


Dynamics of Vulnerability –     
Modeling the Life Cycle of Software Vulnerabilities 

By 
Johannes Wiik 

Jose J. Gonzalez 
Faculty of Engineering and Science 

Department of Information & Communication Technology 
Agder University College 

Grooseveien 36 
NO-4876 Grimstad, Norway 

Phone: +47 37 25 30 00  
Email: Johannes.Wiik@hia.no  Jose.J.Gonzalez@hia.no   

Howard F. Lipson 
Timothy J. Shimeall 

Software Engineering Institute 
Carnegie Mellon University 

Pittsburgh, PA, USA 15213-3890 
Phone: +1-412-268-7700 

Email: hfl@cert.org  tjs@cert.org  
 

Abstract 
Many of the contributing factors to computer security problems are non-technical in 
nature – that is, they are dependent upon human and organizational actions and 
interactions in the political, social, legal, and economic realms.  However, much of 
the research in computer security has had a predominantly technical focus.  This 
paper represents a first attempt at using the concepts of system dynamics to model 
some of the human and organizational actions and interactions that impact the 
software vulnerability life cycle, which represents the relationship over time between 
the discovery of security vulnerabilities (i.e., flaws) in software and the occurrence of 
computer security incidents based on the exploitation of those vulnerabilities by 
attackers.  Although our initial model relies on several simplifying assumptions, it 
points the way towards richer and more comprehensive models that can increase our 
capabilities and understanding in ways not possible through traditional computer 
security research approaches.



  2 

Introduction 
Our society has gradually become more and more dependent on information and 
communication systems, in business, in education and in our private lives. 
Consequently, we are also increasingly vulnerable to errors in such systems. It is 
therefore important to understand how we can maintain such systems in a more 
secure state. 
 
In his influential book, Schneier (2000) characterizes cyber security as a “process”, 
not a “product”, and a very complex process for that matter. Schneier writes: “The 
Internet is probably the most complex system [our emphasis] ever developed”. He 
proceeds to describe information systems in much the same way a system dynamics 
experts look at them: As dynamic entities, with interacting components, propagating 
consequences, unexpected (“emergent”) properties and delayed effects. Schneier 
stresses the vulnerability of information systems, threats and risks, policies and 
attack recovery. 
 
Over the last six years, the number of incidents reported to the CERT® Coordination 
Center (CERT/CC)1 has practically doubled every year.2 Technology alone is not 
enough to prevent such incidents from taking place because of the complexity of 
today’s information systems. There is no overall centralized control, as systems cut 
across organizational boundaries as well as other boundaries. Hence, security 
policies are not consistent with one another. 
 
There is constantly an ongoing battle between attackers and defenders. On the one 
hand, attackers try to exploit a vulnerability. On the other hand, defenders try to 
manage the security of systems, for example through delivering and installing 
patches.  
 
However, the surprising part of this story is that very often the solution that can 
remove the vulnerability is readily available before the vulnerability becomes 
exploited on a large scale (Arbaugh, Fithen, and McHugh 2000). 
 
The scope of this paper is to enhance our understanding of the complex structure that 
is driving the number of intrusions for a single vulnerability over time, and to discuss 
some policies that can influence this problem by using a system dynamics-based 
simulation model. 
 

                                                
® CERT is a registered trademark of Carnegie Mellon University. 
1 Founded in 1988 as the first Computer Emergency Response Team Coordination Center, the 
CERT/CC is currently operating with a much wider range of computer security activities than its 
original incident response function. The CERT/CC carries on activities and research within the areas 
of vulnerability analysis, incident handling, survivable enterprise management, education and training, 
and survivable systems engineering. For further information see: 
http://www.cert.org/meet_cert/meetcertcc.html#bkgd 
2 See CERT/CC statistics (2004) at http://www.cert.org/stats/ 



  3 

Computer Security Defined 
Computer security has been formally defined as follows (Howard 1997)3: 
“Computer security is preventing attackers from achieving objectives through 
unauthorized access or unauthorized use of computers and networks.”  An attacker’s 
objectives can include theft (i.e., disclosure) of confidential data, corruption of data, 
or denying system services to legitimate users (e.g., by crashing a system or 
overloading its resources4). An attacker may wish to gain control of a computer 
system to make use of its resources, often for use in subsequent attacks on other 
systems.5  
 
An attacker can use non-technical means as a first step towards compromising 
computer security, such as tricking a naive user into revealing his or her password. 
However, attackers typically achieve their objectives by exploiting flaws 
(vulnerabilities) in software (Hoglund 2004).  Many software products are ubiquitous 
and once a vulnerability is discovered in a widely-used software product, a large 
population of computer systems that have those products installed are at risk. 
 
The CERT/CC (CERT Coordination Center) has defined several security terms, and 
we will briefly summarize some of these definitions. See also Arbaugh, Fithen, and 
McHugh (2000) for a more extensive description and list of definitions. A 
vulnerability is a flaw or a defect in technology that can be exploited. A vulnerability 
exploit (possibly a scripted collection of commands or a program) can cause the 
technology to function insecurely. Hence, an intruder launches an attack if he or she 
tries to elicit a different behavior from the target system in order to reach a certain 
goal. From a defender’s perspective an attack is any event that targets the defender’s 
system in an insecure manner (based on the defender’s perception of insecure). If the 
attack elicits a different behavior, it is considered to be an intrusion. We also need to 
differentiate between events and incidents. An event is the most basic unit of 
information that describes the aspects of network or host behavior. A group of events 
that relate to one another such as scanning and attacks is referred to as an activity. An 
incident is an activity that violates stated or implied security policy (and may be 
attempted or successful execution of vulnerability exploits). In other words, incidents 
refer to the aggregated activity generated by events. Collections of incidents are 
sometimes identified with the vulnerability or exploit involved in the incidents. 
 

                                                
3 For an in-depth discussion of the derivation of this definition (and its historical context), see Chapter 
5 of An Analysis of Security Incidents on the Internet 1989 - 1995 (Howard 1997), which is available 
on-line at: http://www.cert.org/research/JHThesis/Chapter5.html 
4 Such attacks are classified as denial-of-service (DoS) attacks. 
5 Attacking through intermediate machines, or stepping stones, makes it more difficult to track the 
originator of an attack.  Gaining control of a large number of machines allows an attacker to 
coordinate an overwhelming distributed denial-of-service attack (DDoS) against a selected target. 



  4 

Systems typically oscillate between different states with respect to vulnerabilities. 
We can distinguish between (Arbaugh, Fithen, and McHugh 2000): 

1. Hardened 
2. Vulnerable 
3. Compromised 

 
A system is hardened when all security corrections have been installed. As new 
vulnerabilities are discovered and disclosed, the system enters a vulnerable state. The 
system administrators need to install security corrections such as patches in order to 
get the system back to a hardened state. Otherwise, there is a risk that one or several 
vulnerabilities might be exploited. In that case, the system enters a compromised 
state. 

The Problem with Cyber Data 
Unfortunately, systematically collected information about attacks on information 
assets is generally not available. There are several reasons for this: 

1. The attackers generally act to conceal as many aspects of their attacks as they 
can. 

2. The defenders gather data on attacks for quite narrow purposes 
3. Organizations controlling information assets are very reluctant to share data 

on attacks on those assets. 
 
Firstly, attackers typically try to conceal their objectives and methods for several 
reasons. They do not want to be detected, and, in addition, they do not want to reveal 
how they work. Otherwise, the element of surprise attack would probably soon be 
lost. 
 
Secondly, from a defenders perspective, information gathering is very often limited 
to a specific defensive task or for legal evidence gathering for a specific incident. 
Hence, data is not available in a generic format - something that renders it difficult 
and time consuming to analyze. 
 
Thirdly, information sharing is hindered, not only for legal reasons, but also for fear 
of negative publicity and potential loss of reputation. The fear that others will copy a 
certain type of attack is another reason for not sharing information. Ironically, this 
latest fear may even help attackers keep the element of surprise relative to other 
organizations and targets. 
 
Consequently, system dynamics modeling of computer security may have to rely 
more on expert knowledge than hard systematically collected data. However, such a 
modeling process may in turn generate new insights into the problem domain and 
identify areas where systematic data collection might be of great importance for 
future research and future modeling.  Even though written sources of information and 
numerical data are important, effective modeling building is dependent on human 
knowledge, and most often, essential information is drawn from the mental database 
of people (Forrester 1994). Hence, a useful model can be made even with limited 
data available.  



  5 

Reference Modes 
When we want to develop a system dynamics model, our point of departure is very 
often the reference modes of the problem. Typically, a reference mode shows a time 
profile with data gathered for a key variable related to the dynamic problem at hand, 
but it can also be a drawn graph that focuses less on the exact values but rather on the 
behavior pattern related to the problem.  
 
The information available for the single vulnerability life cycle is rather limited. 
Figure 1 presents an idealized graph of the vulnerability exploit cycle. There are 
several key assumptions behind the behavior of exploits or intrusions over time. At 
first the number of exploits for a certain vulnerability is low as such attacks are 
launched without the use of automated tools. As exploits tools, such as scripts, are 
developed and spread within the hacker community, the rate of exploits increase 
leading to a wide-spread use of the tools. This process triggers reactive defense 
mechanisms such as the development of patches that can be installed as the general 
awareness about the problem increases. Hence, the rate of exploits starts to decline.  
 

             
Figure 1: Vulnerability Exploit Cycle6 

 
Even though the figure above gives us some information about the problem, not all 
single vulnerability life cycles may develop as described above. Three case studies 
described by Arbaugh et al. (Arbaugh, Fithen, and McHugh 2000) tell a slightly 
different story and add more detail to the development and implementation of 
patches and other preventive measures. 
 
In the story above we assumed that a growing rate of intrusions will force the 
software vendor to develop a patch that can remove the vulnerability being exploited. 
However, in all three case studies, a patch or correction to the problem was available 
                                                
6 Source: CERT Coordination Center, © 2002 by Carnegie Mellon University.  See Lipson 2002 for 
some additional details. 

Advanced 
Intruders 
Discover New 
Vulnerability 

Crude 
Exploit Tools 

Distributed 

Novice Intruders 
Use Crude 

Exploit Tools 

Automated 
Scanning/Exploit 
Tools Developed 

Widespread Use  
of Automated  
Scanning/Exploit  
Tools 

Intruders 
Begin  
Using New 
Types  
of Exploits 

Time 



  6 

long before the peak in incidents actually took place. This phenomenon is illustrated 
in the Phf7 incident histogram in the picture below taken from Arbaugh et al. (2000). 
The Phf vulnerability made hackers capable of executing commands on web servers 
at the privileged level of the HTTP server daemon8. The vulnerability could easily be 
exploited with or without scripting. As the graph shows, there were quite a few 
intrusions before a script was available, but the majority of the intrusions took place 
after the script was available. Most of these intrusions have been attributed to script-
kiddies − less experienced hackers that depend on tools made by others to launch an 
attack (Arbaugh, Fithen, and McHugh 2000). As such actors are not always aware of 
what such scripts can be used for, they may even launch attacks more or less blindly. 
 
The graph in Figure 2 shows not only the reported incidents, but also the point in 
time when the vulnerability was discovered, corrected and scripted. In addition the 
continuous curve shows a new idealized reference mode slightly modified compared 
to the graph in Figure 1. The difference between the two reference modes reveals 
some interesting findings. 

 
Figure 2: Phf incident histogram of intrusions 

                                                
7 A well-known CGI bug was in the program Phf. This program is used as a telephone book database 
script. Attackers could use a bug in Phf that allowed them to run the Phf program and input a new line 
character (%0a) to enter a new command into the shell, the Phf program did not check input and 
presumed the user was inputting a valid command. This technique was mostly used by an attacker to 
grab the /etc/passwd file on a vulnerable system. This file contains all user and encrypted password 
information which an attacker would then proceed to crack and attempt to gain access to the system. 
8 Daemon: Processes in the UNIX system are either user, daemon or kernel processes. Daemon 
processes are not associated with any users but perform system-wide functions, such as 
administration.�



  7 

Firstly, and most importantly, there were no intrusions before there was a correction 
available. This is very interesting as it means that a solution was available before the 
incident occurred as opposed to the reference mode in Figure 1. Unfortunately, the 
solution was not used quickly enough. The two other case studies by Arbaugh et al. 
gave similar findings. There might be many reasons why system administrators do 
not patch their systems in time. It takes time for the news about a patch to spread and 
time to install it. System administrators are cautious about installing corrections 
without prior testing as a patch might create other problems in the system (Arbaugh, 
Fithen, and McHugh 2000). The problem may also be attributed to the decline of the 
expertise of the average system administrator (Lipson 2002). The rapid growth in the 
number of attacks is attributed to the automation of exploitation. That is, the 
development of tools that reduce the knowledge needed to make an attack increases 
the number of potential hackers that are able to exploit the vulnerability. Most of 
these hackers are therefore script kiddies. As use of these tools spreads in the hacker 
community, attacks and intrusions increase exponentially (Arbaugh, Fithen, and 
McHugh 2000). 
 
Secondly, the shape of the curve indicates that there is a rapid growth in the intrusion 
rate. However, it does not decline as rapidly as it grows. Consequently, the problem 
persists for a long time after the awareness of the problem was raised and a 
correction was made available. Much of the decline can be attributed to the loss of 
interest among the intruders as more and more systems get patched and consequently 
enter a hardened state (Arbaugh, Fithen, and McHugh 2000). 
 
How can we generalize to a generic system dynamics model? As several life cycles 
of different vulnerabilities tend to develop along a similar pattern, we may assume 
that there is a common causal feedback structure determining this behavior. 
Although the reported intrusion data is admittedly inaccurate, as long as we capture 
the feedback structure we should be able to get results that generate a similar 
behavior pattern that we can rely on based upon available of data and on past 
research. 

The Model Structure 
Based on the reference modes, literature, and expert knowledge, we built a generic 
model of the dynamic problem: the single vulnerability life cycle. That is, the model 
is not made to represent a particular incident, and must therefore be treated as such. 
 
The total model is pictured in Figure 3. We have not included the actually discovery 
of the vulnerability in the model. The assumption is that the vulnerability has been 
disclosed and the information is available to administrators, as well as hackers, 
within the time frame of the model. 
 
 



  8 

  

 
Figure 3: An overall view of the stock and flow model 

We have divided the model into two main sectors:  
1. An attack sector describing how hackers exchange information and use this 

information to make attacks on hosts. 
2. A defense sector describing how host administrators react to a threat 

regarding a single vulnerability. 
In many ways this structuring of the model follows Schneier’s notion that in order to 
understand the process of computer security, it is necessary to consider attacks, 
defenses and the relationship between them (Schneier 2000, p. 273). From a system 
dynamics perspective, this can be interpreted as the feedback processes between 
attack policies and defense policies. 

The Attack Sector 
According to the reference modes discussed previously, the first type of attack is 
made by advanced hackers. Gradually advanced hackers will start testing out ways of 
attacking vulnerable hosts with a certain frequency. After a delay, the knowledge 
from such attacks is used to develop a script that can automate the exploitation of a 
particular vulnerability. We did not include the process of further improved attack 
tools in this model, but we have kept it on an aggregated level with one type of 
automated tool that we call script. Hence, we used a single stock of hackers with 
script. 
 



  9 

The availability of a script has several important implications: Firstly, the attack 
frequency of hackers that use the script will increase because it will make each 
hacker able to attack more targets per day than if it had been done manually. 
Secondly, a script makes the potential number of hackers available to exploit the 
vulnerability much larger as the necessary knowledge to use a script is much lower 
than to use a manual approach.9 Thirdly, as a consequence, the script will start 
spreading exponentially through word of mouth as more and more hackers gain 
access to the script. This reinforcing feedback process is captured in the reinforcing 
feedback loop “R: Diffusion of hacker tools” as seen in figure 4. 
 
The above mentioned factors all contribute to an increase in the number of attacks 
and consequently the intrusion rate as well. 
 
 
 

 
Figure 4: The attack sector of the model 

                                                
9 Very often, scripts also bundle multiple vulnerabilities to increase the probability of a successful 
attack. However, this is beyond the scope of the model of this paper as we only investigate the life 
cycle of a single vulnerability. 



  10 

The Defense Sector 
There are many ways of measuring vulnerable targets, but in our model we have used 
hosts as described by Arbaugh et al. (Arbaugh, Fithen, and McHugh 2000). As 
previously mentioned, systems normally oscillate between hardened and vulnerable. 
Of course, sometimes they might get compromised. 
 
In our model, we have only included hardened and vulnerable hosts explicitly, as we 
consider this to be sufficient in order to describe the vulnerability life cycle. 
Compromised hosts are also included in the sense that successful attacks create 
intrusions, but the model assumes that these hosts are patched immediately after a 
successful attack. 
 
Patching is the main defense mechanism in the model. We will not consider other 
defense mechanisms.  For example, for some vulnerabilities, changes in firewall 
rules may thwart an attack.  Nor will we consider improvements in engineering 
processes that can reduce future vulnerabilities based on lessons learned. On average, 
there is a long delay for a large number of hosts to become patched and some hosts 
may never be patched at all. However, this delay time can be reduced if the perceived 
threat is high. In other words, if the incident rate is quickly increasing and becomes 
sufficiently high, awareness about the vulnerability will rise. Consequently, system 
managers will be much more eager to patch their systems. In general system 
managers are reluctant to update their systems unless they see an imminent threat. 
 

 
Figure 5: The defense sector of the model 

As more and more systems are patched, the number of targets available will drop. 
This has an imminent effect on the incident rate, but with a delay, it also influences 
the rate of attack as hackers find fewer targets. In this way, the balancing loop “B2: 
Running out of targets” is closed. In addition, the diffusion of scripts will be reduced 
for much the same reason.  

The Dynamics of the Model 
As we have only made a generic model, the graphs presented in this section can only 
be considered notional as they are not based on actual data. As discussed in the 



  11 

section with the reference modes, the data available has been too limited to quantify 
the model in such a way that it can represent a particular incident. 
 
We will start to investigate the attack process. The number of hackers not using 
script will gradually start growing as more and more sophisticated hackers try to 
exploit the vulnerability. However, this does not happen immediately as they need to 
become aware of the vulnerability through various information channels. After a 
certain time lag (in the model 1 month), at least one hacker will make a script and 
start using this. This creates the small dip in the graph shown below as the hacker 
enters another state. Still some hackers will try to exploit the vulnerability without 
scripts, and the number of such hackers continues to increase in a goal seeking 
manner.   

 
However, more and more hackers will start using the script once it is made available. 
Most of those are rather less sophisticated hackers. Consequently, the reinforcing 
word of mouth loop among hackers starts dominating and the number of hackers in 
possession of a script starts growing exponentially. 

 
Figure 7: Hacker community with script 

 
As most hackers become aware about the script, the word of mouth process levels 
off. The impact of this growth process can be seen in the incident rate and the rate of 
attacks. 
 

Figure 6: Sophisticated hackers not using script 



  12 

 
 
Initially, most attacks are successful intrusions but this increases the awareness about 
the vulnerability, and system administrators start patching the systems more quickly. 
Consequently, even though the rate of intrusions continues to rise due to a larger 
number of hackers with script, more and more attacks fail. 
 
As there are less and less targets available for attack, the hackers become 
discouraged and their interest and capability for exploiting the vulnerability 
decreases. Consequently, the rate of attacks and intrusions start to fall.   
 
We can trace this effect if we look at the development of hardened hosts as well. 
Once a patch is released, some system administrators will be quick to patch their 
systems, but the majority of the administrators will not react until they perceive the 
danger to be imminent. That is, when the number of attacks grows rapidly to high 
rate and gets a lot of publicity. Hence, we get the steep increase in the number of 
hardened hosts at the same time as the peak in attacks occurs. 
 

 
As the hackers start losing interest and the rate of attack and publicity around the 
vulnerability deceases, the threat is not perceived as high as before. Consequently, 
the rate of increase of the number of hardened hosts goes down and some systems 
may never be patched at all, even years after the vulnerability was discovered. 

Figure 9: Rate of attacks and rate of intrusions 

Figure 8: Hardened hosts 



  13 

Policy Analysis 
Even though we have a much aggregated generic model, we can experiment with 
simple scenarios. As indicated by the model and the information it is based on, an 
interesting finding is that the vast majority of intrusions occur after a correction is 
available. Correction only occurs after the threat is perceived to be high. That is, if 
the intrusion rate is high. 
 
An interesting scenario would therefore be to run the model with a shorter average 
patching time. The assumption is that system administrators are much more 
aggressive to patch their systems even before the threat is perceived to be high. 
Consequently, we simply halved the delay time in order to illustrate such a change in 
policy. The result can be viewed in Figure 10.  
 

 
Figure 10: Result when the average time to patch is half of the base case. Current is the new 

scenario and Reference is the base case 

The intrusion rate has the same shape, indicating that the same feedback processes 
dominate this scenario as well, but the peak is lower as there are fewer targets 
available due to correction. 
 
These are just preliminary results, and further research and evidence is needed to 
make any final conclusions on the right approach. However, the model indicates that 
there is a high degree of leverage in the hands of system administrators. Thus, the 
model results support the same conclusion made by Arbaugh et al. (Arbaugh, Fithen, 
and McHugh 2000). However, history has shown that it is very difficult to influence 
system administrators in practice. How this process can be improved is beyond the 
scope of this paper. 
 

Future Research 
The attacker-defender motivations and scenarios described in this paper are 
plausible, and worthy of modeling, but eventually we want to validate (or disprove) 
the assumptions in the model with more empirical data. The model is currently at a 
preliminary stage and must go through more validation, not only through validation 
with more empirical data, but also through model interaction with experts and other 
types of validation typically used in system dynamics modeling. 
 



  14 

Beyond improving the current model for the single vulnerability life cycle, the model 
boundary can also be expanded to incorporate new and important factors. Our current 
work has indicated that more research is needed in the following areas regarding 
vulnerability life cycle: 

1. Multiple vulnerabilities 
2. Tracking and tracing 
3. Improve system administrators’ correction policies. 

Multiple Vulnerabilities: 
As hacker tools very often combine exploits of different vulnerabilities it may be 
interesting to model the relationship between different vulnerabilities as well. As we 
saw in our simple model, the automation of an exploit creates the tremendous growth 
in exploits. Consequently, as single script can actually influence the life cycle of 
several vulnerabilities simultaneously. 
 
Another reason for investigating multiple vulnerabilities is to investigate how 
exploits may compete for attention within hacker groups as well as among defenders.  

Tracking and Tracing:  
Even though the model indicated that there might be some leverage in a defensive 
patching approach, it has proven difficult in real life to influence system 
administrators as a group in this way. Lipson even argues that such an approach will 
never be enough, and that tracking and tracing will become increasingly vital to deter 
exploits (Lipson 2002, p. 11). 
 

Improve System Administrators’ Correction Policies: 
In the model, we only made a very simple policy analysis of the patching process in 
the defense sector of the model. However, there are several types of corrections that 
can be made. Patching is just one of them, but simple corrections such as changes to 
firewall rules can also be used. In addition, more refinement in this part of the model 
can also give a better understanding as to why system administrators are so hard to 
influence as a group and what can be done to make them comply with security 
warnings in a better way.  
 
One area of particular interest in this context is the interaction between Computer 
Security Incident Response Teams (CSIRTs) and their constituencies. CSIRTs can be 
helpful filters for information, raise awareness about threats, ease sharing of 
information between organizations, make recommendations for handling incidents 
and train system administrators to increase their level of security competence. Thus, 
they can influence how system administrators respond to new threats. 

Conclusion 
We have been able to put forward and test assumptions about why a vulnerability can 
be readily exploited even after a correction is available in a system dynamics based 
simulation model. The most important factors can be attributed to the reactive way 
system administrators typically respond to an incident. Instead of taking proactive 



  15 

measures and correcting their vulnerable systems before an exploit tool starts to 
spread in the hacker community, administrators often wait until the rate of intrusion 
becomes high and exploits of the vulnerability are perceived as an imminent threat. 
This wait-and-see attitude can be very harmful as a large number of vulnerable 
targets might make exploitation of the particular vulnerability more popular in the 
hacker community. 
 
Indeed, the model also indicated that a more proactive patching policy has a high 
degree of leverage. On the other hand, in practice, it has proven difficult to influence 
system administrators as a group in order to make them more willing to patch or 
correct their systems to harden them. Consequently, more research is needed to 
understand this problem. One possible way forward is to investigate how CSIRTs 
can play a role in this matter. 
 
Other topics for future research include enhancing the current model to deal with 
multiple vulnerabilities in order to understand the composite effects and interactions 
among multiple vulnerability life cycles. In addition, research is needed to 
investigate and model more aggressive measures to reduce (e.g., deter) the exploits 
of vulnerabilities.  For example, tracking and tracing of cyber attacks is one such 
measure to explore,  
 
Even with the limited information resources available, the preliminary model 
presented in this paper has been able to give insights into the single vulnerability life 
cycle. This appears to indicate that system dynamics modeling can be a useful 
method in order for enhancing our understanding of complex dynamic computer 
security problems. 
 
 



  16 

Appendix: Model Equations 
mainmodel Component 1 { 
aux Actual patching delay { 
autotype Real 
autounit mo 
def 'Delay to patch' 
*(1-'Perceived threat') 
} 
const Attack frequency with no tools { 
autotype Real 
autounit host/(mo*hacker) 
init 1<<host/mo/hacker>> 
} 
const Attack frequency with tools { 
autotype Real 
autounit host/(wk*hacker) 
init 1<<host/wk/hacker>> 
} 
aux Attacks { 
autotype Real 
unit host/mo 
def ('attack frequency with tools'*'Hacker community with script' 
+'attack frequency with no tools'*'Sophisticated hackers not using scripts') 
*'Perceived availability of targets' 
} 
const Delay to patch { 
autotype Real 
autounit mo 
init 12<<mo>> 
} 
const Distribution factor { 
autotype Real 
autounit %/wk 
init 'Look up frequency'*'Probability of gaining script' 
} 
aux Fraction of hackers with no script { 
autotype Real 
def 'Hacker community with no script'/('Hacker community with no script'+'Hacker community with 
script'+ 
'Sophisticated hackers not using scripts') 
} 
aux Fraction of hosts vulnerable { 
autotype Real 
unit % 
def 'Number of vulnerable hosts'/('Number of vulnerable hosts'+'Number hardened hosts') 
}l 
evel Hacker community with no script { 
autotype Real 
autounit hacker 
init 1000<<hacker>> 
outflow { autodef 'knowledge transfer of scripting' } 
}l 
evel Hacker community with script { 
autotype Real 
autounit hacker 
init 0<<hacker>> 
inflow { autodef 'knowledge transfer of scripting' } 
inflow { autodef 'sofisticated hackers gain access to script' } 
inflow { autodef 'hacker develops script' } 
} 
aux Hacker develops script { 
autotype Real 



  17 

autounit Hacker 
def IF(TIMEIS(STARTTIME+'Time to develop script from known 
vulnerability'),1<<hacker>>,0<<hacker>> 
) 
zeroorder 
} 
aux Intrusion rate { 
autotype Real 
unit host/mo 
def Attacks*'Fraction of hosts vulnerable' 
} 
const Intrusion rate threshold { 
autotype Real 
autounit host/mo 
init 100<<host/mo>> 
} 
aux Knowledge transfer of scripting { 
autotype Real 
autounit hacker/wk 
def 'Perceived availability of targets'* 
'Hacker community with script'*'Distribution factor'*'Fraction of hackers with no script' 
} 
const Look up frequency { 
autotype Real 
autounit wk^-1 
init 1<<1/wk>> 
}l 
evel Number of hardened hosts { 
autotype Real 
autounit host 
init 0<<host>> 
inflow { autodef patching } 
}l 
evel Number of vulnerable hosts { 
autotype Real 
autounit host 
init 1000000<<host>> 
outflow { autodef patching } 
} 
aux Patching { 
autotype Real 
autounit host/mo 
def ('Number of vulnerable hosts'DIVZ0'Actual patching delay' 
+'Intrusion rate') 
*IF(TIME>STARTTIME+'Time to develop patch',1,0) 
} 
aux Perceived availability of targets { 
autotype Real 
autounit % 
def DELAYINF('Fraction of hosts vulnerable',1<<mo>>) 
} 
aux Perceived threat { 
autotype Real 
unit % 
def 1-DELAYINF(GRAPH('Relative rate of intrusions',0,0.2,{1,1,1,1,1,1,0.82,0.39,0.12,0.07,0.07//Min:-
1; 
Max:1//}),1<<mo>> 
) 
}l 
evel Potential sophisticated hackers { 
autotype Real 
autounit hacker 
init 10<<hacker>> 
outflow { autodef 'rate of new hackers trying to exploit vulnerability' } 



  18 

} 
const Probability of gaining script { 
autotype Real 
autounit % 
init 70% 
} 
aux Rate of new hackers trying to exploit vulnerability { 
autotype Real 
autounit hacker/mo 
def 'Potential sophisticated hackers'/'Time to manually test vulnerability' 
} 
aux Relative rate of intrusions { 
autotype Real 
def 'Intrusion rate'DIVZ0 
MAX('Intrusion rate threshold',DELAYINF('Intrusion rate',1<<mo>>)) 
} 
aux Sophisticated hackers gain access to script { 
autotype Real 
autounit hacker/wk 
def 'Distribution factor'*'Hacker community with script'* 
'Sophisticated hackers not using scripts'/ 
('Hacker community with no script'+'Hacker community with script'+'Sophisticated hackers not using 
scripts') 
}l 
evel Sophisticated hackers not using scripts { 
autotype Real 
autounit hacker 
init 0<<hacker>> 
outflow { autodef 'sofisticated hackers gain access to script' } 
outflow { autodef 'hacker develops script' } 
inflow { autodef 'rate of new hackers trying to exploit vulnerability' } 
} 
const Time to develop patch { 
autotype Real 
autounit wk 
init 1<<wk>> 
} 
const Time to develop script from known vulnerability { 
autotype Real 
autounit mo 
init 1<<mo>> 
} 
const Time to manually test vulnerability { 
autotype Real 
autounit mo 
init 1<<mo>> 
} 
} 
unit hacker { 
def ATOMIC 
} 
unit host { 
def ATOMIC 
} 
unit incident { 
def ATOMIC 

}



  19 

References 

Arbaugh, William A, William L Fithen, and John McHugh. 2000. Windows of 
Vulnerability: A Case Study Analysis. Computer 33 (12):52-59. 

Forrester, Jay. 1994. Policies, Decisions and Information Sources for Modeling. In 
Modeling for Learning Organizations, edited by J. D. W. M. a. J. D. Sterman. 
Portland, Oregon: Productivity Press. 

Hoglund, Greg and Gary McGraw. 2004. Exploiting Software: How to Break Code, 
Addison-Wesley, Boston. 

Howard, John. 1997. An Analysis of Security Incidents on the Internet 1989 - 1995. 
Doctoral Thesis, Carnegie Mellon University, Pittsburgh. Available online at:  
http://www.cert.org/research/JHThesis/Start.html 

Lipson, Howard F. 2002. Tracking and Tracing Cyber-Attacks: Technical Challenges and 
Global Policy Issues. Pittsburgh: CERT Coordination Center, Software 
Engineering Institute, Carnegie Mellon University. Available online at: 
http://www.cert.org/archive/pdf/02sr009.pdf 

Schneier, Bruce. 2000. Secrets and Lies: Digital Security in a Networked World. New 
York: John Wiley & Sons, Inc. 

 


	back to the top: 
	ToC Button: 
	Go Back Button: 


