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Abstract 
The market prices of many financial assets and commodities can be described by 
stochastic processes.  For example, the famous Black-Scholes formula for valuing 
options on common stocks is based on the assumption that stock prices move according 
to a geometric Brownian motion.  This paper describes some models for stochastic price 
processes and shows how they can be formulated using the methodology of system 
dynamics.  System dynamics lends itself to visualization of both the structure of the 
models and of the resultant price dynamics.  For this reason, it is suggested that students’ 
understanding of stochastic price processes can be enhanced by using such models as 
teaching aids.  Another advantage of system dynamics as a modeling environment is that 
feedback loops and time delays can be easily incorporated into the models.  This should 
facilitate the integration of stochastic price models with supply chain models and provide 
richer insights into the dynamics of financial and commodity markets. 
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1. Introduction 
 

“We take risks to generate profit, but we never bet the farm.” 
Rick Buy, Executive Vice President and Chief Risk Officer, Enron Corporation 

 
Many companies are exposed to risks created by volatility in financial markets and 
commodity prices.  For example, a resource company will certainly experience cash flow 
volatility as commodity prices fluctuate.  This cash flow volatility may lead to higher 
taxes if the firm’s tax function is convex, and earnings volatility may mask the results of 
earnings improvement initiatives.  Furthermore, if a company is highly leveraged then an 
unexpected downturn in commodity prices can easily lead to financial distress and 
possibly bankruptcy, as was the case for Dome Petroleum in 1982 following a collapse in 
world energy prices. 
 
Commodity price risk also plays an important role in the evaluation of a firm’s 
investment opportunities.  Baker et al. (1998) point out that a model of commodity prices 
is the “engine around which any valuation methodology for commodity production 
projects is built.”  Indeed, much of the literature on commodity price modeling seems to 
have been motivated by the desire to improve the quality of investment evaluation under 
conditions of price uncertainty. 
 
For many companies, commodity price risk presents itself as a timing risk.  A firm may 
purchase a shipment of nickel at today’s market price, but delivery of the physical 
product may not take place until a month from now.  Then, the nickel shipment may sit in 
raw materials inventory, work-in-progress, and finished goods inventory for another two 
months before the finished product is sold for cash.  For some companies, this “cash flow 
cycle” time can be as long as 90-120 days.  Volatility in the price of nickel during this 
time period may constitute a significant timing risk for the company.  Not surprisingly, 
mitigation of this timing risk is a major reason why firms engage in price risk hedging. 
 
Firms can manage commodity price risk by hedging using options or futures, by 
diversifying into downstream businesses or other businesses that create a “natural hedge,” 
or by adopting a conservative capital structure and allowing the risk to pass through to 
shareholders.  Bodnar et al. (1998) reported that among primary product firms, 
commodity price risk is the most commonly managed risk with 79% of the firms in the 
survey indicating derivative usage. 
 
Commodity price risk is complicated by the fact that it operates in conjunction with 
demand risk.  Demand risk is the possibility that demand for the firm’s product will be 
much lower than expected, and so sales will fall short of projections.  Consider the 
market for a petrochemical product in which a few firms dominate the market.  We would 
expect each firm to adopt a strategy to maximize its profit and, since no single firm can 
control the market price, each firm’s strategy translates into maximization of sales 
volume and minimization of production costs.  In a situation of falling demand for the 



 - 3 - 

market as a whole, each producer tries to maintain sales volume and may even try to 
increase sales to compensate for loss of revenue as price falls.  Anticipating this, 
consumers of the commodity respond to producers’ requests for more volume by asking 
for a lower price.  Since many consumers purchase from more than one producer, the 
producer that concedes to a lower price will gain volume at the expense of the other 
producer.  A similar scenario plays out at each and every consumer of the commodity, 
with each supplier winning volume at some customers and losing volume at others.  But, 
since aggregate demand is falling, the net effect is one of falling volumes and falling 
prices.  When the commodity cycle turns, this mechanism may operate in reverse with 
rising prices and rising volumes.  While an economic relationship between supply and 
demand may well operate on average over time, a stable equilibrium will rarely occur 
because of price volatility. 
 
Although it is easy enough to measure price volatility, this volatility by itself tells us 
nothing about the risk to the firm.  To answer the question of how to measure risk to the 
firm, one needs a model that includes both price risk and demand risk and translates this 
risk into a measurable impact on the firm.  Elliott et al. (2002) have described a 
generalized form of risk measure, which may provide some guidance: 
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Where the terms are defined as follows: 
 

2,tt
aR  The exposure to uncertainty associated with the risky activity a over the 

time horizon from t to t2 
Ft The information available about the risky activity up to time t 

( ).
0,Dφρ  The measure of risk 

( ).φ  A function of risk exposure that describes the consumer of risk’s attitude 
towards the risk, or value placed upon the risk.  It may be a utility function 
or a simple identity function 

[].PE  The expected value operator, which is a function of the probability P 
p The probability of a possible outcome w 
D0 The set of “generalized scenarios” or “probability measures” 
 
For example, if a firm is involved in production and sale of commodity products, then the 
uncertainties that the firm is exposed to are the price of commodity inputs, the price of 
commodity outputs and the quantity of production sold.  In its simplest formulation for a 
one-product/one feedstock firm, one would expect that the risk exposure of the firm 
towards commodity price risk would also depend on the size of the firm’s fixed cost 
obligations (e.g. labour, lease costs, interest costs etc.) relative to its revenues.   These 
uncertainties combine to create uncertainty in net cash flow, and so one may write: 
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Where 2,tt

aR  measures the uncertainty in net cash flow for the time period t to t2, and the 
other terms are defined as follows: 
 

I
tP , O

tP  Commodity raw material (input) price and commodity product (output) 
price respectively 

tQ  Commodity product sales quantity 

tη  Quantity of inputs needed to make one unit of output 
Bt Fixed cost cash outflow at time t, which may itself be uncertain 
 
The information filter Ft in equation 1-1 would represent price history, historical demand 
patterns, and other market information available to the firm. 
 
For commodities, D0 in equation 1-1 is a rich set of possible scenarios, which may 
include war in the Middle East, regulatory action in response to environmental concerns, 
acts of terrorism, or any number of economic “boom and bust” scenarios. 
 
To translate the risk exposure into its impact on the firm, we are interested in the low 
probability “negative tail” events defined by the greatest lower bound of 2,tt

aR  at a user-
defined small probability level α.  Thus, we could define the risk function as: 
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This is similar in form to Elliott et al. equation 1-1 where, in this case, ( )2

0

,
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measures the cash flow at risk resulting from exposure 2,tt
aR at small probability level α.  

Note that Elliott et al show how equation 1-3 could be transformed into the form of 
equation 1-1 by the appropriate specification of the utility function ( ).φ . 
 
Because the risk measurement defined by equations 1-2 and 1-3 involves a complex 
function of stochastic variables, and a typical firm may have more than one product and 
one feedstock, it is likely that no analytical solution will be possible.  The most practical 
method of solution will most likely be through numerical methods or simulation.  The 
method of system dynamics is a promising way to approach this problem.  System 
dynamics is often used as a tool to model changes in demand across supply chains.  By 
incorporating models of price processes into such supply chain models, it may be 
possible to construct a system dynamics model that adequately represents the complex 
interactions of price and quantity described above.  The purpose of this paper is to present 
some of these stochastic price processes and show how they can be described by system 
dynamics models.  However, because of the importance of the Black-Scholes option 
pricing formula to finance, and its usefulness as a tool for validating the system dynamics 
approach, a major portion of the paper will be devoted to modeling the Black-Scholes 
dynamics.  The remainder of the paper will give an example of a system dynamics model 
of more complex stochastic differential equations used to model commodity prices. 



 - 5 - 

2. An Introduction to Stochastic Price Processes 

2.1 Derivation from First Principles 
Taylor and Karlin (1998) formally define a stochastic process as a family of random 
variables Xt where t is a parameter running over a suitable index set T.  In this paper we 
are only concerned with stochastic processes in which t represents discrete units of time.  
Stochastic processes are characterized by their “state space” (the range of possible values 
for the random variables Xt), by the index set T, and by the relationships between the 
random variables Xt. 
 
While Taylor and Karlin’s text is mainly aimed at stochastic modeling in the physical 
sciences, there are many literature sources that apply stochastic modeling in finance.  The 
most famous of these applications is that of Black and Scholes (1973) who employ 
stochastic calculus to derive their famous equation for option pricing.  Textbook sources 
for this derivation include Dixit and Pindyk (1994), Trigeorgis (1996), and Mikosch 
(1998).  Unfortunately, few sources give a simple, clear and succinct explanation of the 
fundamental stochastic processes.  In this section, I will endeavour to provide an intuitive 
explanation and derivation of the basic stochastic process that is relevant to price risk 
management. 
 
Consider a stochastic process for a price P, which has a random fractional price change 
having a variance of σ2 per unit time.  The diagram in Figure 1 illustrates this process 
over a small time period ∆t: 
 
 
 
 
 
 
 
 
 
 

Figure 1: Motion of Price over a Small Time Period 
 
The diagram shows just two of an infinite number of possible price paths over the time 
interval ∆t.  Let’s say that there are N price paths, and therefore N different possible 
values of ∆P (∆P1, ∆P2, …∆Pn).  The mean price and variance of the price process over 
this time interval are: 
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From the definition of σ2, the variance of the price change over the time interval ∆t is 
σ2∆t and therefore 
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From the definition of the process: 
 

zPPPP tttt ∆=∆=−∆+ σ         …2-2 
 
And as 0→∆t , equation 2-2 becomes: 
 

dz
P
dP

t

σ=           …2-3 

 
And equation 2-1 becomes: 
 

dtdz =2           …2-4 
 
Equation 2-3 describes a geometric “standard Wiener process” or geometric “standard 
Brownian motion” for the price variable P having price volatility σ.  The process is 
“geometric” because we have defined the random change as being a fraction of the 
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current state of the variable P.  An interesting property of simple Brownian motion, as 
described by equation 2-4, is that variance of the process increases linearly with time. 
 
If we now expand our definition of the process to include an expected fractional growth 
rate of α of P per unit time, the expected growth in P over time interval ∆t is αP∆t and 
equation 2-2 now becomes: 
 

zPtPPtPPP tttttt ∆+∆=∆+∆=−∆+ σαα  
 
And as 0→∆t  
 

dzdt
P
dP

t

σα +=          …2-5 

 
To obtain an analytical solution to equation 2-5, it is possible to transform equation 2-4 
by substituting PX ln=  and then use Ito’s Lemma of stochastic calculus (see Mikosch 
(1998) p. 118) to give the result: 
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Equation 2-5 can now be solved using the methods of normal calculus to give the result: 
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Where ∫=
t

t dzB
0

has a normal N(0, t ) distribution, and is called standard Brownian 

motion. 
 
Equation 2-5 is called a “stochastic differential equation.”  It describes a geometric 
Brownian motion process with drift parameter α and volatility parameter σ.  This process 
is commonly used to describe the motion of stock prices.  For example, if we examine the 
long-run behavior of a stock with a history of earnings growth, then α will characterize 
the long-run growth in the stock price P and the volatility parameter σ will characterize 
the variation about this long-run trend line. 
 
It is not always easy to solve stochastic differential equations in order to produce an 
analytical solution such as equation 2-6.  As I shall show in the next section, an 
advantage of system dynamics modeling is that it allows the differential form of the price 
process to be modeled, from which good solutions can be found by numerical methods. 
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2.2 A System Dynamics Model for Geometric Brownian Motion 
Geometric Brownian motion with drift, described by equation 2-4 can be represented by 
the system dynamics model shown in Figure 2 (Note: the sketch and equations were 
generated using Vensim software).  The model parameters have been arbitrarily defined 
by a drift parameter of zero, a volatility parameter of 0.3 and an initial price of $25.  The 
noise seed variable is required for the purpose of sensitivity simulation.  To provide an 
accurate simulation, the TIMESTEP variable should be set at a small fraction of the 
model time scale.  Note that the system dynamics model is set up so that Price is 
calculated by integrating the value of Price Change / TIMESTEP.  This has the effect of 
summing the price change increments.   
 

 
 
Figure 3 shows the output from a typical single one-year run of this model with 
TIMESTEP = 0.00274 year (1 day). 
 

Figure 2: System Dynamics Model for Geometric Brownian Motion 

Initial Price = 25 
Volatility Parameter = 0.3 
Drift Parameter = 0 
Noise Seed = 1 
Standard Normal Variate = RANDOM NORMAL( -10, 10, 0, 1, Noise Seed) 
Price Change = Drift Parameter * Price * TIME STEP + Volatility Parameter * Standard Normal 

Variate * Price * SQRT(TIME STEP) 
Price = INTEG (Price Change / TIME STEP, Initial Price) 

Initial PriceVolatility
Parameter

Noise Seed Price

Price Change

Drift Parameter <TIME STEP>

Standard Normal
Variate

Figure 3: Typical Price Path for Geometric Brownian Motion 
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Since the price process is stochastic, the price path shown in Figure 3 is just one of many 
possible price paths.  This can be illustrated by means of sensitivity analysis, in which the 
random noise seed is changed with each run.  A sensitivity analysis for 500 runs of the 
model is shown in Figure 4. 
 

 
 
Figure 4 illustrates some important features of geometric Brownian motion: 

• If the drift parameter is zero, the mean stays constant.  In the case of this example 
the mean remains constant at $25.  This feature can be observed in many 
commodities.  For example, the inflation-adjusted price of crude oil has remained 
constant at about US$21/bbl for over a 50 year period. 

• The price cannot drop below zero.  Again, this property is true of most financial 
assets and commodities. 

• The upper price bound is not constrained.  In fact it can be shown that the 
variance of the logarithm of the price increases linearly with time.  This latter 
property can be visualized more clearly in the 100-year sensitivity analysis for the 
natural logarithm of Price shown in Figure 5. 

 

Figure 4: Sensitivity Analysis for Geometric Brownian Motion 
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Figure 5: Sensitivity Analysis for Log Price over 100 Years 
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3. A Model of the Black-Scholes Dynamics 

3.1 Model Description 
The previous section illustrated the behavior of the geometric Brownian motion model.  
This model has been found to be a good model for stock prices, for which the drift 
parameter characterizes the growth or decay of the stock price.  Black and Scholes (1973) 
used this model as the basis for their derivation of their famous equation for valuing call 
options on common stocks.  The Black-Scholes equation for a call option on a common 
stock which pays no dividend may be written as follows: 
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And the notation is defined as follows: 
 
C Price of the call option 
S Price of the underlying stock 
X Exercise price of the call option 
r The “risk-free” rate of interest (usually interpreted to be US Treasury securities 

having a similar duration to that of the call option) 
T Time until the call option expires 
N(x) Standard normal distribution function 
σ Volatility parameter for the underlying stock 
 
The reader is referred to the Finance textbooks referenced earlier for an analytical 
derivation of the Black-Scholes equation.  Suffice it to say that the derivation of the 
Black-Scholes equation is quite complicated and would be covered only in Master’s and 
Doctoral-level courses in continuous time finance.   However, the intuition behind the 
Black-Scholes equation can easily be explained to lower-level finance students by means 
of a system dynamics model. 
 
It is relatively straight-forward to extend the system dynamics model shown previously in 
Figure 2 in order to represent the dynamics underlying the Black-Scholes equation for 
option valuation.  This extended model is shown in Figure 6.  The option is valued by 
discounting the positive part of (Price – Exercise Price) back to time zero at the risk-free 
rate.  As before, one run of the system dynamics model yields just one possible outcome 
or price path for the underlying stock.  Therefore the model must be run many times, say 
1000 or more, using the “sensitivity analysis” feature of the system dynamics software.  
The Black-Scholes value of a call option is then the average value of the terminal option 
value from 1000 simulation runs.  Arnold and Henry (2003) use a similar approach to 
option price simulation in an Excel spreadsheet environment. 
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3.2 Model Validation 
The validity of the system dynamics model shown in Figure 6 can be tested by comparing 
the simulation results from the model with the analytical results from the Black-Scholes 
equation.   Suppose we have the following data for a call option on a stock: 
 
Current stock price   S = $25 
Exercise price of option  X = $25 
Volatility parameter   σ = 0.3 
Drift rate    α = 0.05 
Risk free rate    r = 0.05 
Option duration  T = 1 year 
 
In other words, the stock has a volatility of 30%, is expected to grow at the same 5% per 
annum rate as risk-free securities, and is currently priced at the exercise value of the one-
year call option.  What is the value of the call option? 
 
From the Black-Scholes equation, we calculate the value to be $3.56.  To estimate the 
call option value by simulation, we run the system dynamics model many times and 
average the result.  The results for a 1 day (0.00274 year) time-step are shown in Table 1.  
The first row in Table 1 states the analytical result from the Black-Scholes equation.  
Note that the stock price at the end of the simulation is expected to be 05.025eSerT = = 
$26.28.  The results in Table 1 raise an interesting question:  Why do the results not 
follow a general trend towards higher precision with a higher number of simulation runs? 
 

Figure 6: System Dynamics Model for the Black-Scholes Dynamics 

To create the Black-Scholes model, we add the following two parameters and one variable to the 
geometric Brownian motion model: 
 
Exercise Price = 25 
Risk Free Rate = 0.05 
Option Value = max(0, (Price - Exercise Price) * exp(- Risk Free Rate * Time)) 

Initial PriceVolatility
Parameter

Noise Seed Price

Price Change

Drift
Parameter <TIME STEP>
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Option Value

Risk Free
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<Time>

Standard Normal
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The explanation for the randomness in the results is likely to be related to either non-
randomness in Vensim’s random number generator or computational rounding errors 
resulting from the choice of TIMESTEP.  Each sensitivity simulation used to generate the 
results in Table 1 was carried out using the following parameter: 
 
Noise Seed = RANDOM_UNIFORM (0,10E6) 
 
Conducting the same sensitivity analysis using 2000 simulations and a (-10E6, 10E6) 
range for the random noise seed gives a result very close to the Black-Scholes analytical 
result (Average price = 26.19, Average option value = 3.57). 
 
Case: N = Number of 
simulation runs 

Average stock price at end 
of simulation 

Average option value at 
end of simulation 

Analytical result 26.28 3.56 
N = 100 25.80 3.01 
N = 500 26.48 3.72 
N = 1000 26.19 3.57 
N = 2000 26.05 3.36 
N = 5000 26.19 3.54 
 

Table 1: Black-Scholes Simulation Results Showing Effect of Number of Runs 
 
The results in Table 2 show the effect of using different values of TIMESTEP.  The 
model is the same as before, with N = 1000 and Noise Seed = RANDOM_UNIFORM 
(0,10E6).  The software maker recommends that TIMESTEP be a power of 0.5, with the 
smallest default value being 0.5 to the power 7, which equals 0.0078125.  It can be seen 
from Table 2 that there is still randomness in the results, but the choice of a 1-day time-
step appears to be reasonable for a 1-year simulation. 
 
Case: TIMESTEP = Length of 
time step for Euler Integration 

Average stock price at 
end of simulation 

Average option value at 
end of simulation 

Analytical result 26.28 3.56 
TIMESTEP = 0.000114 (1 hour) 25.47 2.19 
TIMESTEP = 0.00274 (1 day) 26.19 3.57 
TIMESTEP = 0.005 26.13 3.42 
TIMESTEP = 0.0078125 (default) 26.22 3.49 
TIMESTEP = 0.01 26.24 3.49 
TIMESTEP = 0.0192 (1 week) 26.37 3.63 
 

Table 2: Black-Scholes Simulation Results Showing Effect of TIMESTEP 
 
From the experiments reported above, and from other experiments involving a range of 
simulation parameters, I conclude that the system dynamics model of the Black-Scholes 
dynamics is valid, but the precision of the calculation often falls short of the analytical 
result.  However, since the value of a system dynamics model is to facilitate visualization 
of the stochastic price process, this slight loss of accuracy may not be a problem. 
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3.3 Applying the Simulation Model in the “Risk-Neutral World” 
So far so good, but what if the growth rate in the stock price is expected to be higher than 
the risk free rate?  For example, suppose the growth rate of the stock in the previous 
example could be characterized by a drift parameter of 0.2 instead of 0.05.  If the growth 
rate in the stock price is 20% instead of 5%, should the value of the call option not be 
higher?   
 
Interestingly, the drift parameter α that characterizes the stock’s growth rate does not 
appear in the analytical version of the Black-Scholes equation.  Why not? 
 
The answer lies in one of the assumptions underlying the derivation of the Black-Scholes 
equation, namely that of the “risk-neutral world.”  In simple terms, the assumption behind 
risk neutrality is that an investor can only earn a return greater than the risk-free rate by 
assuming more risk.  Conversely, if risky investments are hedged to eliminate risk, then 
the hedged investment would earn no more than the risk-free rate.  Therefore, to obtain 
the Black-Scholes equation result with the system dynamics simulation model, the drift 
parameter must be set to be equal to the risk-free rate. 
 
Another way to explain the logic behind the assumption of a “risk-neutral world” is 
through the axiom of “no arbitrage.”  This axiom implies that risk-free profits cannot be 
made from a trading strategy.  This is illustrated through the following example. 
 
At time zero, borrow $1 at the risk free rate r, and buy 1/ S0 shares of stock at price S0.  
At time t, repay ert to the bank and sell 1/ S0 shares of stock at price St.  The profit on this 
transaction is (St/ S0) - ert, which must average out to be zero in all states of the world 
under the “no arbitrage” axiom.  Therefore, averaged across all states of the world, we 
have a mean stock price rt

t eSS 0= . 
 
Table 3 illustrates this point for the simple example we have been discussing so far.  In 
fact, for all values of (α, r), the Black-Scholes system dynamics simulation model only 
gives the same result as the Black-Scholes equation when α = r.  The simulation results 
in Table 3 were based on 1000 runs of the Figure 6 simulation model with TIMESTEP = 
0.00274 year and Noise Seed = RANDOM_UNIFORM (0,10E6). 
 
Case: α = drift parameter 
r = risk-free rate 

Average stock price at end 
of simulation 

Average option value at 
end of simulation 

Analytical result (r = 0.2) 30.54 5.55 
Analytical result (r = 0.05) 26.28 3.56 
α = 0.05   r = 0.05 26.19 3.57 
α = 0.2     r = 0.2 30.42 5.55 
α = 0.2     r = 0.05 30.42 6.44 
 

Table 3: Black-Scholes Assumes a Risk-Free World in Which α = r 
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In Table 3 we can see that for α = 0.2 in all states of the world tS = 30.42, which is close 
to the expected value of S0eαt, where S0 = 25, α = 0.2 and t = 1 year.  Could we interpret 
the scenario in which α = 0.2 as being one in which the company has a strategic 
competitive advantage or a monopolistic market position, for example, a Microsoft?  The 
answer is no.    Finance theory argues that past price trends are not predictive of future 
trends and so there is no “free lunch.” Expected future growth in an individual stock 
cannot be predicted with any degree of certainty.  If it could, one would simply borrow at 
the risk-free rate and make a certain profit by investing in the stock.  While it is possible 
to estimate the drift parameter from historical data, the result obtained represents just one 
outcome of many possible price paths.  Thus, to reinforce the point made earlier, the drift 
rate in the Black-Scholes simulation model should always be set at the risk-free rate. 
 

4. Multi-Factor Mean Reversion Models for Commodity 
Prices 
Although geometric Brownian motion with drift has been shown to be a good model for 
stock prices, it is less suitable for commodity prices, which have been shown to exhibit a 
behavior known as “mean reversion” (see Baker et al. (1998) and Pindyck (1999)). 
 
The intuitive explanation for mean reversion in commodity prices is that unlike stock 
prices, which may exhibit a long term growth trend driven by earnings growth, 
commodity prices will not exhibit long term growth unless underlying production costs 
drive price upwards and demand is relatively inelastic to price.  However, in the absence 
of sustained cost-push pressure, we expect that high commodity prices would attract 
producers into the market until supply exceeds demand, causing prices to fall.  If prices 
fall to levels that are “too low,” then high cost producers will cut back production or shut 
in capacity until the reduction in supply causes upward pressure on prices.   
 
Mean reversion models for commodity prices employing more than one stochastic 
variable (multi-factor models) have been considered by Gibson and Schwartz (1990), 
Schwartz (1997), and Schwartz and Smith (2000)..  System dynamics can be used to help 
visualize the performance of these more complicated stochastic price processes.  By way 
of example, I will describe a system dynamics model for the two-factor model proposed 
by Schwartz and Smith (2000). 
 
Schwartz and Smith (2000) assume that the spot price of the commodity St is made up of 
two stochastic factors, one being the equilibrium price level ξt and the other being the 
short-term deviation in price χt: 
 

tttS ξχ +=ln           …4-1 
 
The short-term deviations are assumed to revert towards zero: 
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χχσκχχ dzdtd tt +−=          …4-2 
 
The equilibrium level is assumed to follow a Brownian motion process: 
 

ξξξ σµξ dzdtd t +=          …4-3 
 
And the correlation between the Brownian motions of the two stochastic parameters is 
given by 
 

dtdzdz χξξχ ρ=          …4-4 
 
To provide the reader with visualizations of this two-factor stochastic process, Figure 7 
shows the probability distribution of the short-term deviation, the equilibrium price, and 
the spot price as described by the Schwartz-Smith model in equations 4-1 to 4-4. 
 

 
Figure 7: Schwartz-Smith Model for Commodity Prices 
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In modeling these equations we note that equation 4-1 can be differentiated and 
substitutions can be made from 4-2 and 4-3 to get: 
 

( ) ξξχχξ σσκχµξχ dzdzdtdd
S

dS
ttt

t

t ++−=+=      …4-5 

 
In Figure 7 notice that, although the mean of the short-term deviation from the 
equilibrium price is zero, the short-term price deviation follows the downward trend in 
the equilibrium price.  Since the equilibrium price is not mean-reverting, the variance of 
the process increases linearly with time.  The net result is that the upper 95+% band of 
the probability distribution stays roughly in the same range over the ten-year period.  
Figure 8 shows the system dynamics model used to generate the results in Figure 7 and 
the equations for this model are listed in the Appendix. 
 

 
Figure 8: System Dynamics Model for Schwartz-Smith (2000) 
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be modeled using system dynamics.  In particular, I presented a system dynamics model 
for the two-factor commodity price process proposed by Schwartz and Smith (2000), and 
showed how this model can be used to help visualize this price process. 
 
The main contribution of this research is to show how many of the complex price 
processes that have been researched by scholars in Finance can easily be translated into 
system dynamics models.  These models can be used both for teaching and research 
purposes.  System dynamics software lends itself to visualization of both the structure of 
the models and of the resultant price dynamics.  For this reason, it is suggested that using 
system dynamics models as teaching aids will enhance students’ understanding of 
stochastic price processes.  For example, using system dynamics models in the classroom 
may help students to gain a deeper insight into the behavior of the Black-Scholes model.   
 
System dynamics models have been widely used to model supply chain processes.  For 
example, see chapters 17-20 and the associated references in Sterman (2000).  In many 
supply chain models, for example Berends and Romme (2001), the focus is on material 
flows and inventories, with prices being input as an exogenous variable.  It may be 
possible to extend and enhance Berends and Romme’s paper industry model by 
incorporating some of the stochastic price processes presented in this paper.  The 
integration of stochastic price models with supply chain models may provide richer 
insights into the dynamics of financial markets and commodity cycles. 
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Appendix: Schwartz-Smith (2000) Commodity Price 
Model Equation Listing 
 
Initial equilibrium price = 21 
 
Independent random variable = RANDOM NORMAL( -5, 5, 0, 1, Seed 2) 
 
Initial Price = 25 
 
Seed 1 = 1 
 
Seed 2 = 99 
 
Change in equilibrium price = Random price shock * Spot price * SQRT(TIME STEP) + 
Drift * Spot price * TIME STEP 
 
Change in short term price = Change in short term price deviation * Spot price 
 
Change in short term price deviation = Random shock to price deviation * SQRT(TIME 
STEP) + Speed of mean reversion of price deviation * ( Mean price deviation - Short 
term price deviation) * TIME STEP 
 
Change in spot price = Random price shock * Spot price * SQRT(TIME STEP) + Drift * 
Spot price * TIME STEP + Change in short term price deviation * Spot price 
 
Drift = -0.0125 
 
Equilibrium price = INTEG ( Change in equilibrium price / TIME STEP, Initial 
equilibrium price) 
 
Initial price deviation = 0 
 
Mean price deviation = 0 
 
Random price shock = Standard deviation of price shock * RANDOM NORMAL( -5, 5, 
0, 1, Seed 1) 
 
Random shock to price deviation = Standard deviation of price deviation* SS Correlated 
random variable 
 
Short term price = INTEG (Change in short term price / TIME STEP, Initial price 
deviation * Initial Price) 
 
Short term price deviation = INTEG (Change in short term price deviation / TIME STEP, 
Initial price deviation) 
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Speed of mean reversion of price deviation = 1.49 
 
Spot price = INTEG (Change in spot price / TIME STEP, Initial Price) 
 
SS Correlated random variable = SS Correlation between Brownian motions * Random 
price shock + Independent random variable *SQRT( 1-SS Correlation between Brownian 
motions^2) 
 
SS Correlation between Brownian motions = 0.3 
 
Standard deviation of price deviation = 0.286 
 
Standard deviation of price shock = 0.145 
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