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Abstract 
 
Can a negative feedback loop take part in the generation of exponential growth? This 
study examines such questions and consequently presents a principle regarding the roles 
of feedback loops in the unfolding of system behavior for second-order linear models. In 
general, uncovering system structure-behavior relation is crucial in understanding the 
functioning of a system. In this paper, using the eigenvalue elasticity analysis, it is shown 
that associating loops with certain behavior modes based solely on their polarities is 
misleading. Six linear second-order models with similar structures are used as examples 
in the analysis. The models consist of three feedback loops. The resulting principle 
suggests that the relative locations and magnitudes of feedback loops have more 
significance than their polarities in the generation of system behavior. The principle may 
seem to state the obvious for some readers; however, its significance is its reliance on a 
concrete analytical analysis. There is potential for the formulation of more such 
principles especially for higher-order systems. 
 

Background 
 
Understanding the relation between structure and behavior is a demanding task, even for 
slightly complex models. In general, the insight on this elusive relation comes only after 
years of experience working with several system dynamics models. Apart from the time 
required for such expertise to accumulate the experienced modeler who gains the insight 
most of the time remains unable to properly communicate it. Graham (1977) has done an 
excellent job in organizing a set of principles, which helps to understand and 
communicate the experiences and insights on the relation between structure and behavior 
of systemic dynamic models. Surprisingly enough, there has been virtually no such 
endeavor following his line of work (but see Forrester 1983; Richardson 1995). Such 
principles demonstrate the inherent difficulties in inferring the behavior of even the 
simplest linear systems. More importantly though they pave the way to better understand 
and appreciate the structure-behavior relation in more complex systems. 
 
The concept of feedback essentially stems from the notion that endogenous sources are 
responsible for the creation of a system’s behavior. In spite of the guiding principle that 
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the system behavior is generated as a result of the interaction between various feedback 
mechanisms of the system, the accurate depiction of the relation between a model’s 
structure and its behavior has mostly remained a mystery. “Understanding model 
behavior” has claimed the first rank in a list of eight problem areas put forward as 
currently deserving the attention of system dynamics practitioners (Richardson 1996). It 
should be noted though that the number of related studies seems to be growing lately 
(Richardson 1995; Davidsen 1991; Ford 1999; Saleh and Davidsen 2000, 2001; Oliva 
2003; Modjahedzadeh et al. 2004). As a result, there have been some improvements in 
revealing the structure-behavior relation through analytical and empirical means. 
 
Can a negative feedback loop play a role in the generation of exponential growth? This 
study is inspired by the coincidental observation of such phenomenon by the author. The 
observation led to a study, which produced a principle on the structure behavior relation 
for second-order linear models based on an analytical examination. The eigenvalue 
elasticity analysis is used in the study (Forrester 1982). The next two sections briefly 
explain the eigenvalue elasticity analysis in the identification of dominant loops and the 
generic model structure used in the study. Next, the contributions of feedback loops on 
the system behavior are examined using the eigenvalue elasticity analysis. Then, the 
results are proven analytically for each model one by one. Finally, a principle on the role 
of loops on system behavior is stated followed by concluding remarks. 
 

Eigenvalue elasticity analysis 
 
The link gains characterizing the structure of a model can be related to an eigenvalue of 
that model using eigenvalue elasticities. The partial derivative of an eigenvalue with 
respect to a link gain gives the sensitivity of that eigenvalue to an infinitesimal change in 
that gain. The elasticity value (elasticity, in short) is defined as the sensitivity of the 
eigenvalue to the link gain normalized for the size of the gain and the size of the 
eigenvalue (Eq. 1). Thus one obtains the elasticity, which is a dimensionless measure. 
This enables the comparison of the elasticities of various links with each other making it 
a convenient measure of the relative significance (dominance) of links to a certain mode 
of behavior. For instance, a larger elasticity means behavior is more sensitive to a certain 
percentage change in one gain than another. The partial derivative of the system 
eigenvalues with respect to a link gain is most easily calculated by calculating the 
eigenvalues before and after a small change in that gain. 
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where  ∂  ≡  partial derivative sign 

iλ  ≡  ith eigenvalue of the system (scalar) 

apq ≡  gain of the link from variable p to q 

ipqε  ≡  elasticity of the eigenvalue iλ  with respect to the link gain apq 
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Dominant loop identification 

The causal structure of a linear or linearized model can be represented as a system matrix. 
Each non-zero element of the matrix stands for a causal link in the original model 
preserving the original structure. If element apq is non-zero this means the rate of change 
in the state variable xq depends on the value of the state variable xp. An example of a 
linear model structure is given in Figure 1. Calculating the eigenvalue elasticity of a 
behavior mode with respect to all non-zero elements of the system matrix identifies the 
dominant structure generating that behavior (Eq. 1). The elasticities may be complex 
numbers. If this is the case, they refer to cyclic behavior modes and the real part gives the 
effect on damping ratio, while the imaginary part gives the effect on the natural period. 
The magnitude of the elasticity gives the overall sensitivity of the cyclic mode to a 
structural link (Saleh and Davidsen 2001). 
 

12 15

21 23

34 35

41 42

51 52 54

0 0 0
0 0 0

0 0 0
0 0 0
0 0

a a

a a

a a

a a

a a a

� �
� �
� �
� �=
� �
� �
� �� �

A  

 

 

x1 

x2 

x3 

x5 
x4 

 
Figure 1. Causal links in a linearized model. 

 
The causal links that have large elasticities are particularly important. If a small number 
of links have distinctly larger magnitudes than others, this means they define a dominant 
subset of model structure. Most of the time, these distinct links happen to form feedback 
loops in the model (Forrester 1982). 
 

Generic model structure 
 
A second-order model has to have a minimum of three feedback loops in order to connect 
the state variables with each other and their rates (Figure 2). Consequently, there are six 
different loop polarity combinations. Therefore, six linear homogeneous second-order 
models, one for each loop polarity combination, are used in the study. The generic causal 
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loop diagram of the models, where stocks and flows are represented explicitly, is given in 
Figure 2. 
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Figure 2. The ‘generic’ casual loop diagram of the models used in the study. 

 
The state space representation of this system is 
 

1 11 1 12 2

2 21 1 22 2

x ( ) x ( ) x ( )
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t a t a t

t a t a t

= ∗ + ∗

= ∗ + ∗

�
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The matrix notation of the same system is 
 

X( ) = AX( )
�

t t  
 

where the gain matrix 11 12

21 22

=
a a

a a
� �
� �
� �

A . 

 

Experimental assessment 
 
The loop polarities of the models, the selected gain matrices and eigenvalues are given in 
Table 1. The gain matrices of the models are determined subjectively. They, except the 
last two, which have complex conjugate eigenvalues, are set up in such a way that each 
one of the models has one positive and one negative eigenvalue. This means that these 
models have the potential to exhibit both (transient) goal-seeking behavior (i.e. the 
negative eigenvalue may be dominant initially) and exponential growth. The reason for 
such a setting is to be able to analyze the elasticities with respect to system link gains of 
both positive and negative eigenvalues within the same model. 
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The elasticities with respect to each loop gain for each model are given in Tables 2-3. 
The elasticities are found for a one percent change in the magnitude of the gain links. The 
first four models, listed in Table 2, are different than the latter two, listed in Table 3, in 
the sense that the latter models generate oscillations. First, the four models in Table 2 are 
discussed. 
 

Table 1. The gain matrices of the models used, their loop polarities and eigenvalues. 

Loop Polarities Eigenvalues 
L1 L2 L3 

Gain Matrix A 
�1 �2 

+ + + 
1 1

=
4 1
� �
� �
� �

A  3 -1 

– + – 
0.7 0.3

=
0.5 0.1

−� �
� �−� �

A  0.089 -0.89 

– + + 
1 1

=
1 1
−� �
� �
� �

A  1.41 -1.41 

+ – – 
0.2 0.1

=
1 1

� �
� �− −� �

A  0.11 -0.91 

– – – 
2 2

=
2 2

− −� �
� �−� �

A  -2+2i -2-2i 

+ – + 
2 2

=
2 2

−� �
� �
� �

A  2+2i 2-2i 

 
One might expect that a positive (negative) loop would contribute to positive (negative) 
eigenvalue (i.e. exponential growth (decline)) and hamper the behavior associated with 
the negative (positive) eigenvalue (i.e. exponential decline (growth)). However, upon 
examining Table 2, one observes that when the central loop (L2) has positive polarity the 
elasticities of both eigenvalues with respect to that loop are positive. Thus its contribution 
is positive for both behavior modes represented by the two eigenvalues. On the other 
hand, the elasticity (i.e. the contribution) of central negative loop is negative for either 
eigenvalue. The second observation is that although the minor loops conform to the 
traditional expectation stated above when the central loop is positive, they do not when 
the central loop is negative, which is the case in the Model 4. There the elasticities of 
both eigenvalues are positive with respect to both positive and negative minor loop gains. 
 
In the Model 1, the contribution of the central loop is higher for the negative eigenvalue 
than that for the positive one (0.9975 vs. 0.3325). Looking at the elasticities of the 
negative eigenvalue of the model it seems that the central positive loop tries to bring the 
system to equilibrium while the minor positive loops resist it (Table 2). 
 
For the Model 2, as the minor negative loops put up a greater ‘resistance’ to the positive 
eigenvalue (its elasticities are –1.500 and –0.8966 with respect to the minor loops) than 
their ‘support’ for the negative one (its elasticities are 0.6350 and 0.02180 with respect to 
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the minor loops), the contribution of the central positive loop for the positive eigenvalue 
is also higher than that for the negative one (1.7003 vs. 0.1718) (Table 2). 
 

Table 2. The elasticities of eigenvalues with respect to each loop gain for the first four 
models. 

 Model 1 ( + +++++ )† Model 2 ( − −++++ ) Model 3 ( − +++++ ) Model 4 ( + −−−−− ) 

Eigenvalues 
Loops �1 (+)‡ 

�2 (–) �1 (+) �2 (–) �1 (+) �2 (–) �1 (+) �2 (–) 

L1 (minor) 0.1669 -0.4994 -1.500 0.6350 -0.1032 0.6039 1.980 0.01938 
L2 (central) 0.3325 0.9975 1.7003 0.1718 0.2497 0.2497 -0.8932 -0.1079 
L3 (minor) 0.1669 -0.4994 -0.8966 0.02180 0.6039 -0.1032 0.7953 1.195 

† The notations in parentheses denote the polarities of the central loop and the two minor loops. 
‡ 
�1 is the (+) eigenvalue and �2 is the (–) eigenvalue throughout the text. 

 
In the Model 3, however, the elasticies suggest that the minor loops are the main driving 
force behind the model’s both transient and steady-state behavior modes with the 
elasticity of the negative (positive) eigenvalue with respect to the central positive loop, 
0.2497 being less than that with respect to the negative (positive) minor loop, 0.6039 
(Table 2). 
 
The interesting phenomenon that is common in the first three models is that the central 
loop, which has positive polarity, takes part in the unfolding of the system behavior 
whether it is exponential growth or decay. On the other hand, the minor loops become 
dominant for exponential growth if their polarity is positive and for exponential decay if 
their polarity is negative, in line with their conventional definitions. 
 
The Model 4 is the only one amongst the six models with a central negative loop that 
does not generate cyclic behavior. Because of this particular feature, one observes 
different mechanisms at work between the model’s structure and its behavior. Now, both 
negative and positive eigenvalues have negative elasticity values with respect to the 
central loop gain (-0.8932 for �1 and –0.1079 for �2). This means the central loop whose 
polarity is negative resists both potential behavior modes (i.e. exponential growth and 
exponential decay). On the other hand, the elasticities of eigenvalues are positive with 
respect to both positive and negative minor loops. In addition, the elasticities of the 
eigenvalues are larger with respect to the minor loops that have the same sign with them. 
Thus the minor negative loop is dominant and the minor positive loop plays a secondary 
role when the system exhibits exponential decay. Similarly, the minor positive loop is 
dominant and the minor negative loop plays a secondary role when the dominant 
behavior is exponential growth (Table 2). In short, the minor loops, regardless of their 
polarities drive (i.e. has positive elasiticity for) both behavior modes. This model is 
particularly interesting because neither the positive nor the negative loops completely 
comply with the roles typically expected from them.  
 
The last two models have complex conjugate eigenvalues and generate cyclic behavior. 
The real component of the complex eigenvalue corresponds to the fractional expansion 
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(growth) or contraction (decay) of the envelope within which the cyclic behavior unfolds. 
The imaginary component corresponds to the frequency of the oscillations. The central 
loops of both models have negative polarity. The models are symmetric around their 
central loops (Table 1). 
 

Table 3. The elasticities of eigenvalues with respect to each loop gain for the last two 
models. 

 Model 5 ( − −−−−− )† Model 6 ( + +−−−− ) 

Eigenvalues 
Loops Real(�) Im(�) Real(�) Im(�) 

L1 (minor) 0.5 -0.0006 0.5 -0.0006 
L2 (central) 0 0.499 0 0.499 
L3 (minor) 0.5 -0.0006 0.5 -0.0006 

† The notations in parentheses denote the polarities of the central loop and the two minor loops. 
 
In both models, the contribution of the central loop is zero for the real part (which 
corresponds to the exponential envelope) and positive for the imaginary part (which 
corresponds to the frequency of the oscillations). On the other hand, the contributions of 
the minor loops are positive for the real part and negative for the imaginary part (Table 
3). In addition, the magnitude of the contribution of the central loop for the imaginary 
part is much higher than those of the minor loops. Thus the minor loops are responsible 
for the exponential envelope whereas the central loop is in charge of the generation of the 
oscillations. In brief, although the polarity of the central loop is negative it does not take 
any part in the contraction or expansion of the envelope as it might be expected if one 
follows the traditional definition of negative loops. It merely serves as a means to 
propagate the disturbance from one minor loop to the other thus generating the 
oscillations. Nevertheless, the minor loops drive the contraction in the Model 5 and 
expansion in the Model 6 echoing their conventional definitions. 
 
One might suspect that these findings may be special cases due to the coincidental 
selection of gain magnitudes. It may also be the case that not all possible structure-
behavior relations are covered in the experimental phase. In order to make sure that 
nothing is left out in the empirical analysis and establish solid results, the above 
introductory discussion is reinforced with an analytic proof in the following section. 
 

Analytical assessment 
 
The eigenvalues of a linear model are found by solving the following equation: 
 

0λ− =A I  
where |• | denotes the determinant of • , A is the gain matrix, � are the eigenvalues, and I 
is the identity matrix. 
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Solving the above equality gives the eigenvalues of the matrix A: 
 

11 12 2
11 22 11 22 12 21

21 22

( ) ( ) 0
a a

a a a a a a
a a

λ
λ λ

λ
−� �

= − + + − =� �−� �
 

 
2 2

11 22 11 22 11 22 12 21 11 22 11 22 12 21
1

( ) ( ) 4( ) ( ) ( ) 4
2 2

a a a a a a a a a a a a a a
λ

+ + + − − + + − +
= =  (2a) 

 
2 2

11 22 11 22 11 22 12 21 11 22 11 22 12 21
2

( ) ( ) 4( ) ( ) ( ) 4
2 2

a a a a a a a a a a a a a a
λ

+ − + − − + − − +
= = .(2b) 

 
In order to show how eigenvalues change as a result of a small change in any gain it 
suffices to look into the partial derivatives of both eigenvalues with respect to each gain. 
Recall that the partial derivatives measure the sensitivity values of eigenvalues to the 
entries of gain matrix and that elasticity is just the normalized expression of sensitivity. 
Thus, they essentially give the same information. The analysis of these derivatives 
reveals the effect of feedback loops on model behavior. 
 
First, the sensitivities of eigenvalues to minor loop gains are analyzed. The partial 
derivatives of eigenvalues �1 and �2 with respect to 11a : 
 

1 11 22

2
11 11 22 12 21

1 ( )
1

2 ( ) 4

a a
a a a a a

λ � �∂ −
	 
= +
	 
∂ − +� �

    (3a) 

 
and similarly, 
 

2 11 22

2
11 11 22 12 21

1 ( )
1

2 ( ) 4

a a
a a a a a

λ � �∂ −
	 
= −
	 
∂ − +� �

.   (3b) 

 
The partial derivatives of the same eigenvalues with respect to 22a : 
 

1 22 11

2
22 22 11 12 21

1 ( )
1

2 ( ) 4

a a
a a a a a

λ � �∂ −
	 
= +
	 
∂ − +� �

    (4a) 

 
and 
 

2 22 11

2
22 22 11 12 21

1 ( )
1

2 ( ) 4

a a
a a a a a

λ � �∂ −
	 
= −
	 
∂ − +� �

.   (4b) 
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Let’s denote 2
1 11 22 11 22 12 21( ) ( ) 4a a a a a aζ = − − +  in Eq. 3 and 

2
2 22 11 22 11 12 21( ) ( ) 4a a a a a aζ = − − +  in Eq. 4. For real eigenvalues, then the 

decomposition of the total change in the magnitude of Eq. 2 is as follows: the magnitude 

of change in 11 22( )a a+  term is 1/2 and those in 2
11 22 11 22 12 21( ) 4( )a a a a a a+ − −  term are 

1/2ζ  and 2/2ζ  due to a unit change in 11a  or 22a , respectively (Eq. 2). Looking at Eq. 3-
4, the magnitudes of both eigenvalues increase as long as 1ζ  and 2ζ  are larger than one. 
This is the case when the polarity of central loop is negative (i.e. 12 214 0a a < ). In other 
words, a change in the magnitudes of one (or both) of the minor loop gains, 11a  and 22a  
causes the magnitudes of both eigenvalues to change in the same direction. If the polarity 
of central loop is positive ( 12 214 0a a > ), then 1ζ  and 2ζ  are less than one. Thus a change 
in the magnitudes of one (or both) of the minor loop gains, 11a  and 22a  causes the 
magnitudes of the positive and negative eigenvalues to change in the same and opposite 
directions, respectively. If 12 214 0a a =  then the net change is zero but in this case, there is 
no central loop anyway. 
 
Now, the sensitivities to the link gains 12a  and 21a  are analyzed. The partial derivative of 
�1 with respect to 12a  is, 
 

1 21

2
12 11 22 12 21

1 1 4
0

2 2 ( ) 4

a
a a a a a

λ � �∂
	 
= +
	 
∂ − +� �

    

 
1 21

2
12 11 22 12 21( ) 4

a
a a a a a

λ∂ =
∂ − +

    (5a) 

 
and of �2, 

2 21

2
12 11 22 12 21( ) 4

a
a a a a a

λ∂ = −
∂ − +

.   (5b) 

 
Finally the partial derivatives of both eigenvalues with respect to 21a  are, 
 

1 12

2
21 11 22 12 21( ) 4

a
a a a a a

λ∂ =
∂ − +

    (6a) 

 
and 

2 12

2
21 11 22 12 21( ) 4

a
a a a a a

λ∂ = −
∂ − +

.   (6b) 
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The partial derivatives have the same sign as their corresponding eigenvalues as long as 
the links 12a  and 21a  are of the same polarity. In other words, a change in the magnitudes 
of one (or both) of the central loop gains, 12a  and 21a  causes the magnitudes of both 
eigenvalues to change in the same direction if the polarity of the central loop is positive. 
 
For complex eigenvalues, the partial derivatives derived above can be used with some 
modification (Eq. 4-5). The only distinction now is that the real and imaginary parts of 
the eigenvalues need to be treated separately. Hence, the sensitivity values take the 
following form: 
 

11 11

Real( ) Real( ) 1
2a a

λ λ∂ ∂= =
∂ ∂

, 
22 22

Real( ) Real( ) 1
2a a

λ λ∂ ∂= =
∂ ∂

  (7a) 

 

11 22

2
11 11 22 12 21

Im( ) 1 ( )
2 ( ) 4

a a
a a a a a

λ � �∂ −
	 
=
	 
∂ − +� �

, 22 11

2
22 22 11 12 21

Im( ) 1 ( )
2 ( ) 4

a a
a a a a a

λ � �∂ −
	 
=
	 
∂ − +� �

   (7b) 

 

11 22

2
11 11 22 12 21

Im( ) 1 ( )
2 ( ) 4

a a
a a a a a

λ � �∂ −
	 
= −
	 
∂ − +� �

,      22 11

2
22 22 11 12 21

Im( ) 1 ( )
2 ( ) 4

a a
a a a a a

λ � �∂ −
	 
= −
	 
∂ − +� �

   (7c) 

 
The expressions in Eq. 7b-c, which correspond to sensitivity values, are complex 
numbers with zero real parts. The gains 12a  and 21a , on the other hand, have no effect on 
the real part and the magnitude of change in the imaginary part is as given in the right-
hand side of Eq. 5-6. Note that those expressions are also complex numbers with zero 
real parts. 
 
In the following analysis, the partial derivatives derived above are used to show how 
eigenvalues respond to changes in the gain matrix of each of the six loop configurations. 
 

Models with central positive loop 

Model 1 ( + +++++ ) 

Let’s assume the link gains are such that 12 21 11 22a a a a>  so that there is one (–) and one 
(+) eigenvalue of the model (Eq. 2). Then, 
 
1. A change in 11a  and/or 22a  (as long as 12 21 11 22a a a a> ): 
Since all gains are positive, 21 12 0a a >  and hence 1 1ζ <  and/or 2 1ζ <  (Eq. 3-4). Then the 
magnitude of the positive eigenvalue changes in the same direction whereas that of the 
negative one changes in the opposite direction. Therefore, the minor positive loops’ 
contribution is positive for the positive eigenvalue and negative for the negative 
eigenvalue. 
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2. A change in 12a  and/or 21a  changes the magnitudes of both eigenvalues in the same 
direction (Eq. 5-6). Therefore, the central positive loop’s contribution is positive for both 
eigenvalues! 
 

Model 2 ( − −++++ ) 

Let’s assume the link gains are such that 12 21 11 22a a a a>  so that there is one (–) and one 
(+) eigenvalue of the model. Then, 
 
1. A change in 11a  and/or 22a  (as long as 12 21 11 22a a a a> ): 

Since the signs of 12a  and 21a  are the same, 12 21 0a a > ; hence 1 1ζ <  and/or 2 1ζ <  (Eq. 3-
4). Then the magnitude of the positive eigenvalue changes in the opposite direction 
whereas that of the negative one changes in the same direction. Therefore, the minor 
negative loops’ contributions are negative for the positive eigenvalue and positive for the 
negative eigenvalue. 
 
2. A change in 12a  and/or 21a  changes the magnitudes of both eigenvalues in the same 
direction (Eq. 5-6). Therefore, the central positive loop’s contribution is positive for both 
eigenvalues! 
 

Model 3 ( − +++++ ) 

1. A change in 11a  assuming 11 220,  0a a> < : 
The polarity of the central loop is positive, thus the signs of 12a  and 21a  are the same and 

12 21 0a a > ; hence 1 1ζ <  (Eq. 3). Then the magnitude of the positive eigenvalue changes 
in the same direction whereas that of the negative one changes in the opposite direction. 
Therefore, the minor positive loops’ contribution is positive for the positive eigenvalue 
and negative for the negative eigenvalue. 
 
2. A change in 22a  assuming 11 220,  0a a> < : 
The magnitude of the positive eigenvalue changes in the opposite direction whereas that 
of the negative eigenvalue changes in the same direction (Eq. 4). Therefore, the minor 
negative loop’s contribution is negative for the positive eigenvalue and positive for the 
negative eigenvalue. 
 
3. A change in 12a  and/or 21a  changes the magnitudes of both eigenvalues in the same 
direction (Eq. 5-6). Therefore, the central positive loop’s contribution is positive for both 
eigenvalues! 
 

Models with central negative loop 

It turns out that such models are capable of exhibiting either cyclic or non-cyclic behavior 
depending on the relative magnitudes of the loop gains (Eq. 2). When 
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2
11 22 12 21( ) 4a a a a− ≥  the models do not exhibit cyclic behavior; when 

2
11 22 12 21( ) 4a a a a− <  they do. The two cases are analyzed below. 

 

≥2
11 22 12 21(a - a ) 4a a : 

The models have two real eigenvalues and do not exhibit cyclic behavior (Eq. 2): 
 

Model 4 ( + −−−−− ) 

Let’s assume the link gains are such that 11 22 21 12a a a a>  so that there is one (–) and one 
(+) real eigenvalue of the model. 
 
1. A change in 11a  assuming 11 220,  0a a> < : 
Since the polarity of the central loop in this model is negative, 12a  and 21a  are of the 
opposite signs, 21 12 0a a <  and hence 1 1ζ >  (Eq. 3). Then the magnitudes of both 
eigenvalues change in the same direction. Therefore, the minor positive loop’s 
contribution is positive for both eigenvalues! 
 
2. A change in 22a  assuming 11 220,  0a a> <  yields a similar result (Eq. 4). That is to 
say, the magnitudes of both eigenvalues change in the same direction. Therefore, the 
minor negative loop’s contribution is positive for both eigenvalues also! 
 
3. A change in 12a  and/or 21a  (as long as 11 22 12 21a a a a> ) leads to a change in the 
magnitudes of both eigenvalues in the opposite direction (Eq. 5-6). Therefore, the central 
negative loop’s contribution is negative for both eigenvalues. 
 

Model 5 ( − −−−−− ) and Model 6 ( + +−−−− ) 

Model 5 and Model 6 have two real eigenvalues both of which are always either negative 
or positive, respectively (Eq. 2). 
 
1. A change in 11a  assuming 11a > 22a : 

Since the polarity of the central loop in this model is negative, 12a  and 21a  are of the 
opposite signs, 21 12 0a a <  and hence 1 1ζ >  (Eq. 3). Then, the magnitude of the larger 
eigenvalue changes in the same direction while that of the smaller one changes in the 
opposite direction. 
 
2. A change in 22a  assuming 11 220,  0a a> <  yields the opposite result. That is to say, 
the magnitude of the larger eigenvalue changes in the opposite direction while that of the 
smaller one changes in the same direction (Eq. 3). 
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3. A change in 12a  and/or 21a  (as long as 2
11 22 12 21( ) 4a a a a− > ) leads to a change in 

the magnitude of the both eigenvalues of the system in the opposite direction (Eq. 5-6). 
Therefore, the central negative loop’s contribution is negative for both eigenvalues. 
 

2
11 22 12 21(a - a ) < 4a a : 

The models have complex conjugate eigenvalues and exhibit cyclic behavior (Eq. 2). Of 
the three models with a central negative loop, the real part of the eigenvalues of the 
Model 5 and the Model 6 are negative and positive, respectively. Therefore, the first 
exhibits converging oscillations while the other exhibits diverging oscillations. Model 4, 
on the other hand, can show either diverging or converging oscillations depending upon 
whether the gain of the positive or negative minor loop is greater than the other, 
respectively. If the magnitudes of the gains are equal, however, it exhibits neutral 
stability. Then the slightest perturbation in either gain causes the system to shift to 
diverging or converging oscillations. 
 

Model 4 ( + −−−−− ) 

Let 11a  and 22a  be the gains of the minor positive and negative loops, respectively. 

1. A change in 11a  and/or 22a : 

a. 11 22a a> : 
In this case, the real part is positive (Eq. 2). Thus, the behavior mode of the system is 
diverging oscillations. A change in 11a  changes the magnitude of the real part of the 

complex eigenvalue pairs in the same direction (Eq. 7a). However, a change in 22a  
changes the magnitude of the real part in the opposite direction. This case then represents 
what typically could be expected from positive and negative loops. 
 
b. 11 22a a= : 
This corresponds to the case where there is neutral stability (i.e. limit cycles). Hence, a 
slightest change in either gain makes the real part non-zero. If there is an increase 
(decrease) in 11a  the real part becomes positive (negative) and the exponential envelope 

diverges (converges). The opposite is true for a change in 22a . 
 
c. 11 22a a< : 
In this case, the real part is negative (Eq. 2). Thus, the behavior mode of the system is 
converging oscillations. A change in 22a  changes the magnitude of the real part of the 

complex eigenvalue pairs in the same direction (Eq. 7a). However, a change in 11a  
changes the magnitude of the real part in the opposite direction. This is again what 
typically could be expected from positive and negative loops. 
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The change in either gain, however, in all three cases causes a change on the imaginary 
part in the opposite direction (Eq. 7b-c). This means an increase (decrease) in the 
magnitude of either gain decreases (increases) the frequency of oscillations. 
 
2. A change in 12a  and/or 21a : 

A change in 12a  and/or 21a  (in other words a change in the central loop gain) only 
affects the imaginary part. In other words, these links play no part in dynamics associated 
with the real part of the eigenvalue (Eq. 7a). A change in the magnitude of either link 
gain results in a corresponding change in the same direction in the magnitude of the 
imaginary part (Eq. 7b-c). Thus these links, which form the central loop, only govern the 
frequency of oscillations. This is different than the previous case in which the minor loop 
gains affect both the real and imaginary parts of the eigenvalue. 
 
Model 5 ( − −−−−− ) and Model 6 ( + +−−−− ) 

1. A change in 11a  and/or 22a : 
Such a change causes the magnitude of the real part of the complex eigenvalue pairs to 
change in the same direction (Eq. 7a). Therefore, the exponential envelope around the 
oscillations gets larger or smaller. The effect on the imaginary part (i.e. on the frequency 
of oscillations), however, is not straightforward. Two different cases need to be taken into 
account as follows: 
 
a. 11 22a a> : 
The sensitivity value is negative with respect to the gain with larger magnitude (in this 
case, it is 11a ) but positive with respect to the other (Eq. 7b-c). Moreover, the magnitude 
of the elasticity is always larger for the gain with larger magnitude. This is interesting 
because having the same polarity one thinks the effects of the minor loop gains on the 
imaginary part would be the same. However, in fact, increasing (decreasing) the 
magnitude of the minor loop with the smaller (larger) gain makes the system more 
‘symmetric’ causing the oscillation potential to increase. The case where 11 22a a<  is 
similar. 
 
b. 11 22a a= : 
Both the signs (which is negative) and the magnitudes of the sensitivities are the same for 
both gains. This seems to constitute a special case because of the symmetry of the 
system. In this case, the slightest change in the gains of the minor loops make the system 
less symmetric and hence, less suitable for the propagation of disturbances from one 
subsystem to the other. The models whose matrices are given in Table 3 are of this case. 
 
2. A change in 12a  and/or 21a : 
This case is exactly the same as the one for the Model 4 above. 
 
The analysis of the systems with complex conjugate eigenvalues sheds more light on the 
resistance of the central negative loop to both behavior modes when those systems have 
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two real eigenvalues, one positive and one negative. The function of the central negative 
loop is to propagate disturbances between the two sub-systems represented by the minor 
loops. This propagation of disturbances is what creates the potential for cyclic behavior. 
However, if the gains of model loops are such that 2

11 22 12 21( ) 4a a a a− ≥  the central 
negative loop cannot create oscillations. What it does, however, is to restrain the two 
behavior modes of the system. The condition to have cyclic behavior for a second-order 
system with a central negative loop is then 2

11 22 12 21( ) 4a a a a− < . 
 
The analytical approach reveals aspects of structure-behavior relation that are missed in 
the experimental phase. Moreover, it provides a solid understanding on the relation 
between the structure and behavior, which may not be evident at all in an empirical 
analysis. 
 

The principle on the significance of the loop arrangement on behavior 
 
The analysis revealed that the relative location and magnitude of loops in the system 
structure also has a say in the role played by a feedback loop in the unfolding of system 
behavior. This fact is formulated in a principle for second-order linear models as follows: 
 
The Principle: For a second-order linear system with the potential of exhibiting both 
exponential growth and exponential decay (i.e. having real eigenvalues, one being 
positive and the other negative) the central loop, if its polarity is positive, contributes to 
the unfolding of both behavior modes. However, it works against both behavior modes if 
its polarity is negative. The minor loops function in accordance with the typical 
definitions attributed to loops based on their polarities in the generation of the two 
behavior modes if the polarity of the central loop is positive. In contrast, minor loops are 
responsible for the unfolding of both behavior modes regardless of their polarities if the 
polarity of the central loop is negative. For the system to exhibit cyclic behavior (i.e. to 
have complex conjugate eigenvalues) it has to have a negative central loop. Moreover, 
the magnitudes of the loop gains have to be more or less comparable if the polarities of 
the minor loops are the same or the magnitude of the central loop gain need to be 
considerably larger than the magnitudes of the minor loop gains if minor loops are of 
opposite polarities. The condition to have cyclic behavior for a second-order linear 
system with a central negative loop is then 2

11 22 12 21( ) 4a a a a− < . In this case, the central 
negative loop determines only the frequency of oscillations while the positive (negative) 
minor loops are responsible for the expansion (contraction) of the envelope around the 
oscillations. 
 

Final Remarks 
 
Typically, negative loops are associated with goal-seeking behavior while positive loops 
are thought to be responsible for exponential growth. On the other hand, this study shows 
that the relative location and magnitude of loops with respect to each other in the system 
structure also has a say in the role played by a feedback loop in the unfolding of system 
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behavior. The recognition of the downsides of predicting behavior from loop polarity 
alone is not new (Richardson 1986). The additional insight in this study comes from the 
recognition of, using an analytical approach, how different arrangements of the loops 
create different interactions between the system structure and behavior. 
 
This fact is formulated in a principle for second-order linear models but may also have 
significant implications for more complex systems. Such principles bring about the 
opportunity for the reader “to become more aware of his or her own half-conscious rules 
of thumb that relate structure to behavior, to the extent that they can be explicated as 
principles” (Graham 1977). 
 
The study also highlights the pitfalls of purely empirical analysis when it comes to 
extracting insights on the relation between structure and behavior. The analytical 
approach provides information on the full spectrum of structure-behavior relations while 
the use of empirical approach serves as a preliminary analysis tool. Nonetheless, 
empirical analysis is still the most efficient way to analyze highly complex dynamic 
models. 
 
It is hoped that the findings in this paper will inspire more studies on this topic. For 
example, an immediate extension of this study would be carrying out a similar analysis 
on higher order (e.g. third order) linear models, which are a great deal more complex than 
second order ones. Another research direction is the application of analogous analyses on 
low-order nonlinear models and extracting similar principles regarding the structure-
behavior associations. 
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