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The Impact of Endogenous Demand on Push-Pull 
Production Systems 

 
 
  

Abstract: 
 

Though often analyzed separately, supply chain instability and customer demand interact 

through product availability. We investigate the feedback between supply chain performance and 

demand variability in a model grounded in first-hand study of the hybrid push-pull production 

system used by a major semiconductor manufacturer. While customers’ response to variable 

service levels represents an important concern in industry, with sizable impacts on company 

profitability, previous models exploring supply chain instability do not account for it. This 

research incorporates two effects of customer responses to availability. The sales effect captures 

the negative feedback whereby product shortages cause customers to seek alternate sources of 

supply, reducing demand easing the shortage. The production effect captures the delayed impact 

of changes in demand on the manufacturer’s production decisions: lower demand leads to 

reduced production, prolonging shortages that depress demand, a destabilizing positive feedback. 

We show how the sales and production effects interact to destabilize the supply chain and lower 

average performance. Supply chain models that assume exogenous demand may therefore 

underestimate the amplification in the chain, and the value of inventory buffers. In addition, 

incorporating the customer response leads to different inventory and utilization policies than 

those in use by the company.  The model yields insights into the costs of lean inventory 

strategies and responsive utilization policies in the context of hybrid production systems and 

endogenous demand. 
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1. Introduction 

Despite the supply chain revolution of the past decade, companies in diverse industries 

such as computers, electronics, autos, toys, seeds, and pharmaceuticals still struggle with 

production and shipment delays. An important effect of such delays, generated by supply chain 

glitches and instability, is reduced shareholder value. Hendricks and Singhal (2003) show that an 

abnormal decrease of over 10% in shareholder value is caused by part shortages, order changes 

by customers, and production ramp-up and roll-out problems, among others. In addition, it has 

been long recognized that the bullwhip effect tends to amplify the instability in orders as one 

moves upstream a supply chain, potentially making upstream companies, such as semiconductor 

manufacturers, more prone to supply chain glitches. For instance, Intel Corporation, the number 

one U.S. semiconductor manufacturer, has consistently struggled with part shortages, high 

variability in demand, and order changes and cancellations by customers. In November 1999, 

facing shortages of Pentium III processors, Intel planned to introduce a new fabrication facility 

in the following year. In late 2000, blaming order cancellations by large customers and economic 

slowdown, Intel warned that its revenues would fall short of projections and that sales would be 

flat for the quarter (Gaither 2001).  

The challenge of demand variability, instability and order amplification is complicated by 

long production delays. In semiconductors, long throughput times (approximately 13 weeks) 

affect the ability of manufacturers to maintain adequate inventory levels in the face of demand 

variability. When customer demand varies, factory managers must adjust capacity utilization to 

maintain adequate service levels while avoiding excess inventory. However, the combination of 

variability in demand and long fabrication delays often leads to alternating periods of scarce and 

excess supply. The resulting supply variability can feed back to customer demand and 
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profitability as a company’s inability to meet demand leads to lost sales, eroded reputation, and 

decreased goodwill. For instance, Gateway Inc. increased the number of microprocessors it 

bought from Advanced Micro Devices Inc. “to offset Intel's inability to match rising demand” 

(Hachman 2000). In addition, Intel’s variability in supply can reduce its profitability. In 

December 1998, Intel struggled with shortages of its low-end Celeron microprocessors, allowing 

AMD, Intel’s main competitor in the U.S market, to increase its market segment share by more 

than two percentage points, even after Intel cut prices on its Celeron chips (Hachman 1999).  

The interactions of supply chain instability and customer response raise several 

interesting questions: What is the impact of endogenous demand on supply chain variability? 

What is the impact of supply chain variability on customer response?  What policies can Intel 

and other companies implement to stabilize their supply chains?  

To address these questions, this research builds and analyzes a model of a semiconductor 

supply chain in which customer demand responds to product availability. Based on a year-long, 

in-depth field study of Intel’s supply chain, the model captures the material flows of production 

and the customers’ response to the manufacturer’s service level. In particular, it incorporates two 

effects of customer response. First, the sales effect captures the negative feedback whereby 

product shortages cause customers to seek alternate sources of supply, reducing demand easing 

the shortage. That is, a change in demand feeds back to mitigate the impact of the initial 

disturbance. Second, the production effect captures the delayed impact of changes in demand on 

the manufacturer’s production decisions through a positive feedback loop. If demand falls, 

manufacturers reduce demand forecasts and capacity utilization to avoid excess inventory. After 

the production delay, lower production leads to lower inventory and service levels, causing a 
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further drop in customer demand. The delayed production effect generates a reaction that 

reinforces the impact of the original disturbance.   

We show that endogenous customer response to availability leads to greater supply chain 

instability compared to models in which customer demand is treated as exogenous. Therefore, 

supply chain instability models that assume exogenous demand may underestimate the 

amplification in demand and the value of inventory buffers. Moreover, treating demand 

endogenously leads to different inventory and utilization policies than those currently in use by 

the firm. In particular, the supplier should maintain higher safety levels in assembly work-in-

process (WIP) and finished goods inventory (FGI); and reduce the responsiveness of utilization 

to changes in customer demand caused by inadequate service levels. Based on the costs 

associated with lost sales and holding inventory at assembly and finished goods, we derive a 

recommendation for the optimal location and quantity of safety stocks. The policy heuristic 

provides a sharp reduction in supply chain instability and minimizes the impact of lost sales. The 

model analyzed in this paper gives insights into the costs of lean inventory strategies and 

responsive utilization policies in the context of hybrid production systems and endogenous 

demand. 

The next section reviews the relevant literature. Section 3 discusses the research site and 

the following section presents the model. Section 5 introduces the simulation results, analyzes 

the model, and derives policies for supply chain stabilization. We conclude with discussion of 

our main results, managerial and theoretical implications, and directions for future research. 

2. Literature Review 

Supply chain instability and the influence of inventory level on demand have attracted the 

attention of researchers and practitioners in different fields, such as economics, system dynamics 

and operations management. In economics, research on supply chain instability dates back to 

Thomas Mitchell’s (1924) descriptions of the mechanisms through which retailers caught short 

of supply increased their orders to suppliers. In system dynamics, the study of supply chain 
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instability helped lay out the foundations necessary to create the field (Forrester 1958, 1961). 

Subsequent research explored applications in diverse areas including interactions between the 

supply chain and labor force (Mass 1975); the performance of Material Requirements Planning 

(MRP) systems (Morecroft 1980); laboratory study of people’s ability to manage complex 

systems such as the supply chain in the Beer Game (Sterman 1989a, 1989b); decision-making 

under varying levels of feedback complexity (Diehl and Sterman 1995); and the impact of 

business cycles on capital equipment supply chains (Anderson and Fine 1999). In addition, 

models in the system dynamics tradition often incorporate the feedback of inventory availability 

on customer demand, like Forrester’s (1968) “market growth” model and Graham’s (1977) 

model investigating the impact of adding a minor loop to oscillatory systems. While this paper 

emphasizes the combination of endogenous customer response with supply chain instability, the 

major contribution to the system dynamics literature is our investigation of the impact of the two 

in hybrid push-pull production systems. 

In operations management, research investigating supply chain instability typically 

assumes exogenous customer demand while studies exploring the influence of inventory level on 

customer demand do not consider multiple-stage supply chains. Examples of the former include 

Lee et al.’s (1997a, 1997b) models of demand signal processing, rationing, order processing, and 

price variations; Baganha and Cohen’s (1998) hierarchical model; Graves’ (1999) single item 

inventory system with non-stationary demand; and Chen et al.’s (2000) model with a demand 

forecasting technique and order lead time. Examples of the latter include Dana and Petruzzi’s 

(2001) extended newsvendor model where customers choose between the company and an 

outside supplier; Gans’ (1999a, 199b) dynamic model of individual consumer behavior, where 

consumers update their prior beliefs about the company after each contact; and Hall and Porteus’ 



 8 

(2000) model where the expected service level is a function of firm capacity and firms compete 

by investing in capacity to service customers. Our research fills a gap in the operations 

management literature by exploring both the effect of endogenous customer responses and 

supply chain instability. Our results extend Danna and Petruzzi’s (2001) result to the case of a 

multistage supply chain with production delays, showing that when a company accounts for the 

effect of inventory availability on demand it is optimal to hold more safety stock.  

3. Research Site 

The results draw on a year-long, in-depth analysis of Intel’s supply chains. Intel is the 

technology leader in microprocessor manufacturing. Among many firsts, Intel was the first to 

produce 0.13-micron technology, allowing it to double the size of the processor's cache memory 

while reducing die size by over 30%. Such improvements resulted in faster microprocessors and 

increased number of chips manufactured per wafer. The company was also the first to transition 

from 200 mm to 300 mm wafers, leading to higher chip production efficiency. To manage the 

variability in product line, production, and demand, Intel employs about 1,500 planners who 

address short- and long-term production decisions, using sophisticated systems and detailed 

guidelines directing decisions. Model development entailed interviewing planners with diverse 

decision scopes and responsibilities to understand the decision making processes in Intel’s 

production system. In addition, the research team interviewed managers in diverse areas of the 

corporation, such as operations, supply chain management, information technology, demand 

forecasting, marketing and sales. In total, we conducted almost one hundred semi-structured 

interviews both through site visits and weekly conference calls. The research also involved 

reviewing Intel’s logs detailing guidelines for decision-making, and collecting related 

quantitative and qualitative data. The former included time-series data on quarterly capacity, 
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utilization, wafer starts, shipments, forecasts, service level, and market share. The latter included 

managers’ decision heuristics, company’s guidelines and incentives, and information 

dependencies among business areas. These data helped us establish the assumptions used in the 

model that captures Intel’s semiconductor manufacturing. 

4. Model Assumptions 

Semiconductor manufacturing is commonly divided into the “front-end,” including the 

initial steps of fabrication and sorting, and the “back-end,” including assembly/testing, 

packaging, and distribution. The front-end process takes place in a wafer fabrication facility, or 

Fab. The process takes 200 mm/300 mm polished disk-shaped silicon substrates, the wafers, as 

inputs and transforms them, through multiple stages of photolithography and etching, into 

fabricated wafers, composed of hundreds of -inch square integrated circuits, known as dies.1 

Wafers are cut into dies and stored in Assembly Die Inventory (ADI) warehouses, collocated 

with Assembly/Test plants. In the back-end, the dies are first tested; upon passing the tests, they 

receive a protective package and metal connections, completing the microprocessors, or chips, 

which can then be stored in finished goods warehouses. The model proposed represents the 

manufacturing process by a three stage supply chain consisting of fabrication, assembly, and 

distribution (Figure 1).  

                                                 
1 The actual number of dies per wafer range from 100 to 1000, depending on the chip architecture – whether the chip 
is “logic” or “memory” – and its specific design. Each die is composed of individual devices such as transistors and 
memory cells. 
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Figure 1 –Hybrid push/pull production system for semiconductors. 
Thick lines and patterned background refer to a push system, indicating that the upstream production 
process operates as a push. Thin lines and clear background refer to a pull system, indicating that the 

downstream stages operate as a pull.  
 

In addition, microprocessor production takes place in a hybrid push-pull production 

system, combining a push system at upstream stages and a pull system at the downstream stages. 

Therefore, the front-end is characterized by a push production system: long-term demand 

forecasts, updated weekly, and adjustments from fabrication and assembly WIP serve as the 

basis for the desired wafer production rate, or wafer starts. In contrast, the back-end operates as a 

pull system, with assembly/testing, packaging, and distribution based on current customer orders. 

Four main assumptions based on the fieldwork drive the behavior of the model.2 The first 

three assumptions address managers’ decisions regarding (a) push and pull production, (b) 

capacity utilization, and (c) demand forecasting. These assumptions reflect Intel managers’ 

locally rational heuristics to control their systems. While they are not optimal, they reflect 

heuristics managers use to make their everyday decisions and evolved because they are locally 

                                                 
2 A full description of the model, formulations, and assumptions can be found in Gonçalves (2003). 
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adapted to conditions in the company and its fabs. The fourth assumption captures customer 

response to inventory availability.  

4.1. Push and Pull Production Decisions 

All production decisions ultimately depend on customer demand. Current demand drives 

shipments and assembly completions; long-term demand forecasts influence production starts. 

All incoming orders are logged by Intel’s information system and tracked until they are shipped 

to customers or cancelled. If the microprocessors are available in FGI, orders can be filled 

immediately. Therefore, incoming customer orders “pull” the available microprocessors from 

FGI. In turn, replenishment of FGI shipped to customers “pulls” microprocessors from assembly. 

If the microprocessors are not available in FGI, backlogged orders “pull” parts directly from 

assembly die inventory (ADI). Since the parts have to be assembled, filling orders from ADI 

increases the delivery delay experienced by customers and reduces the flow of shipments below 

customer orders as ADI inventory and assembly capacity limit shipments.  

4.1.1. FGI and Assembly Pull 

To model the pull characteristic of assembly and finished goods, we must capture their 

dependency on current demand. Actual shipments (S) from FGI are given by the minimum of the 

desired (pull) and feasible (push) shipment rate. By design, shipments operate in a pull mode, 

with shipments being determined by the desired rate, however, if not enough FGI is available the 

system will ship out only what it is possible. Desired shipments depend on the ratio of backlog 

(B) and the desired delivery delay (DD*). Feasible shipments depend on the stock of FGI and the 

minimum order processing time (τOP); a first-order process is assumed for simplicity.  

))(),(()( * tStSMINtS MAX=  (1) 
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** )()( DDtBtS =  (2) 

OPMAX tFGItS τ)()( =  (3) 

While shipments (S) deplete FGI, the net assembly completion rate (AN) replenishes it. 

The product of gross assembly completion rate (AG) and the unit yield (YU), i.e. the fraction of 

good chips per assembled die, define the net assembly completion rate (AN).  The gross assembly 

completion rate (AG) is given by the minimum of the desired (a pull signal) or the feasible (a 

push signal) gross assembly completion rate (equation 4). By design, assembly operates in a pull 

mode, with assembly outs being determined by the desired rate (equation 5). However, if not 

enough WIP is available the system can complete only what it is feasible (equation 6). The 

feasible assembly rate is determined by the availability of assembly WIP (AWIP) and the 

assembly time (τA); for simplicity a first-order delay is used. The desired gross assembly rate 

(A*
G) is determined by the desired net assembly rate (A*

N) adjusted by the unit yield (YU).  

))(),(()( tPullAtPushAMINtA GGG =  (4) 

UNG YtAtPullA )()( *=  (5) 

AG tAWIPtPushA τ)()( =  (6) 

The determination of desired net assembly rate (A*
N) by division planners begins with 

recent shipments (ES), a proxy for current demand that is more stable and reliable than orders.  

Desired net chips out is then adjusted above or below recent shipments to close any gap between 

target and actual FGI and to eliminate excess backlog (equation 7).  

( ) ( ) ( ) ( ) ( ) ( )
��
�

�
��
�

� −+−+=
∗∗

BFGI
N

tBtBtFGItFGI
tESMAXtA

ττ
,0*  (7) 
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where FGI* and FGI are target and actual finished goods inventory, B* and B are 

target and actual backlog, and τFGI and τB are the adjustment times for the 

elimination of gaps between them. 

 4.1.2. Fabrication Push 

The wafers produced in the fabrication process are pushed into the Assembly Die 

Inventory (ADI) where they are stored until orders for specific products pull them from ADI into 

assembly and distribution. While the gross assembly completion rate (AG) depletes AWIP, the 

die completion rate (DI) replenishes it. The die completion rate (DI), measured in dies/month, is 

given by the net fabrication rate (FN), measured in wafers/month, adjusted by the number of dies 

per wafer (DPW); the die yield (YD), i.e. the fraction of good die per wafer; and the line yield 

(YL), i.e. the fraction of good fabricated wafers (equation 8). The gross fabrication rate (FG) is 

determined by the availability of fabrication WIP (FWIP) and the fabrication time (τF); for 

simplicity a first-order delay is used (equation 9).  

LDGI YYDPWtFtD ⋅⋅⋅= )()(  (8) 

FG )t(FWIP)t(F τ=  (9) 

While the gross fabrication rate (FG) depletes fabrication WIP (FWIP), wafer starts (WS) 

replenish it. The decision on actual production rate, wafer starts (WS), is based directly on the 

desired wafer starts (WS*). Fab planners determine the desired wafer starts considering the 

desired die inflow (DI
*) requested by Assembly/Test plants and an adjustment for fabrication 

work-in-process. The latter is based on managers’ heuristic to maintain fabrication WIP (FWIP) 

at a desired level (FWIP*). Equation 10 shows fabrication planners’ heuristic for managing wafer 

starts. 
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τ
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where τFWIP is the fabrication WIP correction time; and the non-negativity 

constraint prevents negative production targets.  

The desired die inflow rate (DI
*) depends on long-term demand forecasts (ED) and an 

adjustment from assembly WIP. The assembly WIP adjustment component reflects assembly 

planners’ goal to replenish assembly WIP when the current level is below the target to correct the 

discrepancy over time (τAWIP). Equation 11 shows division planners’ heuristic for managing the 

desired die inflow (DI
*), incorporating information on long-term demand forecast (ED).3 

Division planners provide information on the desired die inflow to Fab planners, allowing them 

to set production starts. 

( ) ( ) ( ) ( )
��
�

�
��
�

� −+=
∗

AWIP
UI

tAWIPtAWIP
YtEDMAXtD

τ
/,0*  (11) 

where τAWIP is the assembly WIP correction time; and the non-negativity 

constraint prevents negative die inflow rates. 

4.2. Capacity Utilization 

To set the capacity utilization (CU) of their Fabs, managers consider the desired 

production rate and the available capacity. Capacity utilization is a nonlinear function of the ratio 

of desired wafer starts (WS*) and available capacity (K) operating at the normal capacity 

utilization level (CUN).4  

)
)(

()(
*

N
U CUK

tWS
ftCU

⋅
=  (12) 

                                                 
3 While the heuristic for the desired die inflow rate does not take into consideration the adjustment from FGI 
explicitly, information from FGI is used to set the desired assembly WIP (AWIP*). 
4 We assume that the normal capacity utilization level at Intel to be equal to 90% of maximum capacity. 
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When desired production (WS*) equals the normal capacity utilized, capacity utilization is 

set at the normal operating point (90%), allowing all desired production to be met. The 

remaining 10% slack capacity is often used for engineering purposes (process improvement and 

development runs) as well as to accommodate manufacturing instability. When desired 

production is large relative to normal capacity utilized, Fab managers increase utilization, 

therefore reducing the capacity that is available to engineering. The opposite takes place when 

desired production falls. If the function lay on the 45 o reference line, utilization would vary 

exactly enough to ensure that wafer starts always equaled desired starts exactly (subject to the 

capacity constraint).  Field study showed, however, that the utilization function characterizing 

actual wafer start decisions lies above the 45o reference line and has a flatter slope at the normal 

operating point.  Fab managers seek to avoid shutdown and prefer to keep their fab running even 

when desired starts fall below normal, preferring instead to build inventory; similarly, they 

increase output less than enough to meet desired starts fully when desired starts exceed normal 

output so as to maintain some room for engineering purposes and to avoid yield problems. A 

concave function where ,0)0(,0,0,0 1 =<′′>′≥ UUUU ffff  NormU CUf =)1( , MaxU CUf =)2( , 

captures the response of Fab managers to variations in desired wafer starts relative to capacity. 

While the general shape of the function (fU) is plausible, the slope of the function around 

the normal operating point and the normal utilization fraction play an important role in model 

behavior. Data for estimating such parameters are both proprietary and Fab specific. Therefore, 

we provide sensitivity analysis (section 5.3) over a broad range of plausible parameters for 

capacity utilization functions and investigate the impact of these parameters on model behavior. 
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4.3. Demand forecasting  

The marketing organization is responsible for demand forecasting at Intel. As in many 

firms, marketing generates an initial demand forecast for microprocessors based on estimates of 

customer demand from different geographic regions and customer types (for another example in 

the semiconductor industry, see Sterman (2000), pp. 449-462). A process known as “Judged 

Demand” is then used to go from the initial to a final forecast. The “Judged Demand” process 

receives its name due to the judgment and subjective adjustments involved in elaborating the 

forecast. First, favorable (unfavorable) macroeconomic indicators are incorporated to increase 

(decrease) the initial estimates based on the total available market for personal and business 

computers. Second, an “executive adder” process often adjusts the aggregate forecast upwards to 

reflect the optimistic goals and aspirations of company executives. Finally, the marketing group 

“filters” (i.e., smooths) the demand estimates from different regions to account for local 

incentives. With respect to regional information, according to a platform manager in marketing: 

“Customer numbers get rolled up, aggregated, and judged with a set of assumptions that may or 

may not be correct; and customer-level insight, when provided, gets watered down.” In 

particular, when demand for certain products is high, regional warehouse managers tend to 

increase their orders to ensure that they will be able to meet demand, the familiar “phantom 

ordering” generated as different customers compete for larger slices of what they perceive to be a 

shrinking pie (Forrester 1961, Sterman 2000, pp. 743-755, Gonçalves 2003). In contrast, when 

demand is low, regional managers have the tendency to decrease orders to make sure they are not 

stuck with undesired inventory. Therefore, marketing “filters” the forecast to come up with its 

final forecast. Analysis of the forecast data confirmed this: when compared, regional forecasts 

were more variable than marketing ones. 
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We model the demand forecast (ED) as a first-order exponential smooth of actual orders 

(D) – in practice obtained from the aggregation of regional orders – updated over a period of one 

month (τDAdj), the frequency with which marketing updates their forecasts. 

DAdj

tEDtD
tDE

τ
)()(

)(
−=�  (13) 

For simplicity, we do not take into consideration the random macroeconomic factors that 

may influence the demand forecast and the executive adder process, making the a fortiori 

assumption that marketing is able to filter out the noise and bias caused by these processes.5 

4.4. Customer response 

In this model we capture customers’ response to supply availability, measured by the 

fraction of orders filled (FoF). Customers respond to a low fulfillment fraction by seeking 

alternative sources of supply; as they succeed, their orders drop. Intel’s attractiveness to 

suppliers (AI) is a nonlinear function of customers’ perception of supplier delivery reliability 

(PFoF). In turn, customers’ perception of delivery reliability (PFoF) adjusts from the actual 

delivery reliability – Fractional orders Filled (FoF) – with a third-order Erlang lag (λ), with an 

average time constant of six months. The third-order Erlang distribution captures the plausible 

distribution of responses by OEMs. At the instant of a decrease in the service level, all OEMs 

will still perceive the supplier as reliable, and there will be no shifts to alternative sources of 

supply. Therefore, the immediate response of the distributed lag should be zero. If service level 

remains low, however, some customers will change their perceptions about supplier reliability 

and seek other suppliers. The distribution of OEMs’ reactions eventually peak, and then 

decrease, reaching zero after a sufficient time has elapsed. The delay captures the time required 

                                                 
5 It is straightforward to add random noise to the forecast to capture the impact of these sources of error and 
adjustment. 
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for OEMs to perceive changes in availability, to determine that the changes are not temporary 

and warrant a search for alternative sources, and to close deals with those alternative sources. For 

simplicity, we assume that competitors maintain constant delivery performance (i.e. a constant 

attractiveness (AC) over time). This assumption allows us to measure changes in system behavior 

due to customers’ reactions only due to changes in supplier conditions; relaxing it is a promising 

direction for future work.  

The nonlinear function (fA), characterizing Intel’s attractiveness (AI), is a logistic curve. 

Attractiveness varies on a scale going from zero to one ( 10 ≤<≤ LMaxLMin AA ). A logistic curve 

captures customers’ mild response to small changes in supply availability, and more significant 

responses to large changes in supply availability. 

( ) ( )( )tPFoFftA AI =
 
 (14) 

While the logistic shape of the function is plausible the model behavior depends heavily 

on the slope of the function and the minimum value. At the same time, the data for estimating 

such parameters are not reliable or easily available. Here too we provide sensitivity analysis 

(section 5.3) over a broad range of plausible parameters for the function governing customer 

responses and investigate the impact of these parameters on model behavior. 

4.5. Feedback structure 

The Intel managers’ heuristics (push-pull production, capacity utilization, demand 

forecast, and customer response decisions) close the feedback loops shown in Figure 2. 

Balancing loop (B1) – FGI Pull – describes the company’s pull system operating at the finished 

goods inventory (FGI) level. An increase in backlog (due to additional orders) increases desired 

shipments, boosting shipments and reducing the backlog—if there is sufficient FGI. When the 

availability of FGI is limited, the negative loop FGI Availability (B2) – limits shipments and 
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forces the backlog up. 
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Figure 2 – Supply-Demand feedback process for Intel’s hybrid production system. 

 

With FGI constraining shipments, the pull system cannot operate at the FGI level. 

However, the system can still pull from assembly WIP. The balancing loop Assembly Pull (B3) is 

analogous to the FGI Pull loop, but pulls chips out of the assembly WIP, which takes longer. 

Therefore, when FGI is constrained, the system still operates as pull but with longer fulfillment 

delay. The actual assembly completion rate is also adjusted by two other loops: a balancing loop 

that corrects the levels of finished goods inventory (Adjust FGI – B4) and a reinforcing loop 

(Replenishment – R1) that replenishes all shipments from FGI. The system can pull from 

assembly as long as the assembly WIP inventory is sufficiently high. When the availability of 

assembly WIP decreases, the first order control for assembly – balancing loop AWIP Availability 

(B5) – prevents AWIP from going negative.  If assembly WIP constrains net assembly, the 

system can’t even pull from AWIP, and the entire system reverts to push. 

Production at the upstream stage is based on long term demand forecasts, information on 
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the desired assembly completion rate, and adjustments due to inventory corrections in assembly 

(Adjust AWIP – B6) and fabrication (Adjust FWIP – B7). The push part of the production system 

is determined by the first order control for fabrication – balancing loop Wafer Availability (B8). 

In terms of customers’ response, the reinforcing loop Growth Through Service (R2) describes the 

ability of the company to grow its market share as it is able to meet customer demand. In 

contrast, the balancing loop – Lost Sales (B9) – describes the inverse dynamics. As customer 

demand grows, the company’s ability to maintain its service level (fraction of orders filled) 

decreases, reducing its ability to retain customers. If the company cannot adequately fill 

customer orders, it will lose market share to competitors. Finally, the feedback from the 

company’s supply chain to customer demand is described in the reinforcing loop – Production 

Push (R3), which captures the long delays associated with production and customer reactions. If 

demand falls, manufacturers reduce demand forecasts and capacity utilization to avoid excess 

inventory. After the production delay, lower production leads to lower inventory and service 

levels, causing a further drop in customer demand. These feedback processes are capable of 

generating the dynamic behavior observed in the company and replicated in the model.  

5. Model Analysis and Results  

The model constitutes a ninth-order nonlinear differential equation system. Since the 

equations are highly nonlinear it is not possible to obtain closed-form solutions. Hence, we 

simulate the model to gain intuition on its behavior. While the parameters chosen for the base 

case (Table 1) reflect Intel’s manufacturing system, the values are disguised to maintain 

confidentiality.  
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Table 1. Base Case Parameters. 

Parameter Definition Value Units 
D Customer demand 5.0 Million units /month 

MS Initial market segment share 80 % 
DPW Number of die per wafer 200 Die/wafer 
CUN Normal capacity utilization  90 % 
YL Number of good wafers per total produced 90 % 
YD Number of good die per wafer 90 % 
YU Number of good chips per good die 95 % 
K Available capacity 28.9 ‘000 wafers/month 

For a given customer demand (D), the equilibrium capacity (K) required to meet that demand can be 
computed from the normal capacity utilization and yields. The formula for equilibrium capacity (K) is 
given by: 

ULDN YYYDPWCU
MSD

K
⋅⋅⋅⋅

⋅=  

Figure 3 shows the behavior of backlogs and finished goods inventory coverage for two 

simulation runs. The model is initialized in equilibrium with constant industry demand. Of 

course semiconductor demand has been growing exponentially for decades, but since we are 

interested only in the stability of the system around the demand, we focus on a detrended 

demand signal.  Interactions of growth with supply chain stability are left for future research.  In 

equilibrium the hybrid push pull system functions as intended:  the supplier meets its target 

delivery delay, fills 100% of incoming orders, and maintains the desired quantities of FGI, 

AWIP, and wafers. From equilibrium we introduce a demand pulse by increasing customer 

demand by 5% and then 20% respectively for a single month at the end of the first simulated 

year. The demand shocks increase the backlog (Figure 3a). As planners observe the increase in 

demand and backlogs, they quickly realize the need to raise production, and desired wafer starts 

rise (Figure 3b). Since capacity is fixed in the short run, managers’ must raise capacity utilization 

(Figure 3c) to increase wafer starts. Fab managers quickly adjust utilization to its maximum. 

Higher utilization increases the level of fabrication (Figure 3d), assembly WIP (Figure 4a), and 
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FGI coverage (Figure 4b). After fabrication and assembly delays, finished goods eventually 

become available to meet the demand. 
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Figure 3 – (a) Backlog coverage, (b) desired wafer starts, (c) capacity utilization and (d) 

fabrication coverage for the two simulated scenarios. 

In both cases, the system immediately responds to the surge in backlog by increasing 

shipments (not shown) and pulling more chips from FGI. In the case of the 5% increase, the 

depletion in FGI is insufficient to constrain shipments. Here, while the demand shock creates 

some supply chain instability, safety stocks in FGI and AWIP allow the system to operate as 

desired, i.e. as a hybrid push-pull system. Despite the shock, the company is capable of meeting 

its target delivery delay and filling 100% of its incoming orders.  

The 20% shock, however, produces a different outcome. For a large enough shock, the 

safety stocks in FGI and AWIP are not capable of maintaining the system in desired operation 

mode. Here, the system behaves as a pure push system, reacting to demand changes with the 
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much longer production delay. The depletion in FGI constrains shipments, limiting the fraction 

of orders filled down (Fig 3c). With FGI constraining shipments, the pull system cannot operate 

at the FGI level. The system compensates for the lack of FGI, however, and pulls chips from 

assembly WIP, increasing assembly rate. As the availability of assembly WIP decreases, it 

eventually constrains assembly. Now, the system can’t pull from AWIP, so it reverts to push. 
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Figure 4 – (a) Assembly WIP and (b) finished inventory coverage, (c) perceived fraction of 

orders filled and (d) market share for two simulated scenarios. 

In push mode, the supplier is unable to meet all customer orders. Customers (i.e. OEMs) 

perceive the drop in service level (Figure 4c) after a delay (accounting for decision-making and 

reporting delays in information systems) and seek alternative sources of supply. Market share 

decreases (Figure 4d) and the drop in orders contributes to the reduction in backlog coverage. 

Ultimately, the company’s inability to meet customer demand results in reduced market share, 

offsetting the impact of the original increase in demand. As customer demand continues to 
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decrease, it eventually equals the volume of shipments, allowing the backlog coverage (Figure 

3a) to stop increasing and the fraction of orders filled to stop declining. Even after additional FGI 

becomes available, market share continues to decrease due to the delay in customers’ perception. 

Customers’ response to inventory availability feeds back to the supplier decision on production. 

Capacity utilization (Figure 3c) drops as the supplier reacts to declining demand. The decrease in 

utilization lowers the level of fabrication, assembly WIP, and FGI coverage. When customers 

finally perceive improved company performance, orders increase and market share rises. With 

time, orders increase past shipments, leading to an increase in backlog. Once again shipments are 

not sufficient to meet customer demand and the fraction of orders filled decreases. The 20% 

shock in demand shock generates an oscillation response that decays as some of the excess 

demand is lost and the supplier closes any remaining demand gap with capacity utilization above 

normal. The interaction of the firm’s locally rational decision rules for shipments and capacity 

utilization with the market’s response to product availability lead to a lightly damped oscillation 

when the system is subjected to a single shock, and the firm’s market share remains depressed 

for a long time after the temporary increase in demand. 

5.1. Impact of Pull System 

To obtain additional insight into the causes of oscillation, we first consider how the 

balancing FGI Pull (B1) and Assembly Pull (B3) loops influence system behavior. The pull from 

FGI allows the company to close the gap between desired shipments and actual shipments by 

running down backlog. Naturally, this loop can only operate while there is sufficient finished 

goods inventory to allow shipments to take place. The ability of the FGI pull loop to operate so 

effectively is due to the short time constant (1 week) associated with the desired shipment rate. 

When that loop is off – shipments are a function of the level of FGI – the system operates as a 



 25 

push system, and the oscillatory behavior of the system increases (Figure 5). Similarly, the 

balancing Assembly pull loop pulls inventory from assembly to allow the FGI Pull loop to 

operate as desired. This loop can only operate while there is sufficient assembly inventory to 

allow assembly completions to take place. It also has a short time constant (1 month) determined 

by the time to adjust backlog. Turning off the pull from assembly reduces system stability as it 

restricts the ability of the FGI pull loop to operate effectively. Figure 5 shows the effect of 

turning off the FGI and assembly pull loops compared to the base case. 
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Figure 5 – FGI and AWIP Pull loops turned off compared to the 20% pulse in demand. 

 

5.2. Impact of Endogenous Demand 

The impact of endogenous demand on system behavior offers further insight into the 

causes of oscillation. To make demand exogenous, we knock out the customer response loop by 

setting the time to perceive the fraction of orders filled to a very large number (τFoF =�). This 

change breaks the feedbacks from the fraction of orders filled (FoF) to customer demand (D), 

making demand exogenous while reducing the system to a production and backlog response to a 

change in demand. The production loop establishes “wafer starts” based on expected demand and 

inventory adjustments throughout the chain. Notice first that if inventory levels in fabrication, 

assembly, and finished goods are fully visible to managers and they use the same time constant 

for inventory adjustments, the system could be reduced to an effectively-first-order system 
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(Graham 1977). The behavior would then be a smooth increase in production to meet the 

additional pulse in demand, followed by a smooth decline.  

The structure of the production loop, however, is different. First, while the system has 

full visibility, FGI is only used to set the desired level of assembly inventory, instead of also 

being used to set the rate of assembly outflow. Second, expected shipments, smoothed with a 

short time constant, are used to inform the adjustment needs for desired inventory, but expected 

demand, smoothed with a long time constant, is used to set production. Hence drops in shipments 

confound changes in demand with changes in availability: inventory shortages that may constrain 

shipments send a spurious signal that additional output is not needed. Finally, the balancing FGI 

pull and assembly pull loops introduce additional complexity to the production process. The 

resulting behavior is damped oscillation of production in the manufacturing supply chain (Figure 

6). By increasing the time adjustment for the inventory corrections or smoothing the expected 

demand over a longer time constant, we can dampen the oscillations. 
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Figure 6 – Production response to demand change compared to the base case. 

 

The interaction of customer response with the rest of the system amplifies the oscillatory 

behavior of production. As demand increases, the company’s ability to meet demand decreases. 

With a delay, customers perceive that service levels are decreasing. In parallel, the company 

increases production. After the manufacturing delay, the additional finished goods allow the 
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company to meet a greater fraction of demand than it would otherwise. However, just as more 

finished goods become available, the delayed responses from customers reduce orders. Hence, 

the manufacturer finds itself with more inventory just as demand drops. The combined effect of 

excess FGI and the drop in demand decreases production, limiting the company’s ability to meet 

future demand. While the system converges, the interaction of customer response and production 

amplifies supply chain instability. 

While endogenous demand amplifies supply chain instability, more importantly it affects 

the company’s policies regarding capacity utilization and inventory control. Consider first the 

inventory policy. Since the system reaction to a change in demand is more stable when demand 

is assumed exogenous, a tight inventory policy, with reduced levels of safety stock, is still 

capable of providing a high service level. However, more unstable systems, as in the case of 

endogenous demand, require larger inventory buffers to provide the same level of service. 

Therefore, when demand is assumed exogenous, a lean inventory policy is recommended; when 

demand is assumed endogenous, inventory buffers are recommended. Figure 7a and 7b show net 

present value of the costs associated with endogenous and exogenous demand under the two 

inventory policies for the cost structure defined in the following section.6 

Now consider the capacity utilization policy. When demand is endogenous, inventory 

availability affects demand. Inventory shortages that may constrain shipments decrease service 

level and customer demand, sending a spurious signal that additional output is not needed. Since 

the decrease in demand is caused by an inventory shortage, additional output is highly desirable. 

An unresponsive capacity utilization policy that does not lower production level due to a 

decrease in demand provides a higher service level when demand is endogenous. In contrast, 

when demand is exogenous, inventory availability does not affect demand. A responsive capacity 
                                                 
6 The lean and safety inventory policies are tested with 0% and 5% respectively of safety stock in AWIP and FGI.  
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utilization policy allows the company to prevent the accumulation of excess inventory during 

periods of low demand. Therefore, when demand is assumed exogenous, a responsive capacity 

utilization policy is recommended. In contrast, an unresponsive utilization policy is 

recommended when demand is assumed endogenous. Figure 7c and 7d show net present value of 

the costs associated with endogenous and exogenous demand under the two capacity utilization 

policies for the cost structure defined in the following section.7  
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Figure 7 – Impact of endogenous and exogenous demand of inventory and utilization 

policies. 
 

Figure 7 shows that typical policy prescriptions of adopting lean inventory and 

responsive utilization policies are reversed when demand is made endogenous. With endogenous 

demand, inventory buffers and an unresponsive capacity utilization policy yield higher service 

levels. 

                                                 
7 The comparison for capacity utilization policies are performed with 0% safety stock in AWIP and FGI to make the 
impact of the utilization policy more salient. 
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5.3. Sensitivity Analysis 

Model behavior is highly sensitive to the assumptions embedded in the capacity 

utilization (fU) and customer response (fA) functions. In particular, the model is sensitive to (1) 

the slopes of the nonlinear functions fU and fA, (2) the maximum capacity utilization, and (3) the 

minimum of the customer demand response. The sensitivity analysis follows a common 

procedure to obtain its results. We represent each nonlinear function – capacity utilization and 

customer response – as a linear combination of two polar cases, capturing extreme assumptions. 

By varying the weight in the linear combination it is possible to obtain a range of behaviors in 

the model.  

5.3.1. Sensitivity to Capacity Utilization 

 Consider two extreme cases of Fab managers’ reactions to desired production: responsive 

and unresponsive. Both managers respond to increases in desired production the same way. They 

respond differently, however, to decreases in the desired production volume. A manager with 

unresponsive reactions, characterized by function (fU1), does not respond much to a reduction in 

desired production. When desired production is low, the unresponsive manager prefers to keep 

the Fab running and build up inventory levels down the chain rather than slowing the line or 

shutting down. In the limit, of course, utilization must fall to zero as desired production falls to 

zero.  The unresponsive policy is shown in Figure 8; utilization has a flat slope near the normal 

operating region. In contrast, a responsive manager, characterized by function (fU2), responds 

aggressively to decreases in desired production by cutting utilization in proportion to the decline 

in desired production, avoiding the buildup of inventory and making the unneeded capacity 

available for process improvement, test runs or preventive maintenance (Figure 8). Intermediate 

cases are obtained from the linear combination of the two extremes; the base case sets w1 = 0.5. 
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( ) U21U11 1 fwfwCU −+= ; w1∈ [0,1] (15) 
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Figure 8 – Market share sensitivity to capacity utilization specification. 

 

Figure 8 shows market share for different specifications of capacity utilization function. 

System variability increases with managers’ responsiveness to changes in desired production. It 

appears intuitive that more responsiveness should enhance stability by preventing the 

accumulation of excess inventory during periods of low demand. The opposite is observed, 

however, because demand is endogenous: by cutting production aggressively when demand is 

perceived to be low, the firm ensures that inventory will be even less available, driving market 

share still lower. The unresponsive policy pushes product into the supply chain, improving 

availability and bringing customers back to the firm more quickly.   

5.3.2. Sensitivity to Customer Response 

 Now consider the two extreme cases of customer responses. An insensitive customer 

base, characterized by function (fA1), does not respond to changes in the perceived service level. 

The insensitive customer response function around the operating point (1,1) is flat. This extreme 

case cuts the feedback from the supplier’s service level to customer demand. In contrast, a 
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sensitive customer base, characterized by function ( fA2), responds aggressively to changes in 

perceived service. The slope of the sensitive customer response function around the operating 

point is steep. Sufficiently low perceived service levels can reduce product attractiveness to the 

minimum possible level. A general customer response function is obtained from the linear 

combination of the two polar cases (fA1 and fA2); in the base case w2 = 0.5. 

( ) A22A12 1 fwfwCR −+= ; w2∈ [0,1] (16) 
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Figure 9 – Utilization sensitivity to customer response specification. 

 

Figure 9 shows the results for different degrees of customer response. System variability 

increases as customers become more responsive to product availability. This result is expected. 

When demand is exogenous the production loop operates independently. By adding the customer 

response balancing loop, we have noted that oscillations in production increase. It is also sensible 

to expect that a more sensitive customer base, reacting with a perception delay to inventory 

availability, will introduce more variability in demand and consequently to production. Customer 

response sensitivity sows that supply chain instability with exogenous demand is much smaller 

than the instability with endogenous demand. That is, capturing the feedback of product 

availability with customer demand amplifies supply chain instability. This result suggests that 
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models that adopt exogenous demand underestimate the instability in supply chains, which 

undermines associated policy prescriptions.  

In section 5.1, we learned that the assembly and FGI pull loops are capable of stabilizing 

the system, but that only takes place when sufficient inventory is available. Therefore, an 

important policy to improve system stability is to maintain safety stocks in both assembly and 

FGI. The next section investigates the optimal levels of assembly and FGI safety stocks. 

5.4. Optimal Safety Stock Location Analysis 

The desired level of safety stock in assembly and finished goods is based on a control 

heuristic that optimizes the trade off between the cost of holding inventory and the cost of lost 

sales. The criterion to evaluate the optimal level of safety stocks is minimization of net present 

value of cumulative discounted costs (CDC), with a discount rate (r).8  

( )�
∞ −=

0
dttTCeCDC rt  (17) 

Total costs (TC) are the sum of total holding cost (HCT), given by the sum of the 

assembly holding cost (HCAWIP) and the finished goods holding cost (HCFGI), and lost sales cost 

(LSC). For simplicity, we do not account for holding costs in fabrication.  

CFGIAWIP LSHCHCTC ++=  (18) 

The holding cost at each stage is given by the product of the inventory volume (AWIP, 

FGI) and the unit cost of maintaining the inventory. Unit inventory holding costs in each stage 

are assumed to be a fraction (β, δ) of the unit finished goods cost (φ). 

AWIPHCAWIP ⋅⋅= φβ  (19) 

FGIHCFGI ⋅⋅= φδ  (20) 
                                                 
8 In practice, the integration limits (from 0 to �) go from 0 to a finite (but large) end simulated time. End time is 
selected ensuring that discounting has reduced the remaining contribution to NPV to a negligible amount. 
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Lost sales cost is the product of a factor (α) of unit finished goods cost (φ) and the 

amount of lost sales, given by the difference between the initial market share (MS0) and the 

actual (MSt).  

( )tC MSMSLS −⋅⋅= 0φα  (21) 

The fraction of inventory volume destined as safety stock in each stage is given by a 

percentage (pAWIP, pFGI) of the total volume in that stage (AWIP, FGI). The optimal safety stocks 

are the values of the safety stock percentage at each stage that minimizes the net present value of 

CDC over the simulation period. Demand is specified as the sum of the current level and an 

autocorrelated (pink) noise term with a standard deviation (σ) of 5% (representative of demand 

variations for Intel).9 

We investigate the optimal volume of safety stocks for four different levels of lost sales 

cost (α) and four ratios of unit inventory holding costs in assembly and finished goods (β/δ).10 

Figure 10 the results of the optimization runs for (a) the percentage of the total volume in 

assembly (pAWIP) and (b) the percentage of the total volume in finished goods (pFGI). As 

expected, optimal safety stocks in both stages increase with the lost sales cost (α). Likewise, the 

allocation of safety stock between assembly and finished goods is highly dependent on the ratio 

of holding costs in the two stages. Lower holding cost ratios benefit the allocation of safety stock 

in assembly. In addition, for large enough holding cost ratios, the manufacturer holds more 

safety stock in FGI as the cost of lost sales increases. This result makes intuitive sense as higher 

safety stocks in FGI allows the company to meet demand with a shorter response time. 

                                                 
9 The same random number seed is used for all simulations, allowing each optimization run to use exactly the same 
realization of the random process. 
10 We assume also that the parameters for unit costs of finished goods (φ) = 50 $/unit, and the holding cost fraction 
of φ associated with finished goods (δ) = 0.01/month. 
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Figure 10 – Optimal percentage safety stocks in (a) Assembly WIP and (b) FGI. 

 

Furthermore, as the throughput time in assembly (τA) is much longer than in finished 

goods (τOP), the same percentage of safety stock volume in assembly and finished goods will 

translate into a higher safety stock coverage in assembly. For instance, as the throughput time in 

assembly (τA) equal four weeks compared to one week in finished goods (τOP), a 15% safety 

stock in assembly and finished goods translates into a safety stock coverage of 0.6 weeks in 

assembly and 0.15 weeks in finished goods. Hence, the same dollar investment in safety stocks 

yield higher inventory coverage in assembly. This result, while intuitive, has a direct impact on 

the market share that the company can retain and the resulting instability of the supply chain. 

Comparing the impact of the same dollar amount in safety stocks, the higher inventory coverage 

in assembly has a more stabilizing effect in the supply chain variability, which results in shorter 

delays, fewer orders expedited, and more satisfied customers. While counter to the intuition that 

safety stocks should be placed in FGI, due to the increased responsiveness to demand, 

performance is improved by keeping the safety stock in assembly. Therefore, the heuristic of 

maintaining additional safety stock in assembly can help stabilize the system operation and 
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improve service level. Figure 11 compares the performance of a 5% additional safety stock 

policy in assembly WIP and FGI from the base case run.11 
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Figure 11 – Performance comparison with equal safety stock investments in  

 AWIP and FGI.  
 

The holding costs of inventory are easily measured, highly salient, and unambiguous.  In 

contrast, the costs of lost sales are hard to assess, and demand variability is easily explained 

away as resulting from factors outside the firm. Thus it is likely that managers will underestimate 

the costs of poor delivery performance (i.e. lost sales, reputation losses, customer inconvenience, 

etc.). If the manufacturer underestimates the cost of lost sales, it will also underestimate the 

optimal safety stocks to be maintained in assembly and finished goods. In addition, not only will 

holding too little inventory lead to higher costs than necessary, but doing so alters the dynamics 

of the system by reducing the stability of the supply chain. This instability has probably many 

other costs that aren’t accounted for. Other operational costs include shorter run lengths and 

smaller batch sizes, more frequent set-ups and changeovers, higher error and rework rates, and 

more idle time between lots and between set-ups. 

                                                 
11 To obtain a comparable dollar amount for the same amount of safety stocks in FGI and AWIP, we set the ratio of 
holding costs (β/δ) to 0.25, which compensates exactly for the inventory coverage ratio between the two stages. 
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6. Discussion and Directions for Future Research 

This paper addressed the causes of oscillatory behavior in capacity utilization at a 

semiconductor manufacturer and the role of endogenous customer demand in influencing the 

company’s production and service level. The modeling effort drew on extensive field work, 

including direct observation, collection of archival materials and data, and structured and semi-

structured interviews with managers at Intel. The paper contributes to our understanding of the 

role that customer response has on increasing demand amplification across supply chains by 

exploring the mechanisms through which endogenous customer demand interacts with managers 

production heuristics. The interaction of the sales and production effects greatly amplifies the 

oscillatory behavior of production. This result suggests that models that adopt exogenous 

demand underestimate the instability in supply chains, which undermines associated policy 

prescriptions. Our research shows that capturing the feedback of product availability with 

customer demand amplifies supply chain instability, ultimately reversing traditional policy 

prescriptions about inventory and capacity utilization policies. Simulation runs suggest that 

typical policy prescriptions of lean inventory and responsive utilization policies hold only when 

demand is assumed exogenous. With endogenous demand, inventory buffers and an 

unresponsive capacity utilization policy yield higher service levels. 

Loop knockout analysis suggests that the balancing FGI Pull (B1) and Assembly Pull 

loops (B3) stabilize the system. However, since they can only operate effectively when sufficient 

inventory is available, the manufacturer should benefit from maintaining larger inventory buffers 

at assembly and finished goods. While the heuristics of keeping inventory buffers at assembly 

and finished goods for improving system robustness is not new, this research underscores their 

importance in the operation of hybrid push-pull systems. In addition, the policy analysis supports 
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an amount of safety stocks that increases with lost sales cost and an allocation dependent on the 

ratio of holding costs between assembly and finished goods. Therefore, the manufacturer can 

effectively reduce supply chain instability and reduce the impact on lost sales, as long as it 

internalizes the lost sales cost.   

In general, semiconductor manufacturers, as well as firms in other industries, tend to keep 

low inventory levels and run lean supply chains, allowing them to reduce inventory costs. This 

practice presents manufacturers with a strategy to avoid costs associated with inventory 

obsolescence in industries with short product life cycles. The mental model motivating lean 

inventories assumes demand variability is exogenous:  in a world with unpredictable demand 

changes, costly FGI, and rapid technological obsolescence, keeping inventories lean minimizes 

the risk that the firm will be caught with excess stock if demand unexpectedly declines.  

However, demand is not exogenous—product availability affects demand, which then feeds back 

to availability.  Low finished and work-in-process inventories increase the chance of stockouts in 

different stages in the supply chain, boosting the likelihood that the system will operate in an 

undesirable mode (e.g., as a push system). Considering the typical inventory management 

heuristics adopted by companies, like the constant adjustment of desired inventory levels to 

reflect current demand signals, and the potential increase in demand variability introduced by 

customer responses, we note that companies may underestimate the true costs associated with 

stockouts. Moreover, managers’ heuristics of adjusting capacity utilization to respond to 

variability in demand – caused by the supplier’s inability to satisfy customer – can amplify the 

demand variability. Because demand is endogenous, by cutting production aggressively when 

demand is perceived to be low, the firm ensures that inventory will be even less available, 

driving market share still lower. Hence, the supplier’s effort to meet customer demand in the 
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short run may actually hurt customer service in the long run. In contrast, the unresponsive policy 

pushes product into the supply chain, improving availability and bringing customers back to the 

firm more quickly. 

There are a number of opportunities for future research motivated by this study. First, 

there are many other industries (e.g. automobiles, electronics), where the effects reported here 

may also play an important role. Second, our study currently abstracts away from the 

introduction of new products over time and the characteristic demand patterns over the product 

lifecycle, where there are often initial shortages during production ramp up, followed by a 

secular demand decline at the end of the product life. Optimal safety stock levels and production 

heuristics may change over the course of the lifecycle. Moreover, our model incorporates only 

the response of customers due to current service level (e.g. supply reliability). However, if 

customers consistently experience poor delivery reliability they may choose to make other firms 

their primary suppliers, reducing sales for other products and for future products, and also 

increasing the variability of demand (Risch, Troyano-Bermudez, and Sterman 1995). Order 

cancellations can also be added to the model. If order cancellations occur as a result of a decrease 

in service level, they are likely to amplify the effects caused by lost sales, which would 

strengthen the results presented here. In addition, the current model does not incorporate the 

possible inflation of orders by customers, creating phantom demand or bubbles, when multiple 

OEMs hedge against supply shortages (Gonçalves 2003, Sterman 2000 ch. 18.3). While not 

incorporated in the model, phantom demand is important since it is likely to balance the effects 

of lost sales and counter the effects observed in this research. While not reported here, we 

incorporated the assumption and conducted a number of simulations to investigate the impact on 

the results. Our analysis concludes that for plausible values of inflationary ordering the main 



 39 

results of this paper still hold. While this study does not incorporate these important assumptions 

– order cancellation and order inflation – they have been addressed thoroughly by one of the 

authors in another study (Gonçalves 2003). The hope is that by separating the effects we can help 

clarify their distinction and impacts to supply chains. 
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