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Abstract 
This paper investigates two different yet related research questions about stock 

management in feedback environments: The first one is to analyze the effects of 
selected experimental factors on the performances of subjects (players) in a stock 
management simulation game. In light of these results, our second objective is to 
evaluate the adequacy of standard decision rules typically used in dynamic stock 
management models and to seek improvement formulations. To carry out the research, 
the generic stock management problem is chosen as the interactive gaming platform. In 
the first part, gaming experiments are designed to test the effects of three factors on 
decision making behavior: different patterns of customer demand, minimum possible 
order decision (‘review’) interval and finally the type of the receiving delay. ANOVA 
results of these 3-factor, 2-level experiments show which factors have significant effects 
on ten different measures of behavior (such as max-min range of orders, inventory 
amplitudes, periods of oscillations and backlog durations). In the second phase of 
research, the performances of subjects are compared against some selected ordering 
heuristics (formulations). First, the patterns of ordering behavior of subjects are 
classified into three basic types. Comparing these three patterns with the stand-alone 
simulation results, we observe that the common linear "Anchoring and Adjustment 
Rule." can mimic well the smooth and gradually damping type of behavior, but can not 
replicate the non-linear and/or discrete ordering dynamics. Thus, several alternative 
non-linear rules are formulated and tested against subjects’ behaviors. Some standard 
discrete inventory control rules (such as (s, Q)) common in the inventory management 
literature are also formulated and tested. These non-linear and/or discrete rules, 
compared to the linear stock adjustment rule, are found to be more representative of the 
subjects’ ordering behavior in many cases, in the sense that these rules can generate 
nonlinear and/or discrete ordering dynamics. Another major finding is the fact that the 
well-documented oscillatory dynamic behavior of the inventory is a quite general result, 
not just an artifact of the linear anchor and adjust rule. When the supply line is ignored 
or underestimated, large inventory oscillations result, not just with the linear anchor-
and-adjust rule but also with the non-linear rules, as well as the standard inventory 
management rules. Furthermore, depending on parameter values, nonlinear ordering 
rules are more prone to yield unstable oscillations -even if the supply line is taken into 
account.  

Keywords: stock management, anchor and adjust heuristic, experimental 
testing of decision rules, non-linear decision heuristics, inventory control rules 
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1.  Stock Management Game 
For the experimental testing purpose, the generic stock management problem, 

one of the most common dynamic decision problems, is chosen as the interactive 
gaming environment. The objective of the game is stated as "keeping the inventory level 
as low as possible while avoiding any backorders." If there is not enough goods in the 
inventory at any time, customer orders are entered as backorders to be supplied later. 
"Order decisions” are the only means of controlling the inventory level. The general 
structure of the stock management problem is illustrated in Figure 1. (See Sterman 
2000). The three empty boxes: Expectation Formation, Goal Formation and Decision 
Rule are deliberately left blank, as they are unknown, since they take place in the 
“minds” of the players. (Later, in the simulation version of the game, these three boxes 
will have to be specified. For instance, the expectation formation will be formulated by 
exponential smoothing; inventory goal will be set to inventory coverage times expected 
demand and supply line goal will be order delay times expected demand. As for the 
decision rule, different formulations will be tried: linear stock adjustment rule, three 
different non-linear adjustment rules and finally various standard discrete inventory 
control rules.) This notion of “gaming experimentation” to analyze and test subjects’ 
decision heuristics has been successfully used in system dynamics literature (Sterman 
1987, 1989), as well as in experimental psychology (Brehmer 1989). 

While playing the game, subjects can monitor the system from information 
displays/graphs showing their inventory, supply line levels and customer demand 
(Appendix A). Neither the costs associated with high inventories nor costs resulting 
from backorders are accounted for explicitly in the simulation game. However, the 
relation between keeping these costs as low as possible and the objective of the game is 
stated in the instruction given to subjects. In other words, subjects are instructed that 
keeping large safety stocks would result in high holding costs but backlogs must also be 
avoided, as they would incur large costs due to lost demand. Before beginning the 
game, all subjects are given a written instruction presenting the problem and their task 
(Appendix B). Time available to accomplish the task is not limited. No explicit, tangible 
reward is used to motivate the subjects. 

 
2.  Gaming Experiments 
The first set of gaming experiments are designed to test the effects of three 

factors on decision making behavior of subjects: 
(a) Length of order decision (review) interval; 
(b) Type of the receiving delay; 
(c) Different patterns of customer demand 
 
2.1. Length of Decision Interval 
Subjects were allowed to order at “each time unit” in the first group of 

experiments (Short Game), whereas they were allowed to order “once every five time 
units” in the second group of experiments (Long Game). Short Games are simulated for 
100 time units whereas Long Games are simulated for 250 time units and the receiving 
delays are also shorter (4 time units) in the short game, longer (10 time units) in the 
long game.  Thus, the ‘length’ effect is really a package (involving longer receiving 
delays and longer game length as well), but this package is summarized by the term 
Length of Decision Interval effect, because this particular component will be the focus 
in interpreting the experimental results, as will be seen below. It is hypothesized that  
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subjects being free to make decisions at any point in time versus decisions allowed only 
every five time units would influence the difficulty of the game, hence cause differences 
in the performances.  

 

SUPPLY LINE STOCK

TIME DELAY

INFLOW OUTFLOWDECISION

DEMAND

Noname 2

Noname 3

Noname 4

Noname 5 Noname 6

Noname 7Noname 8
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INPUT
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Noname 10

STOCK ACQUISITION SYSTEM

DECISION/POLICY RULE

GOAL FORMATION EXPECTATION FORMATION

EXTERNAL INPUT

 

FIGURE 1. The Stock Management Problem 

 
 
2.2. Type of Receiving Delay 
The second independent experimental factor is the type of the delay. (The 

length of the delay is not an independent factor; since it is changed as an integral part of 
the Length of Decision Interval effect described above. Note that if one were to change 
the decision interval from one to five days but keep the receiving delay at four, then the 
nature of the game would change in an implicit and problematic way, in the sense that  
the receiving delay would be four times longer than the order interval in the short game 
but shorter than the order interval in the long one). We focus on the type of delay 
representation, as different delay types may be appropriate for different inventory 
acquisition systems, like continuous exponential delay or discrete delay representations. 
Since “Receiving” is the inflow to inventory, its transient behavior may influence 
decision-maker’s interpretation of the results of his/her own order decisions. The two 
extremes of the exponential delay family, namely the infinite-order discrete delay and 
first order exponential delay are chosen as the two levels of the delay factor in the 
experimental design. (This is further motivated by a common criticism system dynamics 
games that states that continuous delays are not realistic/intuitive, so such games pose 
an artificial difficulty for players with no expertise in modeling. So, it would be 
interesting to see if subjects’ performances would actually deteriorate in cases involving 
continuous delays).  
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2.3. Patterns of Customer Demand 
Until the fifth decision interval, average customer demand remains constant at 

20. At the beginning of the fifth decision interval (at time five in the Short Game and at 
time 25 in Long Game) an unannounced, one-time increase of 20 units occurs in the 
customer demand patterns used in the experiments. Subjects react to the disequilibrium 
created by this change. After the step up, demand remains constant at 40 in the first type 
of customer demand pattern which we call “step up in customer demand”. (Figure 2). 

In the second type of demand pattern, called “step up and down in customer 
demand,” a second disturbance, a one-time decrease in demand follows the first 
increase, after some time interval, restoring the demand back to its original level of 20 
(see Figure 3, where the step-down is set to occur at time 20). The time interval between 
the step up and down in customer demand is chosen as roughly half of the natural 
periodicity of the model (about 25 days in Short Game and about 60 in Long Game).  A 
common perception in stock management circles is that ‘poor ordering performance is 
caused by complex demand patterns’. The purpose of this particular experimental factor 
is to test this claim/hypothesis in a simplified context.  

Before the demand patterns described above are used in games, "Pink noise" 
(auto-correlated noise) is added to the average patterns to obtain more realistic demand 
dynamics. The standard deviation of the white noise is set to 15 percent of average 
customer demand. The delay constant of the exponential smoothing (the correlation 
time used to create pink noise) is taken as two time units. (See Appendix C for 
equations). 

To summarize, there are eight combinations of the above three factors across 
the two levels of each. So we have a 23 factorial design. Each condition is played six 
times (random replications), yielding a total of 48 experiments (see Table 1). Since the 
demand pattern is discovered by the subjects once the game is played and because they 
can improve their performance by practice, to obtain unbiased results, the same subject 
never played two Short Games or two Long Games. However, due to limited number of 
subjects, some of the subjects were allowed to play one Short Game and one Long 
Game, since transferring experience in-between Short and Long Games is not easy. 

 
TABLE 1.  Design of Experiments. (X) indicates the selected level of factors 

for the corresponding runs. 
 

Length of 
Ordering Interval 

Type of  Receiving 
Delay 

Pattern of Customer 
Demand 

Runs Every 
Time 
Unit 

(1 day) 

Every Five 
Time 
Units 

(5 days) 

Exponential Discrete
Step-Up 

Customer 
Demand 

Step-Up-
and-Down 
Customer  
Demand 

1 X  X  X  
2 X  X   X 
3 X   X X  
4 X   X  X 
5  X X  X  
6  X X   X 
7  X  X X  
8  X  X  X 
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Graph 1: p1 (Pattern 1)  

FIGURE 2.  Step Up Customer Demand for Short Games 
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FIGURE 3.  Step Up and Down Customer Demand for Short Games  
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2.4. Initial Conditions 
Games start at equilibrium. Supply line level is initially set at 80 in Short 

Games and 200 in Long Games such that no backordering occurs even when the 
decision-maker does not order goods during the first four decision intervals (at the end 
of which the disturbance in customer demand creates disequilibrium). Inventory levels 
are initially set arbitrarily (at 40 and 200 respectively) so as to satisfy the average initial 
customer demand for the first two decision intervals (for two days in Short Games and 
ten days in Long Games). 

 
3. Analysis of Experiments 
The general, broad behavior pattern of inventory in majority of games is one 

of oscillations. (See Figures 4, 5 and most other games illustrated in the Figures through 
the article). This finding is consistent with overwhelming evidence on oscillating 
inventories in system dynamics literature and elsewhere (for instance, Forrester 1961, 
Sterman 1989, 2000, Lee et al 1997 and Tvede 1996). We will return later to this main 
‘qualitative’ result. But first, we take a more quantitative look at the effects of the three 
factors.   

Representative summary measures of orders and inventory levels computed 
from the experimental results are summarized in Table 2. The ten characteristics are 
tabulated for each of the 48 games. The averages of these ten measures for each of the 
eight experiments are also displayed.  From these averages, it is possible to have some 
idea about the effects the three factors on each of these measures. For instance, as one 
moves from Run 1 to Run 2, the only input factor that changes is ‘demand pattern’ 
(from step-up to step-up-and-down). In this case, observe for example that the average 
Max. Order measure changes from 143.3 to 146.7, a minor change, whereas the average 
Max. Inventory changes from 98.3 to 167.5, clearly a more significant effect, at least at 
this base level of the other factors, ignoring any interactions. (A simple t-test between 
Run 1 and 2, ignoring other levels of the other two factors and possible interactions, 
would yield the same conclusion). But a more complete and definitve conclusion about 
the significance of  each of the three factors on each of the ten output measures can be 
obtained by a full analysis of variance (ANOVA), considering the effects of each factor 
at all levels of other factors (and any possible interactions between them).  A summary 
table derived from full ANOVA (using SPSS software) is shown in Table 3.  These 
results are obtained from a full factorial ANOVA model involving seven effects (three 
main effects, three 2-way interactions and one 3-way interaction term). Since we have a 
total of 48 data, the degrees of freedom for residuals (errors) is 48-7-1= 40 and hence 
the F statistic (=Mean Squared Explained by Regression/Mean Squared Error) for each 
effect has (1, 40) degrees of freedom for numerator and denominator respectively. So, if 
the F value computed for any effect is ‘large enough’, we reject the hypothesis that the 
corresponding effect coefficient is zero, i.e. significant effect is discovered. Typical 
significance levels used are alpha=0.01 (99% confidence)., alpha=0.05 (95% 
confidence) or alpha=0.10 (90% confidence). In Table 3, we provide the F  values 
computed for each effect (for each output measure) and the ‘P value’ at which the F 
value would be found significant. To conclude, if a P value is ≤ the chosen alpha  level, 
we decide that the given effect has a significant effect on the selected output measure, at 
(1-alpha)% confidence level.  Although the ANOVA results comes from a full factorial 
model, in Table 3, we show the main effects only for  readability, because analyzing 
each interaction term individually is beyond our research scope. 
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Graph 1: p11 (Subject 11)   

FIGURE 4.  Performance of the Player in Game 11 (Short Game with Orders Each 
Period, Step Up and Down in Customer Demand, Exponential Delay) 
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FIGURE 5.  Performance of the Player in Game 33 (Long Game with Orders Once 
Every Five Periods, Step Up and Down in Customer Demand, Exponential Delay) 
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TABLE 2.  Selected Measures of Game Performances 

Experiment Min. 
Order 

Max. 
Order 

Range  
Of Orders

Min. 
Inven- 

tory 

Max. 
Inven- 

tory 

Range  
Of Inven-

tory 

Initial  
 Back-   
order    
Time 

Final  
Back- 
order  
Time 

Duration  
Of 

 Back-
orders 

Inv. 
Oscil- 
lation 
Period 

1 0 100 100 -125 50 175 4 38 34 N/A 
2 0 100 100 -125 150 275 4 33 29 31 
3 0 100 100 -175 150 325 4 18 14 29 
4 0 200 200 -75 100 175 6 16 10 25 
5 0 300 300 -225 100 325 5 43 38 N/A 
6 20 60 40 -60 40 100 6 37 31 N/A 

Avg. Of  Run 1 3.3 143.3 140.0 -130.8 98.3 229.2 4.8 30.8 26.0 28.3 
7 0 100 100 -60 115 175 10 21 11 30 
8 0 100 100 -60 250 310 5 13 8 21 
9 0 60 60 -60 60 120 7 20 13 N/A 
10 0 400 400 -80 180 260 6 21 15 39 
11 0 150 150 -100 250 350 6 14 8 28 
12 40 70 30 -60 150 210 6 18 12 N/A 

 Avg. Of Run 2 6.7 146.7 140.0 -70.0 167.5 237.5 6.7 17.8 11.2 29.5 
13 0 100 100 -225 300 525 5 34 29 43 
14 0 220 220 -225 225 450 5 35 30 45 
15 0 150 150 -75 160 235 14 25 11 N/A 
16 0 60 60 -15 190 215 N/A N/A N/A 25 
17 0 100 100 -125 250 375 5 38 33 N/A 
18 0 300 300 -260 180 440 5 18 13 27 

 Avg. Of Run 3 0.0 155.0 155.0 -154.2 217.5 373.3 6.8 30.0 23.2 35.0 
19 0 150 150 -25 150 175 N/A N/A N/A N/A 
20 0 150 150 -100 290 390 6 21 15 N/A 
21 0 80 80 -145 80 225 5 24 19 30 
22 0 100 100 -40 350 390 12 18 4 32 
23 0 100 100 -250 210 460 6 27 21 45 
24 0 200 200 -150 250 400 5 22 17 N/A 

Avg. Of  Run 4 0.0 130.0 130.0 -118.3 221.7 340.0 6.8 22.4 15.2 35.7 
25 0 600 600 -260 425 685 20 30 10 44 
26 0 400 400 -350 200 550 25 85 60 N/A 
27 0 300 300 -280 200 480 20 85 65 N/A 
28 0 400 400 -300 200 500 25 70 45 63 
29 0 560 560 -150 370 520 20 40 15 39 
30 0 250 250 -20 425 445 35 45 10 73 

Avg. Of  Run 5 0.0 418.3 418.3 -226.7 303.3 530.0 24.2 59.2 34.2 54.8 
31 40 375 335 -200 250 450 20 40 20 N/A 
32 0 250 250 -100 200 300 25 55 30 N/A 
33 0 400 400 -150 475 625 30 45 15 73 
34 50 250 200 -60 200 260 30 55 25 66 
35 50 300 250 0 275 275 N/A N/A N/A N/A 
36 100 250 150 -160 250 410 25 55 30 73 

Avg. Of  Run 6 40.0 304.2 264.2 -111.7 275.0 386.7 26.0 50.0 24.0 70.7 
37 100 270 170 -100 500 600 20 40 20 85 
38 20 500 480 -500 300 800 25 90 65 102 
39 80 250 170 -40 450 490 N/A N/A N/A N/A 
40 50 250 200 -200 425 625 30 40 10 75 
41 0 1000 1000 -1000 2000 3000 20 100 80 133 
42 0 450 450 -375 420 795 35 60 25 52 

Avg. Of  Run 7 41.7 453.3 411.7 -369.2 682.5 1051.7 26.0 66.0 40.0 89.4 
43 0 250 250 -125 400 525 N/A N/A N/A 75 
44 0 450 450 -500 200 700 20 60 40 N/A 
45 0 375 375 -750 200 950 20 70 50 N/A 
46 20 300 280 -330 330 660 25 55 30 55 
47 50 250 200 -180 300 480 30 45 15 114 
48 0 300 300 -375 350 725 30 60 30 N/A 

Avg. Of  Run 8 11.7 320.8 309.2 -376.7 296.7 673.3 25.0 58.0 33.0 81.3 
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TABLE 3.  ANOVA Results (F values) on the Significance of the Effects of the Three Experimental Factors 

 

 
 

Factors 
  Minimum 

Order 
Maximum 

Order 
Range Of 

Orders 
Minimum
Inventory 

Maximum 
Inventory 

Range Of    
Inventory 

Initial 
Backorder 

Time 

Final     
Backorder 

Time 

Duration Of 
Backorders

Inventory 
Oscillation 

Period 

Fo 9.977 33.758 23.385 10.092 8.942 12.126 215,316 53.754 7.662 39.007 
P Value 

(ν1=1,ν2=40) 0.003 0 0 0.003 0.005 0.001 0 0 0.009 0 Length Of
Ordering 
Interval 

Result significant
α=0.05 

significant
α=0.05 

significant 
α=0.05 

significant
α=0.05 

significant
α=0.05 

significant
α=0.05 

significant
α=0.05 

significant
α=0.05 

significant
α=0.05 

significant
α=0.05 

Fo 0.013 0.137 0.103 6.61 4.383 6.782 0.346 1.048 0.637 5.626 
P Value 

(ν1=1,ν2=40) 0.91 0.713 0.749 0.014 0.043 0.013 0.560 0.313 0.430 0.027 
Type Of 

Receiving
Delay 

 Result insignificant insignificant insignificant significant
α=0.05 

significant
α=0.05 

significant
α=0.05 insignificant insignificant insignificant significant

α=0.05 

Fo 0.084 3.003 2.667 1.125 1.125 1.596 0.325 4.539 4.228 0.144 
P Value 

(ν1=1,ν2=40) 0.774 0.091 0.11 0.295 0.262 0.214 0.572 0.040 0.047 0.708 Pattern Of
Customer
Demand 

Result insignificant significant
α=0.10 insignificant insignificant insignificant insignificant insignificant significant

α=0.05 
significant

α=0.05 insignificant
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FIGURE 6.  Performance of the Player in Game 14 (Short Game with Orders Each 
Period, Step Up in Customer Demand, Discrete Delay) 
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FIGURE 7.  Performance of the Player in Game 43 (Long Game with Orders Once 
Every Five Periods, Step Up and Down in Customer Demand, Discrete Delay) 
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Before we examine the ANOVA results of Table 3, note that the last four 
mesures in Table 2 (Initial Backorder Time, Final Backorder Time, Duration of 
Backorders nad Oscillation Period) have  the symbol N/A in some of the cells. The 
meaning is that the corresponding measure was simply undefined insome particular 
game results. In  a few instances, there are no backorders at all, so all three related 
measures are marked N/A. A more problematic and frequent situation is when the 
dynamics of inventory has no clearly identifiable, computable, constant period. This 
arises when the inventory is non-oscillatory, or when it exhibits very complex, highly 
noisy oscillations. In about two or three out of six runs in each cell we have this 
situation, so it is quite frequent. Since ANOVA requires ‘balanced’ input data, these 
N/A entries require some pre-treatment. Prior to ANOVA, SPSS uses a mixture of two 
methods, depending on the suitability: ‘Estimating the missing data from neigboring 
points’ or  ‘discarding data from other cells so as to balance’. In any case, it should be 
noted that the results about the last output measure, period of inventory oscillations, 
should be taken with caution. 

Although there are ten output measures in Table 2 and 3, some of these are 
intermediate mesures used to compute related end-measures. Minimum and maximum 
orders are measured to ultimately obtain a measure of  ‘range of order fluctuation’ (or 
amplitude) and the same is true for minimum and maximum inventories. Lastly, initial 
backorder time and final backorder time are  measured to compute a the ‘duration of 
backorders.’ So to conserve space, we focus on four end-measures only and leave more 
detailed examination to the interested reader.  

 
3.1.  Effect of Different Patterns of Customer Demand 
ANOVA results in the bottom row block of Table 3 show the effects of 

“demand pattern" (step-up only or step-up-and-down) on the output measures. As 
illustrative game dynamics, see Figures 4, 5, 7 for step-up-and-down and Figures 6, 8B 
and 10B for step-up demand. (For full results, compare pair wise the results of 
experiments 1 and 2; 3 and 4; 5 and 6; 7 and 8 in Table 2.  Also see Özevin 1999).   F-
values in Table 3 show that the demand pattern does not have a strong enough effect on 
‘Range of Orders’ measure (although it does have some effect, since the significance is 
just missed at 90%). Similarly, demand pattern has no significant effect on the 
amplitude or period of inventory oscillations. Lastly, we observe that the demand 
pattern does have a significant effect on the ‘duration of backorders’.  This last finding 
is interesting because the direction of the effect is that step-up-and-down demand, 
compared to step-up only, causes the backlog durations to become shorter. So a 
seemingly more complex demand pattern actually happens to compensate for the 
players’ ordering weaknesses in terms of backlog durations.  
 

3.2.  Effect of Different Representations of Receiving Delays 
Illustrative game dynamics with 1st order exponential delay and with discrete 

delay are shown in Figures 4, 5 and Figures 6, 7 respectively. In these and many other 
examples, with continuous exponential delay subjects are able to manage the 
inventories in a relatively more stable way. It seems that when the goods ordered arrive 
gradually over some period of time, it prevents the players from over-ordering or under-
ordering excessively. In contrast, discrete delay representation affects their performance 
negatively by causing large fluctuations. In these experiments, subjects yield large 
magnitude, long period oscillations in inventories and fail to bring these oscillations 
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under control in most cases. (For complete results, compare pair wise the results of 
experiments 1 and 3; 2 and 4; 5 and 7; 6 and 8 in Table 2.  Also see Özevin 1999). 
Subjects seem to have difficulty in accounting for the effects of sudden receiving. The 
above results are consistent with research evidence on the effect of delays on dynamic 
decision making performance, in system dynamics literature (Sterman 1989), as well as 
in experimental psychology research (Brehmer 1989). The results are also consistent 
with the mathematical stability conditions of discrete-delay dynamical systems, much 
more difficult to obtain compared to continuous-delay systems. (See Driver 1977).   

For a more statistical analysis, ANOVA results about the "type of receiving 
delay effect" are given in the middle row block of Table 3. Observe that this factor has 
very high significant effect on two critical output measures: Range of Inventory 
fluctuations and its Period. This finding statistically confirms our qualitative assessment 
above: that the type of receiving delay has a significant effect on the stability of 
inventory fluctuations. (Also observe in Table 2 that the direction of the effect is that 
discrete delay, compared to the continuous one, causes the range and period of 
oscillations to be larger). In a nutshell, discrete delay representation makes the system 
more oscillatory, less stable, and thus harder to manage for the subjects.  
 

3.3. Effect of the Length of Decision Intervals 
As illustrative game dynamics with ‘order every time step’ and ‘order every 

five time steps’ experiments;  see Figures 4, 6 and Figures 5, 7 respectively. (For full 
results, compare pair wise the results of experiments 1 and 5; 2 and 6; 3 and 7; 4 and 8 
in Table 2.  Also see Özevin 1999).  These comparisons reveal that all output measures 
change significantly, when the ordering interval is changed from ‘every time step’ to 
every five time steps’. ANOVA results given in the first row block of Table 3 are also 
consistent with this observation: Effects on all measures are highly significant. There 
may be two different sources of this high level and comprehensive significance: First, 
when the decision period is made longer (noting that the receiving delay is also made 
longer to be consistent), since some time-constants of the system are larger, time-related 
output measures (like Period of Oscillations, Backorder Times and Backorder 
Duration) all naturally become larger in value – a natural technical result of dynamics 
of the system. Secondly –and more interestingly- amplitude measures (like Range of 
Orders and Range of Inventory) also become statistically larger. This is more 
behavioral/decision-related result: When decisions can be made less frequently, orders 
must be larger in magnitude, feedback is less frequent, controlling of the inventory 
becomes harder and so inventory fluctuations are larger in magnitude as well. So again 
in sum, ‘order every five time steps’’ makes the system more oscillatory, less stable, 
thus harder to manage for the subjects.   
 
 4.  Testing of the Alternative Decision Formulations 
 Section 3 above, completes the relatively more quantitative/statistical research 
objective of the paper. In light of the above results, the second objective is to evaluate 
the adequacy of standard decision rules typically used in dynamic stock management 
models and to seek improvement formulations. To this end, the performance patterns of 
subjects will be (qualitatively) compared with the dynamic patterns obtained using 
different simulated ordering formulations: As a preliminary step, the patterns of 
ordering behavior of subjects are observed to fall in three basic classes: i- smooth, 
continuous (oscillatory or non-oscillatory) damping orders (for example Figure 4), ii- 
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alternating large discrete and then zero orders, like a high frequency signal (for example 
Figure 6), iii- long periods of constant orders punctuated by a few sudden large ones 
(for example Figure 10-B).   Using these three types of observed ordering patterns, the 
common linear "Anchoring and Adjustment” rule, several “nonlinear” adjustment rules 
and some standard discrete inventory control rules (such as (s, Q)) found in the 
inventory management literature will be evaluated.  

 
4.1. Linear Anchoring and Adjustment Rule 

Linear Anchoring and Adjustment Rule is frequently used to model decision-
making behavior in System Dynamics models (Sterman, 2000, 1987). In making such 
decisions, one starts from an initial point, called the anchor, and then makes some 
adjustments to come up with the final decision. In the context of inventory management, 
a plausible anchor point for order decisions is the expected customer demand. (If the 
inventory manager can order only once every five periods, the anchor should be the 
total of expected customer demand for five periods between subsequent decisions.) 
When there are discrepancies between desired and actual inventory levels and/or 
between desired and actual supply line, adjustments are made so as to bring the 
inventory and the supply line back to desired levels. Thus, the order equation based on 
linear Anchoring and Adjustment heuristic is formulated as: 
 Ot = Et + α*(It

*-It) + β*(SLt
*- SLt) (4.1) 

When orders can be given once every five periods, then the anchor of the rule is 
modified as follows (the adjustment terms being as before): 
 Ot= 5*Et+ α*(It

*-It) + β*(SLt
*- SLt) (4.2) 

where Et represents expected customer demand, It
* represents the desired inventory, It 

the inventory, SLt
* the desired supply line and SLt the supply line. α and β are the 

adjustment fractions. 
In real life, ‘safety stocks’ are determined by balancing the inventory holding 

and backordering costs. Although, an optimum inventory level minimizing these costs 
may be found mathematically, more often safety stocks are set approximately. The 
desired inventory It

* is thus modeled as proportional to customer demand to allow 
adjustments in safety stocks when changes in customer demand occur. 
 It

* = k*Et (4.3) 
To maintain a receiving rate consistent with receiving delay τ and customer 

demand, SLt
* is formulated as a function of τ and the expected customer demand Et. 

 SLt
* = τ*Et (4.4) 

The linear anchor and adjust rule can mimic the subjects’ performances 
adequately in experiments where they tend to place smooth and continuously damping 
orders (See Figure 8 as an example and Özevin 1999 for more). However, in certain 
game conditions, most subjects tend to order non-continuously (for example Figure 6 
and 10B), especially when the receiving delay representation is discrete and/or the order 
interval is five. Such  order patterns  typically fall in class ii (alternating large discrete 
and then zero orders, like a high frequency signal) or class iii (long periods of constant 
orders punctuated by a few sudden large ones) described above. The linear "Anchoring 
and Adjustment Rule" can not  yield such discrete-looking intermittent or occasional-
large-then-constant orders.  Non-linear rules may be able to represent better the 
subjects’ performances in such situations. Different approaches will be discussed below 
in two separate sections: Non-linear adjustment rules and standard inventory control 
rules. 
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FIGURE 8.  Comparison of (A) the Anchoring and Adjustment rule (α = 0.5, β= 0.02), 
with (B) the Performance of the Player in Game 3 (Short Game with Orders Each 
Period, Step Up in Customer Demand, Exponential Delay) 
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4.2.  Rules with Nonlinear Adjustments 
The linear adjustment rule is based on ‘adjustments’ to orders proportional to 

the discrepancy between the desired and observed stock levels. Orders are placed 
regularly, in proportion to this discrepancy. However, some players do not place such 
smooth orders. They completely cease ordering when the inventory seems to be ‘around 
a satisfactory’ level and place rather large orders as the discrepancy between the desired 
and actual inventory becomes larger. The resulting ordering behavior is in class iii (long 
periods of constant orders punctuated by a few sudden large ones) described above.  In 
this section, three alternative nonlinear decision rules will be developed and tested to 
address this particular class of nonlinear ordering behavior. 

 
4.2.1.  Cubic Adjustment Rules 
Similar to the Linear Anchoring and Adjustment rule, Cubic Adjustment rules 

also start with expected customer demand as an anchor point, but the adjustments are 
formulated as non-linear. One or both of the adjustment terms may be cubic in 
discrepancies (in inventory and/or in supply line. Alternative order equations can be 
mathematically expressed as: 
 Ot = Et + α*(It

* - It)3 (4.5) 
if only the inventory adjustment is taken into account, and: 
 Ot = Et + α*(It

* - It)3 + β*(SLt
*- SLt) (4.6) 

 Ot = Et + α*(It
* - It) + β*(SLt

*- SLt)3 (4.7) 
where one of the adjustments is made cubic and the other is linear and finally, 
 Ot  = Et + α*(It

* - It)3 + β*(SLt
*- SLt)3 (4.8) 

where both of the adjustments are formulated as cubic. In the equations above, Et 
represents the expected customer demand; It

* and SLt
* the desired inventory and supply 

line levels; It and SLt the actual inventory and supply line and. α and β are the fraction 
of the discrepancy corrected by the decision-maker at each period. The internal 
consistency of the rules can be shown mathematically (See Özevin 1999). When orders 
can be given once every five periods, the adjustments terms are as above; however, the 
anchor term is increased to five times the expected customer demand.  

The general stability properties of the cubic adjustment rules are similar to the 
well established linear adjustment rule. In other words, firstly the supply line must be 
taken into account (i.e. adjustment fraction  β must be non-zero and preferably equal to 
α for optimum stability) and secondly, the larger the values of α and β the less stable 
the system tends to be. For example, Figure 9 compares two behaviors of the cubic rule 
with non-zero and zero β values. Observe that the behavior becomes quite unstable 
when the supply line adjustment term is zero.    Although the behavior in Figure 9 (A) 
illustrates a very stable case, we should note that choosing stable values for the 
adjustment fractions is not easy with Cubic Adjustment rules (whereas the linear rule 
guarantees stability for any α=β < 1). In other words, the performance of the cubic rule 
is too sensitive to the adjustment parameter values. In particular, when orders are given 
once every five periods, the cubic rule most often fails to generate stable dynamics. On 
the other hand, the primary advantage of the cubic rule is that it is possible to generate 
ordering patterns that can mimic the nonlinear ordering behavior of subjects 
characterized by long periods of constant orders punctuated by a few sudden large ones 
(described as class iii, above).  Figure 10 provides comparison for such a case.  
Although cubic adjustment formulations can potentially yield such nonlinear order 
patterns with discrete delays as well as continuous ones, the range in which they can 
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yield stable dynamics is too narrow to be useful. (See Özevin 1999). Hence, the 
motivation for other nonlinear rules is to be discussed in the following sections. 
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FIGURE 9. Two Different Performances of the “Cubic Supply Line and Cubic 
Inventory Adjustment rule” with two different parameters: (A) (with α=1/500, 
β=1/1500) and (B) (with α=1/500, β=0). 
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FIGURE 10.  Comparison of (A) Performance of “Linear Supply Line and Cubic 
Inventory Adjustment rule” (α=1/500, β=1) with (B) the Performance of the Player in 
Game 1 (Short Game with Orders Each Period, Step Up in Customer Demand, 
Exponential Delay) 
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4.2.2. Variable Adjustment Fraction Rule 
Analogous to the Anchoring and Adjustment Rule and the Cubic Adjustment 

Rules, we define a ‘Variable Adjustment Fraction Rule’ that anchors at expectations 
about customer demand. However, the adjustments are increased sharply (nonlinearly) 
when the discrepancy in inventory increases. The simplest version of the order equation 
of the rule can be mathematically expressed as  
 Ot = Et + α*(It

*-It) (4.9) 
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FIGURE 11.  Graphical Adjustment Fraction Function 

 
where the variable fraction α is a function of the discrepancy in inventory, normalized 
by the desired inventory. The shape of the function yields increased adjustments when 
the discrepancy in inventory is increased. Normalized inventory discrepancy δ is 
defined as  

 *

*

I
II −

=δ  (4.10) 

According to the function in Figure 11, the rule is not mathematically unbiased 
in the ideal known demand case; there will be some small, deliberate steady state 
discrepancy between the inventory and its desired level. But this may well be a 
"realistic" bias in order to be able to obtain a non-linear ordering behavior similar to 
some subjects. The rule performs quite realistically in the "noisy" demand case, where 
the steady state bias is negligible anyway and may be irrelevant in real life. The more 
general (and more stable) version of the Variable Adjustment Fraction Rule will be of 
the form Et + α*(It

*-It) + β*(SLt
*- SLt), where β is defined by a function exactly 

equivalent to the one in Figure 11, except that the input would be ‘normalized supply 
line discrepancy.’ Alternatively, the supply line adjustment may be linear. (We omit this 
discussion further in this article to conserve space). In any case, inclusion of the supply 
line term will increase the stability of the system.   
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Variable Adjustment Fraction rule typically generates long periods of constant 
orders punctuated by a few sudden large ones. Therefore they may be used to represent 
subjects’ behavior when orders are characterized by this type of nonlinearity, where 
linear adjustment rules would fail (See Figure 12 and Özevin 1999 for more 
illustrations). 
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FIGURE 12. Comparison of (A) Variable Adjustment Fraction rule with (B) the 
Performance of the Player in Game 10 (Short Game with Orders Each Period, Step Up 
and Down in Customer Demand, Exponential Delay) 
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4.2.3.  Nonlinear Expectation Adjustment Rule 
The order equation of another nonlinear rule that we call ‘expectation 

adjustment rule’ can be mathematically expressed by 
 Ot = α*Et (4.11) 
where the variable adjustment coefficient α is a function of discrepancy in inventory 
normalized by desired inventory and Et represents the expected customer demand. α is 
equal to one when the inventory is at the desired level, since adjustments are not 
necessary when the system is in equilibrium (See Figure 13). The shape of the α 
function causes increasing upward adjustments in orders when the inventory level is 
below the desired level and it causes reductions in orders when the inventory is above 
its desired level. 
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FIGURE 13. Adjustment Coefficient Function for the Non-linear Expectations 
Adjustment Rule 

 
Like the previous Variable Adjustment rule, Nonlinear Expectations Rule can 

yield infrequent large orders. Therefore, it may provide an alternative to the linear 
anchoring and adjustment rule when subjects’ behaviors exhibit such patterns (See 
Figure 14 for example).  

Finally, this section yields another general result: the well-documented 
oscillatory dynamic behavior of the inventory when supply line is underestimated is true 
not only for the linear anchor-and-adjust rule but also for the non-linear rules seen 
above. Furthermore, in non-linear rules, stability is achieved for a rather narrow range 
of parameter/function values.   
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FIGURE 14. Comparison of (A) Nonlinear Expectation Rule with (B) the Performance 
of the Player in Game 11 (Short Game with Orders Each Period, Step Up and Down in 
Customer Demand, Exponential Delay). 
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5.  Standard Inventory Control Rules 
The third type of non-linear behavior, alternating large discrete and then zero 

orders of players and the resulting zigzagging inventory patterns, suggests that discrete 
inventory control rules used in inventory management may be suitable. The following 
four policies are most frequently used in inventory management literature: 

 
Order Point, Order Quantity (s, Q) Rule; 
Order Point, Order Up to Level (s, S) Rule; 
Review Period, Order Up to Level (R, S) Rule; 
(R, s, S) Rule. 
 
Two fundamental questions to be answered by any inventory control system 

are “how many” and “when” (or “how often”) to order. “Order-Point” systems 
determine how many to order, whereas “Periodic-Review” systems determine how often 
to order as well (Silver and Peterson, 1985), (Tersine, 1994). When subjects can order 
every time unit, they are free to order at any time they desire. Therefore, order-point 
systems, rather than periodic review systems are more appropriate to represent the 
ordering behavior in these situations. In contrast, when subjects can order only, say, 
once every five periods, periodic-review systems with five as review period may be 
more appropriate as decision rules. These inventory control rules assume that time flow 
and changes are discrete. Therefore, these rules will be tested only with discrete delays. 
As will be seen, these rules are non-linear in the sense that they consist of piecewise, 
discontinuous functions. 

 
5.1.  Order Point-Order Quantity (s, Q) Rule: 
Order Point-Order Quantity (s, Q) rule can be mathematically expressed as 

 Ot = Q,     if EIt ≤ s 
            0,      otherwise (5.1) 
where EIt represents the effective inventory and s the “order point”. Effective inventory 
and order point are calculated as follows: 
 EIt = It + SLt (5.2) 
 s = DAVGSLt + DMINIt (5.3) 
 
It and SLt represent goods in inventory and in supply line respectively. DAVGSLt refers 
to the desired average supply line and DMINIt to desired minimum inventory. To be 
consistent with the previous continuous adjustment rules, desired average supply line 
and desired minimum inventory can be defined as 
 DAVGSLt = τ*Et (5.4) 
 DMINIt = Et + SS (5.5) 
in terms of receiving delay τ, expected demand Et and safety stocks SS. Order quantity 
Q and safety stock SS are fixed arbitrarily as constants in this research. Desired 
minimum inventory DMINIt is defined as the sum of a constant safety stock and 
demand expectation. With such a definition, desired minimum inventory can be adapted 
to variations in customer demand. The performance of this rule with deterministic 
demand is seen in Figure 15. Orders exhibit alternating zeros and Q’s and inventory 
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zigzags around a constant level. Observe that the (s, Q) rule can not prevent the 
inventory from falling below the desired minimum inventory, even when no noise 
exists, primarily because the order quantity Q is constant.  This particular rule is 
therefore not suitable for our purpose (i.e. for comparative evaluation against the 
continuous stock adjustment rules).  (s, Q) rule will not be further evaluated; it is 
defined only as a preliminary for the other more realistic rules to follow. 
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FIGURE 15. Performance of Order Point-Order Quantity Rule (Q=4*Dt0, DAVGSLt = 
4*Dt, DMINI = 0) in Short Game with Orders Each Time Unit, Known Step Up in 
Customer Demand, Discrete Delay. 

 
5.2.  Order Point-Order Up to Level (s, S) Rule 
Order Point-Order Up to Level (s, S) rule can be mathematically expressed as 

 Ot = S- EIt,     if EIt ≤ s 
0,     otherwise (5.6) 

where EIt represents the effective inventory, s the order point and S the upper level of 
inventory. Effective inventory, the order point and the upper level S of inventory can be 
defined as follows: 
 EIt = It + SLt (5.7) 
 s = DAVGSLt + DMINIt (5.8) 
 S = s + Q (5.9) 
It and SLt represent goods in inventory and in supply line respectively. DAVGSLt  refers 
to the desired average supply line and DMINIt  to desired minimum inventory. Desired 
average supply line and desired minimum inventory are defined as before: 
 DAVGSLt = τ*Et (5.10) 
 DMINIt = Et + SS (5.11) 
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in terms of receiving delay τ, expected demand Et and safety stocks SS. Order size Q 
and safety stock SS are initially set as constants. But note that the actual order quantity 
Ot (eq. 5.6.) is a variable in this rule. Desired minimum inventory DMINIt is defined as 
the sum of expectations and safety stocks. As such, desired minimum inventory DMINIt 
may be adapted to variations in customer demand. This rule can be shown to be 
unbiased and mathematically consistent in the deterministic case. (See Özevin 1999). 
The inventory reaches equilibrium at the desired minimum inventory level, but in the 
“noisy” case it may move up and down around the desired minimum, due to differences 
between the "expected" and "actual" customer demands (Figure 16).   
 The (s, S) rule takes fully into account the supply line in the sense that the 
decision is based on the effective inventory EI = I + SL. Thus, in accordance with the 
fundamental result for the linear anchor and adjust rule, the resulting inventory 
dynamics is non-oscillatory. The zigzagging behavior of the inventory seen in Figure 16 
is caused by the time-discrete, piecewise ordering rule yielding discrete, alternating zero 
and non-zero orders. (There is also some minor wavelike dynamics caused simply by 
the autocorrelated random demand). To explore this point further, a modified version 
the (s, S) rule is run by redefining EI = I + k*SL, where k is the supply line inclusion 
coefficient. Normally, for full inclusion of supply line k is one. To demonstrate partial 
inclusion of supply line, the dynamics of (s, S) model is illustrated with k=0.70 in 
Figure 17. Observe that the inventory now does exhibit an oscillatory pattern. So the 
hypothesis: ‘players that generate oscillatory inventories ignore/underestimate the 
supply line’ is compelling in general, whether the ordering heuristic is linear, non-linear 
or piecewise/discontinuous. 
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FIGURE 16.  Performance of Order Point-Order Up to Level (s, S) Rule (with 
DAVGSLt = 4*Et, DMINI = Et, EIt = It + SLt) in Short Game with Orders Each Time 
Unit, Step Up in Customer Demand, Discrete Delay. 
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FIGURE 17.  Oscillatory Performance of modified Order Point-Order Up to Level (s, S)  
rule (DAVGSLt = 4*Et, DMINI = Et and EIt = It +k* SLt where k=0.70) in Short Game 
with Orders Each Time Unit, Step Up  in Customer Demand, Discrete Delay. 

 
 

5.3.  Review Period, Order Up to Level (R, S) Rule 
Order Point-Order Up to Level rule can be mathematically expressed as: 

 Ot = S-EIt if t = R*k 
   0        otherwise (5.12) 
where EIt represents the effective inventory, t the time, S the upper level of inventory. k 
is an integer and R is the review period. Effective inventory, the order point and the 
upper level S of inventory are defined as follows 
 EIt = It + SLt (5.13) 
 S = DAVGSLt + DMINIt + R*Et (5.14) 
It and SLt represent goods in inventory and in supply line respectively. Review period R 
is five. DAVGSLt refers to the desired average supply line and DMINIt to desired 
minimum inventory. Desired average supply line is defined as 
 DAVGSLt = τ*Et (5.15) 
in terms of receiving delay τ, expected demand Et. Desired minimum inventory DMINIt 
corresponds to the safety stock. DMINIt is arbitrarily fixed as constant. 
 
This rule can be shown to be unbiased and mathematically consistent in the 
deterministic case. (See Özevin 1999). The inventory reaches an equilibrium point 
consistent with the desired minimum inventory level, but in the “noisy” case it may fall 
below the desired minimum due to noise effects. (Figures 18 and 19 provide two 
illustrations). The basic behaviors are again alternating large discrete and then zero 
orders and zigzagging inventory patterns. 
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FIGURE 18. Performance of Review Period-Order Up to Level (R,S)  rule (with 
DAVGSLt = 10*Et, DMINI = 0) in Long Game with Orders Every Five Time Units, 
Step Up in Customer Demand, Discrete Delay. 
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FIGURE 19. Performance of Review Period-Order Up to Level (R,S)  rule (with 
DAVGSLt = 10*Et, DMINI = 0) in Long Game with Orders Every Five Time Units, 
Step Up and Down in Customer Demand, Discrete Delay. 
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5.4.  (R, s, S) Rule: 
Finally, (R, s, S) rule can be mathematically expressed as 

                  Ot =S-EIt     if t =k*R and EI ≤ s 
                  0 otherwise  (5.16) 
where S represents the upper level of inventory, EIt the effective inventory, R the 
review period, t the time and s the order point. Review period R is five. Effective 
inventory, the order point, the upper level S of inventory and safety stock SS are: 
 EIt = It + SLt (5.17) 
 SS=R*Et+DMINIt (5.18) 
 s = DAVGSLt + SSt (5.19) 
 S = s + R*Et (5.20) 
It and SLt represent goods in inventory and in supply line respectively. DAVGSLt refers 
to the desired average supply line, DMINIt  to desired minimum inventory, SS to safety 
stock, Et to expected demand. Desired average supply line is defined as: 
 DAVGSLt = τ*Et (5.21) 
in terms of receiving delay τ, expected demand Et. DMINIt is determined as a constant. 
This rule can be shown to be unbiased and mathematically consistent in the deterministic 
case (See Özevin 1999). Due to the difference between the expected and actual customer 
demand in the noisy case, (R, s, S) rule may not result in ordering each time the effective 
inventory falls to or below the order point; orders are sometimes delayed until the 
following period. The inventory reaches an equilibrium consistent with the desired 
minimum inventory level, but in the "noisy" case it may occasionally fall below the 
desired minimum. (See Figure 20). The fundamental patterns of behavior are similar to 
those seen with the previous discrete inventory rules. 
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Graph 7: p4 (RSS rule4NE)  

FIGURE 20. Performance of (R, s, S) Rule (DAVGSLt = 10*Et , DMINI = 0) in Long 
Game with Orders Once Every Five Time Units, Step Up in Customer Demand, 
Discrete Delay. 
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5.5. Comparison of the Standard Inventory Rules with Game Results 

 Order point-Order Quantity (s, Q) rule is not a plausible decision rule 
formulation when demand is not constant, as discussed above. Order Point-Order Up to 
Level (s, S) rule on the other hand may provide an adequate representation of subjects’ 
performance in some cases where the continuous Anchoring and Adjustment Rule is 
inadequate. One such case is depicted in Figures 21 and 22. Observe that the ordering 
behavior of subjects is discontinuous, consisting of alternating large discrete and then 
zero orders, well represented by the (s, S) orders of Figure 21.  The zigzagging 
inventory patterns of Figure 21 and 22 are also consistent. The linear or nonlinear 
continuous adjustment rules on the other hand can not produce such behavior patterns, 
especially if orders are allowed in each time step.  

 
The ordering patterns generated by the Review Period, Order Up to Level (R, 

S) rule on the other hand are generally quite similar to the ones produced by the 
anchoring and adjustment rules when the value of R is matched with minimum ordering 
interval (5 days in our experiments). Therefore, (R, S) rule does not provide novel 
behavior patterns that anchoring and adjustment rules fail to represent.  

 
But (R, s, S) rule can represent subjects' decisions where anchoring and 

adjustment rules fail, especially in cases where intervals between subjects’ non-zero 
orders are not constant. One such comparison is depicted in Figures 23 and 24. Note 
that continuous anchor and adjust rules, when applied under ‘orders are given every five 
time steps’ condition, would fail to generate variable time intervals in between non-zero 
orders.  
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Graph 2: p7 (SS rule5NE)  

FIGURE 21.  Performance of Order Point-Order Up to Level (s, S) Rule (DAVGSLt = 
4*Et, DMINI = Et) in Short Game with Orders Each Time Unit, Step Up and Down in 
Customer Demand, Discrete Delay. 
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FIGURE 22.  Performance of  the Player in Game 20 (Short Game with Orders Each 
Time Unit, Step Up and Down in Customer Demand, Discrete Delay). 
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Graph 7: p5 (RSS rule5NE)  

FIGURE 23.  Performance of (R, s, S) Rule (DAVGSLt = 10*Et , DMINI = 0) in Long 
Game with Orders Once Every Five Time Units, Step Up and Down in Customer 
Demand, Discrete Delay. 
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FIGURE 24.  Performance of the Player in Game 45 (Long Game with Orders Once 
Every Five Time Units, Step Up and Down in Customer Demand, Discrete Delay). 
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6.  Conclusion 
This paper has two different research objectives: The first one is to analyze the 

effects of selected experimental factors on the performances of subjects (players) in a 
stock management simulation game. To this end, the generic stock management 
problem is chosen as the interactive gaming platform. Gaming experiments are designed 
to test the effects of three factors on decision making behavior: different patterns of 
customer demand, minimum possible order decision (‘review’) interval and finally the 
type of the receiving delay. ANOVA results of these 3-factor, 2-level experiments show 
which factors have significant effects on ten different measures of behavior (such as 
max-min range of orders, inventory amplitudes, periods of oscillations and backlog 
durations).  
 The second research objective is to evaluate the adequacy of standard decision 
rules typically used in dynamic stock management models and to seek improvement 
formulations. The performances of subjects are compared against some selected 
ordering heuristics (formulations). First, a classification of the patterns of ordering 
behavior of subjects reveals three basic types: i- smooth oscillatory (or non-oscillatory) 
damping orders, ii- alternating large and zero orders, like a high frequency discrete 
signal, iii- long periods of constant orders punctuated by a few sudden large ones.   
Comparing these behaviors with the stand-alone simulation results, we observe that the 
common linear "Anchoring and Adjustment Rule." can mimic well the first (i) type of 
behavior, but can not, due to its linear nature, replicate the next two types. Several 
alternative non-linear rules are formulated and tested against subjects’ behaviors. Some 
standard discrete inventory control rules (such as (s, Q)) common in the inventory 
management literature are also formulated and tested. The non-linear adjustment rules 
are found to be more representative of subjects’ decisions in cases where subjects’ 
ordering patterns fall in class (iii) above. The standard discrete inventory rules are more 
representative of the subjects’ ordering behavior in cases where decision patterns 
consist of alternating discrete large and zero orders.  Another finding is the fact that the 
well-documented oscillatory dynamic behavior of the inventory is a quite general result, 
not just an artifact of the linear anchor and adjust rule. When the supply line is ignored 
or underestimated, large inventory oscillations result, not just with the linear anchor-
and-adjust rule but also with the non-linear rules, as well as the standard inventory 
management rules. Furthermore, depending on parameter values, nonlinear ordering 
rules are more prone to instability -even if the supply line is taken into account. 
 More research is needed to formulate and test other non-linear formulations. 
There is also need to test these rules in more complex and realistic game environments 
(such as more stocks, delays and multi-player supply chains). Currently, we are 
examining the effects of information delays in the order decisions (in addition to supply 
line delays). Initial results indicate that the oscillations become more unstable and the 
basic anchor and adjust heuristic needs to be modified properly in order to reduce the 
instability.  Finally, a long term research question is: if individuals tend to order 
intermittently and discrete delays further exacerbate the situation, are mostly continuous 
system dynamics decision structures invalid? Or is it true that even if individuals decide 
in discrete and intermittent fashion, the macro decision making behavior of the 
aggregate system (that we are typically interested in) can be/should be modeled 
continuously? There is a fundamental research question here that should bridge the 
micro behavior of actors (using perhaps agent-based modeling) to the macro behavior of 
the aggregate system.   
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Appendix A: Interactive Inventory Management Game Interface 
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Appendix B: Game Instruction Sheet 
 

Inventory Management Game (Short Version) 
 
1. Objective  
 

In this game, as an inventory manager, you will control the inventory level of 
a certain good such that your company must not backlog too many orders from 
your customers. You can achieve this by keeping a large safety stock. However, 
large safety stocks result in high inventory costs. Therefore, you should keep 
your inventory level as low as possible while trying not to backlog. 

supplyline inventory

order receiving delivery  
 
 
2. How the inventory is controlled? 
 

You will control your inventory by ordering new goods. You can order new 
goods once every day. While ordering new goods you should consider the 
following three variables: inventory, demand and supply line. Inventory is the 
quantity of goods you have in hand. Demand is the quantity of goods requested 
by within a time unit (a day). If there are no enough goods in your inventory at 
any time, you will take the order as a backlog and supply the goods later. In this 
case, your inventory will be negative until you receive enough goods from your 
suppliers. Supply line corresponds to the goods you have ordered previously but 
you have not received yet. Remember that there are time delays between your 
placing of orders and receiving them. 

 
3. Remarks 
 
• There is no cost associated with ordering. Therefore you may order as 

frequently as every time period. 
• By inspecting the graph of inventory and your orders over time, you may 

have some idea about the supply line delay and the future demand. 
• You can enter your order either by typing it or by sliding the input device. 

After entering your order, press the play button. 
• The game will last 100 days. At the end, please save your game under C: 

\STELLA5\ as yourname.stm 
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Appendix C: Model Equations (Illustrated with linear anchor and adjust rule) 
 
Demand Sector 
demand = step_input +noise 
noise = SMTH1(whitenoise,2,0) 
step_input = 20+STEP(20,4)-STEP(20,19) 
whitenoise = NORMAL(0,0.15*step_input,67779) 
 
Goal Sector 
desired_inventory = inventory_coefficient*step_input 
desired_onorder = step_input *receiving_delay 
inventory_coefficient = 2 
 
Order Sector 
adjtime1 = 5 
adjtime2 = 3 
decision_rule = demand+inventory_adjustment+supplyline_adjustment 
inventory_adjustment = inventory_discrepancy/adjtime2 
supplyline_adjustment = supplyline_discrepancy/adjtime1 
 
Production Line Sector 
inventory(t) = inventory(t - dt) + (receiving - delivery) * dt 
INIT inventory = inventory_coefficient*step_input 
 
INFLOWS: 
receiving = supplyline/receiving_delay 
OUTFLOWS: 
delivery = demand 
supplyline(t) = supplyline(t - dt) + (order - receiving) * dt 
INIT supplyline = 80 
 
INFLOWS: 
order = decision_rule 
OUTFLOWS: 
receiving = supplyline/receiving_delay 
inventory_discrepancy = desired_inventory-inventory 
receiving_delay = 4 
supplyline_discrepancy = desired_onorder-supplyline 
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