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Abstract 
 
The main motivation behind this study is to clarify the distinction between the loop 
polarities and the eigenvalues/vectors of a system in the context of system behavior. To 
this end, the phase plane analysis is utilized to emphasize the need for the system 
dynamics practitioners to use more of the already available analytical tools in studying 
structure-behavior relations. The main advantage of phase planes is that one can observe 
the motion of system state on a space defined by system structure. Particularly the 
eigenvectors characterize the system structure on this space and create trajectories for 
the system state to follow depending on the initial conditions just like magnetic fields 
created by a magnet. It is also shown how investigating phase plane clarifies issues such 
as positive loops giving rise to goal-seeking or oscillating behaviors. The analysis is 
accompanied with the corresponding system stories. The main disadvantage of the phase 
plane approach is that at most three states can be represented at the same time on a 
phase plane. 
 

Background 
 
The fundamental axiom of system dynamics has been that structure drives behavior. The 
concept of feedback stems from this notion of endogenous sources for the creation of 
system behavior. In spite of this guiding principle, the accurate depiction of the relation 
between a model’s structure and its behavior has mostly remained a mystery partly 
because there has been little study in the system dynamics field on this crucial subject. 
“Understanding model behavior” has claimed the first rank in a list of eight problem 
areas put forward as deserving the attention of system dynamics practitioners now and in 
the future (Richardson 1996). It should be noted though that the number of related studies 
seems to be increasing recently (Graham 1977; Forrester 1983; Richardson 1995; 
Modjahedzadeh 1996; Davidsen 1991; Ford 1999; Saleh and Davidsen 2000, 2001). As a 
result, there have been some improvements in revealing the structure-behavior relation 
through analytical and empirical means; however, the findings are still not enough to 
uncover most of the hidden and complicated dynamics that operate within –especially 
large–models. 
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It has been known that positive loops can generate goal-seeking or oscillating behavior; 
they can even exhibit shift from goal-seeking to exponential growth(decay). We are all 
too familiar with the single positive feedback loop that can give rise to exponential decay 
as well as exponential growth. It is obvious that even linear systems are not that trivial 
(Graham 1977; Richardson 1995; Saleh and Davidsen 2001). What kinds of feedbacks 
give rise to what kinds of behavior under which conditions is still not well-understood. 
This important research problem has been ignored probably as the examples giving rise 
to these strange behaviors are overlooked as uncommon. Nevertheless, we live in a 
mostly nonlinear world; the analysis of transients in linear systems, apart from being 
interesting by themselves, may also lead to better understanding of nonlinear systems. 
 
Some of the material presented in this work has been previously addressed in some form 
or another (Graham 1977; Richardson 1995; Sterman 2000). It is the author’s belief, 
however, that most of this material is not well known to the wider system dynamics 
community. Therefore, even though the observations in this paper may have some 
significance for the practice of system dynamics the paper’s major purpose is to clarify 
the distinction between loop polarities and eigenvalues/vectors of a system in the context 
of system behavior. 
 
One of the objectives of this study is to show that there are already well-developed 
analytical tools in the literature that can be utilized more in the system dynamics field. To 
make the case, the state space and phase plane methods are introduced to analyze 
structure-behavior relation in simple system dynamics models. The state space methods 
and phase plane analysis are important tools in the analysis of differential equations. 
While state space methods provide an automated approach to the solution of differential 
equation systems, phase plane analysis provides a proper way of understanding how the 
system behavior unfolds through comparison of the behavior of system states. Although 
state space representation has found some use, it is interesting that phase plane analysis 
have rarely been applied in the analysis of system dynamics models (Graham 1977; 
Aracil 1981, 1986; Özveren and Sterman 1989; Sice et al. 2000). This probably has been 
the case because the state space representation is suited better for linear models while the 
phase plane analysis is not very suitable for high-order models. In this paper, it is shown 
how both methods can be used together to bring about a renewed understanding to the 
unfolding of behavior of linear systems. This will be complemented with narrative 
explanations to demonstrate the prospects of using analytical and empirical/narrative 
methods concurrently. Along the way, there will be new light on unexpected behaviors of 
systems. 
 

Methodology 
 
The idea of state-space comes from the state-variable method of describing differential 
equations. In this method, the differential equations representing the system structure are 
organized as a set of first-order differential equations in the vector-valued state of the 
system, and the solution can be visualized as a trajectory of this state-vector in state space 
(Franklin et al. 2002). The ordinary differential equations (ODEs) do not have to be 
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linear and/or time-invariant for the state-space method to be implemented although the 
examples in this paper are linear and time-invariant. Having them in state-variable form 
gives a compact, standard form to study. The general state-variable representation is: 
 

t t t t t

t t t t t

.
x( ) = A( )x( ) + B( )u( )
y( ) = C( )x( ) + D( )u( )

 

 
where x(t), u(t), and y(t) are n-dimensional state, m-dimensional input, and k-dimensional 
output vectors; and A(t), B(t), C(t), and D(t) are coefficient matrices with n*n , n*m, k*n, 
and k*m dimensions, respectively. 
 
The above representation is generic. The coefficient matrices may or may not be time-
dependent. Furthermore, for all practical purposes, only the first equation will be 
considered in the subsequent examples and u(t) is taken zero (i.e. there is no exogenous 
forcing function on the system in question). Once put into state-space form, the analysis 
may continue on the phase plane. As mentioned above state-space approach has been 
utilized time to time in the system dynamics literature (Özveren and Sterman 1989). 
 
The phase plane approach is derived from the geometric or qualitative theory of 
differential equations. This approach enables one to make use of the ideas of geometry in 
analyzing differential equations. On the phase plane, which can be considered as a subset 
of state-space, the concepts of distance and of orthogonal and parallel lines, as well as 
other concepts from geometry can be useful in visualizing the solution of an ODE as a 
path in the state space (Arnold 1978). 
 
Consider a second order differential equation with states x1 and x2. The solution of this 
differential equation can be viewed as a parametric representation for a curve in the x1x2 
plane. This curve, called trajectory, is specified by the differential equation (or in other 
words, by the very nature of the system) and characterizes how x1 vs x2 behaves. The x1x2 
plane is called the phase plane, and the set of trajectories is referred to as a phase 
portrait. In short, given a dynamic system of equations with n states, along with 
analyzing the change in the state variables through time (i.e. x1(t), x2(t), …,xn(t)) one can 
also analyze how state variables evolve with respect to each other (e.g., how x1 vs. x2 
behaves) on the state space (e.g., on the x1x2 plane). 
 
The phase plane is defined by the eigenvectors of the system. Their combined effect 
anywhere on the phase plane determines the direction of the trajectory at that point. The 
eigenvectors on phase plane act as attraction rays that stretch the space just like magnetic 
fields. This analogy is not purely imaginary: the trajectories on a phase plane cannot 
cross each other or themselves (unless they are closed orbits in which case they represent 
limit cycles), as the magnetic lines cannot. In addition, through any point, there is one 
and only one trajectory as a result of the existence and uniqueness of the solutions of 
differential equations. 
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They are useful in visualizing and analyzing the phase plane trajectories. The 
contribution of each eigenvector on the state vector at a specific point on the state space 
is equivalent to the component of state vector on each eigenvector at that point. This 
phenomenon is observed on Figure 1 for a second-order linear system. In the figure, there 
are two eigenvectors: eigenvector 1 associated with the positive eigenvalue and 
eigenvector 2 associated with the negative eigenvalue. State vector shows the system’s 
direction of change at the point located with black dots on the phase plane on the left and 
the enlarged image on the right. In addition, s1 and s2 are the components of the state 
vector along the eigenvector 1 and the eigenvector 2, respectively. The isoclines are 
contours of equal slope. They are generally defined for zero slopes. For example, for a 
two state system where the states are defined as x1 and x2, there are two zero-slope 
isoclines on the phase plane: one where 1 2x / x 0∂ ∂ =  and the other where 2 1x / x 0∂ ∂ = . 
The phase plane method has not seen wide spread use in the analysis of system dynamics 
models except some rare work such as Graham (1977), Aracil (1981, 1986), and Sice et 
al. (2000). 

 

 
Figure 1. The phase plane and the decomposition of the state vector to its components for 

a second order system. 
 
The next section, the phase plane analysis will be employed to understand how structure 
drives behavior. In the process, it will shed light why and how controversial behavior is 
generated in some specific situations. 

s1 

eigenvector 2 

 

eigenvector 1 
state 
vector 

s2 
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Application on two homogeneous second order linear systems 
 
The system composed of positive loops only 

The first example is a simple second order linear system consisting of three positive 
feedback loops. The causal loop diagram where stocks and flows are represented 
explicitly is given in Figure 2. 
 

 

x1 

x2 

1x
�

 

2x
�

+ 

+ 

+ 

+ 
 

Figure 2. The casual loop diagram. 
 
The state space representation of this system is 
 

1 1 2

2 1 2

x ( ) 1 x ( ) 1 x ( ) (1a)

x ( ) 4 x ( ) 1 x ( ) (1b)

t t t

t t t

= ∗ + ∗

= ∗ + ∗

�

�

 

 
The matrix notation of the same system is 
 

X( ) = AX( )
�

t t  
 

where the gain matrix
1 1

=
4 1
� �
� �
� �

A . 

 
The eigenvalues and eigenvectors of the system, respectively, are 
 

�1 = 3 and �2 = -1 
 

0.4472136
0.8944272
� �

= � �
� �

1�  and 
-0.559017
1.118034
� �

= � �
� �

2�  
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Now we know that positive loops typically generate run-away behavior such as 
exponential growth or decay. A system purely composed of positive loops is more than 
likely to generate the same type of behavior. In fact, for a range of initial conditions the 
system’s behavior is just as expected. An example is provided for x1(0) = 1 and x2(0) = 2 
in Figure 3. 
 

 The behaviors of X1 and X2 
30 
30 

15 
15 

0 
0 

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1 
Time (Month) 

X1 : Current 
X2 : Current 

 
Figure 3. The behaviors of x1 and x2 for x1(0) = 1 and x2(0) = 2. 

 
But how about for a different set of initial conditions like x1(0) = 0.6 and x2(0) = -1? 
While x2 is still exhibiting exponential growth x1 does something strange: first a foray 
towards the unstable equilibrium point (0,0) of the system then it follows the exponential 
growth pattern (Figure 4). 
 

 The behaviors of X1 and X2 
1 
1 

0.7 
0 

0.4 
-1 

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1 
Time (Month) 

X1 : Current 
X2 : Current 

 
Figure 4. The behaviors of x1 and x2 for x1(0) = 0.6 and x2(0) = -1. 

 
Here although the steady-state behavior is exponential growth, the system exhibits goal-
seeking behavior during the transient phase. This not only shows that positive loops are 
capable of generating goal-seeking behavior (a phenomenon that we already know) but 
also that dominance shifts are possible even for linear systems (a fact not acknowledged 
frequent enough). But why one set of initial conditions generates pure exponential growth 
while the other generates transient goal-seeking behavior with a dominance shift? 
Additional experimentation shows that the transient goal-seeking behavior emerges only 
for certain initial conditions. What’s more, finding these initial conditions through trial-
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error turns out to be prohibitively difficult. However, the exact expression of the system 
is formed through its eigenvalues and eigenvectors. Hence, it is possible to reveal the 
regions of state space that give rise to transient behavior on the phase plane. The phase 
plane analysis where the coordinates are defined by the system states tells us that not only 
the structure, but also the initial conditions of the system plays a role in how the system 
behavior evolves over time. This may be regarded as trivial for linear models but has 
important implications for nonlinear models. 
 

 
Figure 5. The phase plane characterization of the first system (arrows indicate the 

direction of each trajectory). 
 
The phase plane with the eigenvectors, isoclines, and trajectories is given in Figure 5. 
The individual trajectories of several runs with different initial conditions are also shown. 
The particular initial states we used above are shown with a different color. Now we can 
see that as long as the initial state is not exactly on the eigenvector associated with the 
negative eigenvalue, the system explodes (i.e. goes to infinity). But during the transient 
phase, the system may exhibit goal-seeking behavior depending on the location of the 
initial state of the system on the phase plane. Another word of caution is that although, 
almost no matter where the system starts, it eventually falls under the influence of the 
eigenvector associated with the positive eigenvalue it would be wrong to assume that the 
run-away behaviors are all identical. As a result, once again the mystery around the 
positive loops giving rise to goal seeking behavior disappears if we try to understand the 
structure through analytical means. Then we are able to see the real mechanism beyond 
the loop polarities. 
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The system with coupled positive and negative loops 

Yet another example for a non-trivial linear system is a second order system with a 
central positive loop and two coupled minor negative loops (Figure 6). 
 

 

x1 

x2 

1x
�

 
- 

+ 

2x
�

 
- 

+ 

 
Figure 6. The casual loop diagram. 

 
The state space representation of the system is 
 

1 1 2

2 1 2

x ( ) 0.5 x ( ) 0.1 x ( ) (2a)

x ( ) 0.7 x ( ) 0.3 x ( ) (2b)

t t t

t t t

= − ∗ + ∗

= ∗ − ∗

�

�

 

 
The matrix notation of the same system is 
 

X( ) = AX( )
�

t t  
 

where the gain matrix
0.5 0.1

=
0.7 0.3

−� �
� �−� �

A . 

 
The eigenvalues of the system are 
 

�1 = -0.6828427 and �2 = -0.1171573 
 

0.4798415
0.8773552

−� �
= � �
� �

1�  and 
0.3684064
1.4104172

−� �
= � �−� �

2�  
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 The behaviors of X1 and X2 
10 
8 

5 
4 

0 
0 

0 5 10 15 20 25 30 35 40 45 50 
Time (Month) 

X1 : Current 
X2 : Current 

 
Figure 7. The behaviors of x1 and x2 for x1(0) = 10 and x2(0) = 1. 

 
 

 Pattern Index of X2 (PI X2) and X2 
20 
8 

0 
4 

-20 
0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Time (Month) 

PI X2 : Current 
X2 : Current 

 
Figure 8. The pattern index of x2 (PI x2) and x2 for x1(0) = 10 and x2(0) = 1. 

 
The system’s both eigenvalues are negative, so naturally we expect the system to exhibit 
goal-seeking behavior. The behavior of x1 is as such, however, the behavior of x2 does 
not conform to our expectations (Figure 7). The pattern index graphs introduced by Saleh 
and Davidsen (2000) also confirms that for a certain time interval (in between the dashed 
lines in Figure 8), x2 exhibits run-away behavior. 
 
The phase plane with the eigenvectors, isoclines, and trajectories for this system is given 
in Figure 9. Once again, the initial system state together with the eigenvectors and 
corresponding eigenvalues (i.e. the structure) of the system determine the trajectory (or 
path) to be followed. 
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Figure 9. The phase plane characterization of the second system (arrows indicate the 

direction of each trajectory). 
 

Discussion 
 
The phase planes reveal why the system exhibits certain behavior modes at certain stages. 
This is because the phase plane is completely portrayed by the system structure through 
its eigenvalues and eigenvectors. One can trace the path of the system state on the phase 
plane beginning from any initial condition. The direction of the state vector at any point 
on the phase plane is dictated by the relative strength of each eigenvector at that point. In 
other words, system behavior arises from a linear combination of the dynamics associated 
with the eigenvalues of the linear matrix of system structure. It is, however, more fruitful 
if we combine this analytical analysis with “system stories” (Modjahedzadeh and 
Andersen 2001). 
 
System stories are systematic verbal accounts of how model structure generates observed 
behavior patterns. They help to communicate the system’s dynamics to the less 
mathematically advanced in a simple language. For that reason, in order to make more 
sense out of the elementary phase plane analysis presented, the narrative explanations of 
the behavior patterns on Figures 4 and 7 are given in the following. 
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In the first system, although the link gains associated with 1x
�

 are the same, since the 
magnitude of the initial value of x2 is greater than that of x1, x2 causes x1 to get less 

positive through its rate 1x
�

 (Eq. 1a). x1 decreases but it is still positive and its respective 

link gain associated with 2x
�

 is sufficiently greater than that of x2 so that 2x
�

 is positive 
and hence x2 becomes less negative. As x2 approaches zero the decrease in x1 also gets 

smaller until 1x
�

=0 (i.e. –x1 = x2) (Figure 5). Before this point the contribution of the 
eigenvector associated with the negative eigenvalue was larger than that of the 
eigenvector associated with the positive eigenvalue. After this point x2 continues to 
become less negative and since 1 2| | | |x x> , x1 begins to grow. This eventually leads to 
exponential growth in both states. In other words, the contribution of the eigenvector 
associated with the positive eigenvalue gets larger than that of the eigenvector associated 
with the negative eigenvalue. 
 
In the second system, x1 exhibits exponential decay throughout the simulation. However, 
during initial phases, its value is much greater than that of x2. Therefore, the strength of 
the central loop practically eliminates the effect of the negative loop composed of x2 and 

2x
�

 and x2 increases rapidly until x1 falls to a level that the change in x2 is temporarily 

zero (i.e. 2x
�

 = 0). This point is marked on the phase plane (Figure 9). Until this point, 
both states exhibit goal-seeking behavior but x2 seems to be fooled by x1 and approaches 
a non-existing positive equilibrium point. When x1 falls further, x2 once again fooled this 

time to exponential decay because x1 falls faster than x2, which causes 2x
�

 to become 
larger in subsequent time steps creating an artificial positive loop effect. However, x1 

decreases with a decreasing rate while x2 falls with an increasing rate. At some point –
which is time 6 in Figures 7 and 8– the superficial effect caused by relative decrease 

speeds of both states vanishes and the negative loop composed of x2 and 2x
�

 becomes 
dominant and drives both states smoothly toward the single equilibrium point (0,0) of the 
system. 
 
The exponential decay of x2 can be observed on the phase plane although it is not 
associated with any of the system eigenvalues. The reason for the occurrence of such 
behavior is due to the extreme difference between the magnitudes of system eigenvalues. 
Namely, the first eigenvector is so powerful that the second one cannot exert its influence 
until the state vector comes very close to it. This leads to the strange behavior pattern 
exhibited by at least one of the states in the model. In this case, it is always x2 because of 
the particular system structure (Eq. 2; Figure 9). 
 
The system narratives given above complement the analytical results drawn from the 
phase plane analyses. In the end, the coupling of the two approaches hopefully leads to a 
more complete understanding of the systems’ dynamics. 
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In linear systems that have at least one positive eigenvalue, no matter how relatively 
small a magnitude it has, the positive eigenvalue(s) eventually dominate(s) the system 
behavior and the system explodes except for certain initial conditions (Franklin et al. 
2002). These initial conditions are the ones located exactly on the eigenvectors associated 
with negative eigenvalues of the system. However, the negative eigenvalue(s) may still 
dominate(s) the system at the transient phase depending on the initial state. The transient 
goal-seeking response of the first system can be clearly seen on its phase plot (Figure 4). 
This shows us that looking at the link gains alone may fail to reveal the behavior pattern 
exhibited by the system. The traditional definition of loop polarity serves as an indicator 
to get a “feel” for the system structure and behavior. Although we made use of the loop 
polarities in the system narratives the phase plane approach gives a clearer and more 
analytic picture than using loop polarities to explain model behavior. Nevertheless, 
considering the communication challenges, it seems the best way is to complement the 
two approaches in an analysis. 
 
The following example clarifies the distinction between eigenvalues and eigenvectors of 
a system. The model given below has a different structure than our first example (Figure 
10). The difference is that this model has two negative links but the loop polarities are the 
same as before. Although both models have the same eigenvalues their eigenvectors, 
hence the phase planes defined by the two systems are different (Figures 5 and 11). 
Therefore, looking only at eigenvalues is not sufficient too to understand system 
behavior. They only characterize certain behavior modes but how those behavior modes 
unfold is dictated together with the system eigenvectors. 
 

 

x1´ 

x2´ 

1x'
�

2x '
�

- 

- 

+ 

+ 
 

Figure 10. The structurally altered version of the first example. 
 

The use of analytical methods is essential in understanding how structure drives behavior 
in system dynamics models. In this respect, determining dominant structure responsible 
for dominant behavior modes becomes important too. Forrester (1983) introduced 
eigenvalue analysis to investigate dominant structure. More recently, Saleh and Davidsen 
(2001) improved this approach. Richardson (1986) gives qualitative explanations on the 
pitfalls of causal loop diagrams. Richardson (1995) investigates loop dominance through 



 13

analytical means. He refers to positive loops coupled with negative loops and concludes 
that minor negative loops are responsible for the generation of goal seeking behavior 
when the gain of positive loop is less than one. Saleh and Davidsen (2001) using system 
eigenvectors show that it is possible to observe goal seeking behavior even in a system 
with a single positive loop and that behavior mode shift is possible even for that system. 

 

 
Figure 11. The phase plane of the altered system (arrows indicate the direction of each 

trajectory). 
 

This study, on the other hand, brings another explanation to this phenomenon using state 
space and phase plane techniques. The mathematical/analytical elaboration here is 
intended to serve as a complement to Richardson (1986) where he gives more qualitative 
explanations and points out “predicting behavior from loop polarity alone without regard 
for distinction between rate-to-level links and information links is impossible”. In reality, 
the dominance shift does not take place between different loops but different eigenvalues 
of the system. That is why it is possible to observe dominant behavior shift in a second 
order system with only a single positive loop. The system’s behavior is dictated by the 
initial conditions not alone by the structure and the structure is exactly defined by the 
system eigenvalues and eigenvectors. It is easy to see that if initially the component of 
the state vector of the model on the eigenvector associated with the negative eigenvalues 
is greater than that on the eigenvector associated with the positive eigenvalues the system 
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exhibits transient goal seeking behavior (Saleh and Davidsen 2001). Thus, it is true that 
even linear systems with order higher than one are capable of exhibiting behavior mode 
shifts. 
 
Finally, it is useful to think of eigenvectors on state space as attraction rays that stretch 
the space just like magnetic fields. During the transient phase for linear models and in 
general for nonlinear models, it matters where you start on this plane. Hence, this may be 
a useful concept in explaining ‘strange’ behavior patterns in the transient phase. It is also 
worth mentioning that eigenvalue and loop analysis are valid for long-term steady-state 
behavior unless the analysis does not take into account the phase planes. 
 

Conclusion 
 
Understanding the relation between structure and behavior is at the core of the system 
dynamics field. Nevertheless, we have come a limited way in achieving this objective. In 
this paper, analytical tools that are already available are presented with a different 
perspective for the analysis of structure-behavior relation in linear system dynamics 
models, which would also be useful in the analysis of nonlinear systems. The state space 
representation and phase plane analysis enabled to stress the importance of the system 
eigenvalues and to make a distinction between them and loop polarities in terms of 
behavior. However, it should be noted that at most three states can be represented at the 
same time on a phase plane, which may be regarded as a disadvantage of the method. 
 
The methodology is demonstrated on two second-order linear models. The first is 
composed only of positive loops whereas the second has both positive and negative 
loops. It is shown that it does not matter for a system what type of loops it is composed 
of. What matters for potential behavior modes it is capable of generating is the signs of 
its eigenvalues (and whether they are real or imaginary). Hence, concentrating on the 
signs of loops is potentially misleading. 
 
The paper’s major purpose is to clarify the distinction between the loop polarities and the 
eigenvalues/vectors of a system in the context of system behavior. Another motive of this 
study is to emphasize the need for the system dynamics practitioners to utilize more of 
the analytical tools in analyzing structure-behavior relationships. What's more, the 
hardcore mathematical nature of analytical techniques should not be regarded as a 
discouraging factor in their use for model analysis. The tools and ideas borrowed from 
engineering control systems may bring so much to the field of system dynamics. In the 
end, it is the basis that gave rise to this field. This is, of course, does not mean that 
attempts to form better qualitative analysis tools are futile or of lesser value. To the 
contrary, these tools as demonstrated in this paper, are to complement each other. 
 
The software in use in system dynamics should incorporate more technical support for 
understanding the connections between model structure and behavior. There are 
promising improvements in this direction such as the Digest software developed by 
Modjahedzadeh (1996). Nevertheless, it would be very nice if system dynamics software 
were to be able to provide phase plane plots when needed. The availability of such tools 
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will certainly enhance the rate and level of understanding connections between model 
structure and behavior. 
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