Appendix - Definition of Variables

Below all variables used in the model are provided.

Clarification of abbreviation under the heading "Type": Aux = Auxiliary equation Var = Exogenous variable – used for model analysis Con = Constant Par = parameter, to be estimated independently

Terms are sorted in order of discussion in the paper.

Indices that are used throughout:

Index	Description		
<i>i</i> , <i>j</i>	platform type; $i, j \in \{N\}$;		
	N = Total number of platforms		
<i>q</i>	population segment; $q \in \{d, nd\}$,		
	d=drivers, nd=non-drivers; used in conjunction with index i:		
	for instance, the combination (nd, i) indicates all households		
	that not drive platform i		
m	cohort in aging chain for Fleet i ; $m \in \{M\}$;		
	M=total number of cohorts in the aging chain		
l	attributes of a platform; $l \in \{L\}$;		
	L total number of attributes		
k	source for updating of opinions; $k \in \{d, nd, ma, ex\}$,		
	ma = marketin&media, ex = experience		

1. Consumer Choice

Term	Туре	Unit	Name
F_i	Stock	[vehicles]	fleet of platform i
S _i	Flow	[vehicles/year]	sales of platform i
dc_i^m	Flow	[vehicles/year]	vehicle discards of platform i for cohort m
dc_i^T	Aux	[vehicles/year]	total discards of platform i
$rs_{j,i}$	Aux	[vehicles/year]	replacement sales of platform i coming
			from platform j
rs _i	Aux	[vehicles/year]	replacement sales of platform i
ns _i	Aux	[vehicles/year]	total sales by new households for platform i
$\sigma_{_{j,i}}$	Aux	[dmnl]	share of replaced discards from platform j to i
ea _{j,i}	Aux	[dmnl]	effective attractiveness of platform i perceived
			by driver of platform j
ea_i^q	Aux	[dmnl]	effective attractiveness of platform i perceived
			by population segment (q,i)
ea_N^q	Aux	[dmnl]	1 <i>xN</i> vector of effective attractiveness of
			platforms i perceived by population segment (q,i)
I _{NXN}	Con	[dmnl]	<i>NxN</i> identity matrix
ea_j^T	Aux	[dmnl]	sum of effective attractiveness of all platforms
			as perceived by a driver of platform j
fa_i^q	Aux	[dmnl]	familiarity of population segment (q,i)
			with platform i
a_i^q	Aux	[dmnl]	attractiveness of platform i as perceived
			by population segment (q,i)
α_{l}	Aux	[dmnl]	sensitivity of attractiveness to attribute 1
$x_{l,i}^q$	Aux	[dmnl]	value of attribute l of platform i as perceived
			by population segment (q,i)
x_l^*	Aux	[dmnl]	reference value of attribute l

Term	Туре	Unit	Name
rd_i^m	Aux	[vehicles/year]	replaced discards from platform i cohort m
ad_i^m	Aux	[vehicles/year]	discards from platform i cohort m as a result
			of total fleet shrinkage
rd_i^T	Aux	[vehicles/year]	total replaced discards from platform i
ad_i^T	Aux	[vehicles/year]	total discards from platform i as a result
			of total fleet shrinkage
$f_{s,i}^{\mathrm{m}}$	Par	[dmnl]	survival fraction of vehicles in cohort m of platform i
$ au_{c}$	Con	[year]	average cohort residence time
$ au_{d,i}$	Aux	[year]	average discard time of platform i
σ_{i}^{new}	Aux	[dmnl]	share of total new sales platform i by new households
$ea_i^{new,T}$	Aux	[dmnl]	total effective attractiveness of
			platforms as perceived by new households
F^*	Aux	[vehicles]	indicated fleet size
$ au_{ m s}$	Par	[year]	stock adjustment time
F	Aux	[vehicles]	total fleet
D	Par	[persons]	US-households with at least one driverslicence
f_{v}	Par	[vehicles/person]	average number of vehicles per household

2. Consumer Choice - continued

3. Familiarity

Term	Туре	Unit	Description
FA_i^q	Stock	[dmn1]	total familiarity with platform i for population segment (q,i)
fc_i	Flow	[dmnl/year]	flow of familiarity with platform i of non-drivers of i
			that convert to i
fd_i	Flow	[dmnl/year]	flow of familiarity with platform i of drivers of i
			that discard i
fg_i^q	Flow	[dmnl/year]	familiarity gain of population segment (q,i)
$\int f l_i^{nd}$	Flow	[dmnl/year]	familiarity loss of all non-drivers of platform i
fa ^{max}	Con	[dmnl/year]	maximum familiarity
N_i^q	Aux	[people]	total population of segment (q,i)
d_{i}	Aux	[dmn1]	drivers of platform i as fraction of total driving population
η^s_i	Aux	[dmnl/year]	total socialization effectiveness for platform i
$\eta^{\scriptscriptstyle m}_{\scriptscriptstyle i}$	Par	[dmnl/year]	marketing effectiveness for platform i
c	Con	[contacts/]	contact rate between households
		person/year	
p ^q	Par	[persons/]	persuasiveness of drivers population
		contact	
$\lambda_{ m i}^{ m f}$	Aux	[dmnl/year]	familiarity loss fraction for platorm i
$\lambda_0^{ m f}$	Par	[dmnl/year]	unconstrained familiarity loss fraction
${\cal E}^{ m sf}$	Aux	[dmnl]	effect of socialization effectiveness on forgetting
$\alpha_{\rm r}$	Con	[dmn1]	sensitivity of forgetting to socialization effectiveness
\tilde{x}_0	Con	[dmnl]	inflection point for effect of socialization effectiveness
			on forgetting with threshold effect

4. Attractiveness

Term	Туре	Unit	Description
$PX_{l,i}^q$	Stock	[dmnl]	perceived state of attribute l summed over
			population segment q of platform i
$x S_{l,i}^{nd}$	Flow	[dmnl/year]	flow of perceived state of attribute l for non-drivers
			of platform i that convert to i through sales of i
$xd_{l,i}^d$	Flow	[dmnl/year]	flow of perceived state of attribute l for drivers
			of platform i that convert to i through discard of i
$xu_{l,i}^q$	Flow	[dmnl/year]	update of the perceived state of attribute l
			for whole population segment q of platform i
$\eta^{s,q,k}_{l,i}$	Aux	[dmnl/year]	attractiveness adjustment effectiveness for
			population segment q of platform i
			for attribute l by source k
$\gamma_l^{x,q,k}$	Aux	[dmnl]	multiplier effect of persuasiveness for population
			segment q for attribute l by source k
$\gamma_l^{x^*}$	Par	[dmnl]	reference multiplier effect of carryover effectiveness
			of attractiveness for attribute 1
			with respect to that of familiarity
$px_{l,i}^q$	Aux	[dmnl]	perceived state of attribute 1 for
			population segment q of platform i
$x_{l,i}^m$	Stock	[dmnl]	state of attribute l of platform i in the margin
			(latest technology)- state as portrayed
			through marketing and media
$x_{l,i}^{e}$	Stock	[dmnl]	average state of attribute l of platform i in the market -
		_	state as experienced by drivers
$\tau_{_{e}}$	Aux	[year]	time to update one's experience with the technology in use

Term	Туре	Unit	Description
x_i^m	Aux	[dmnl]	performance of platform i in the margin
			(latest technology)
\widetilde{pe}_i	Aux	[dmn1]	effective production experience of platform i
Z	Aux	[dmnl]	learning curve strength
$\int f^x$	Par	[dmnl]	fractional improvement in performance
			per doubling of effective experience
$SO_i^{\sim i}$	Aux	[dmnl]	vector of spillover effects to platform i from
			all platforms except i
LPE_i	Aux	[dmnl]	lagged effective production experience of platform i,
pe _i	Aux	[dmnl]	normalized production experience with platform i
pe*	Par	[vehicles]	reference effective production experience
$\gamma^{so}_{j,i}$	Par	[dmnl]	spillover fraction from platform j to i
$G_{_{N\!N}}^{_{so}}$	Aux	[dmnl]	<i>NxN</i> spillover matrix for all platforms,
			with elements $\gamma_{j,i}^{so}$
$ au_{so}$	Par	[years]	time for knowledge to spillover between platforms
P_i	Stock	[vehicles]	accumulated production experience for platform i
λ^{e}	Par	[years]	production experience decay rate
\mathbf{X}_{i}^{f}	Aux	[dmnl]	average fleet performance of platform i
X_{i}^{f}	Stock	[vehicles]	accumulated fleet performance of platform i
MI	Aux	[dmnl]	Proxy for marketing impact:
			duration times effectiveness
T^m	Var	[years]	duration of marketing shock

5. Learning, scale and infrastructure