the supply lines are not accounted for in supply chain 
planning. Since there are considerable time delays in supply management, this is a potential 
source of instabilities.  It would be interesting to explore this deeper, to understand the drivers of 
instability in supply conditioning and also to examine potential countermeasures. 
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