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Abstract 
 

Autoregressive, vector autoregressive and structural vector autoregressive models may be 
described, in general, as those models that explain, at least partially, the values of a variable or set 
of variables, based on the past values of this variable or set of variables. During the last decades 
these models have increased their presence and importance within the field of economic and 
econometric analysis. It has been found that this kind of simple models, with a small number of 
variables and parameters, can seriously compete in terms of their forecasting capabilities with the 
large macroeconomic models, with hundreds of variables and parameters, developed during the 
fifties and sixties.  
 

This paper explains how System Dynamics models built using Vensim simulation 
environment may easily incorporate the main elements of autoregressive models. In order to do that 
we have developed a structural autoregressive model using stock and flow diagrams built with 
Vensim software and provided the code for the mathematical formulation in a way that this tool  
can be later used in System Dynamics models. This tool provides short term forecasting capabilities 
to System Dynamics models built using Vensim. As an illustration, we present an application to the 
study of the Spanish labor market. 
 
Keywords: Autoregressive Models, System Dynamics Models, Impulse-Response Functions, 
Forecasting, Labor Market.  
 

* Author in charge of correspondence. 



2

1. Introduction 
In this paper we present an approximation to autoregressive models –autoregressive (AR), 

vector autoregressive (VAR) and structural vector autoregressive (SVAR)-  from the point of view 
of the usefulness that they can provide to the System Dynamics (SD) modelers. The purpose of the 
paper is to use the SVAR methodology to elaborate an stock and flow diagram and the 
corresponding formulation and code written in Vensim, in a way that this new tool (macro) can be 
used to simulate and forecast the behavior of a variable in the short term when the past information 
of this variable and other related variables is known. Moreover, the proposed model allows to build 
the map of contemporaneous relations among the considered variables. Therefore, the 
aforementioned model does not try to be a SD model in itself, but a tool to be used with Vensim 
when building a wider SD model. This tool will endow the wider model with the required 
endogenous structure to increase its short term forecasting capabilities. 

 
VAR models allow us to analyze the dynamic relations among a set of variables and offer 

bigger possibilities to study and contrast theoretical models. Sims (1980) also mentioned that an 
additional interest of estimating VAR models is  the type of information derived from the estimated 
set of equations. For example, it is possible to analyze the sign, the intensity, the timing and the 
persistence that each one of the stochastic innovations have on the variables of the model, by means 
of the impulse-response functions. Another basic element of the VAR analysis is the variance 
decomposition of the forecasting error, from which it is possible to study the relative weight of 
every disturbance in the variability of the model endogenous variables. 

 
The SVAR models appear as a response to the criticism received by VAR models regarding 

their absence of theoretical background. In this way, a VAR model turns out to be a reduced form of 
a dynamic structural model -theoretical-, which can be estimated from its reduced form and from a 
set of restrictions on the model parameters. 

 
The rest of the paper is organized as follows. The second section describes briefly the 

autoregressive models methodology, providing the appropriate references for a more detailed study. 
The third section describes how to implement an autoregressive stock and flow model using the 
Vensim simulation environment. This model is composed by two sub-models that articulate the 
SVAR structure. The fourth section develops an example, based on a previous work which applied 
the SVAR methodology to the Spanish labor market. Finally, the fifth section concludes. 

 

2. Introduction to AR, VAR and SVAR models 
 
AR models may be described as those in which a variable is explained, at least partially, 

depending on its past values. VAR models can be understood as a vector generalization of AR 
models1. During the last decades these models have increased their presence and importance within 
the field of economic and econometric analysis. It has been found that this kind of simple models, 
with a small number of variables and parameters, can seriously compete in terms of their 
forecasting capabilities with the large macroeconomic models, with hundreds of variables and 
parameters, developed during the fifties and sixties.    

 
The VAR models relate several variables in a form such that the value that each of them takes 

in a period of time is related to the values that the same variable and all other variables take in 
previous periods. A VAR model can be formulated as follows: 

 
yt =Φ1 yt-1 + Φ2 yt-2 +…+ Φp yt-p + c + εεεεt [1] 

 
1 Autoregressive models methodology (AR, VAR and SVAR) can be found in Hamilton (1994). 
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where yt, yt-1,…, yt-p are vectors (n x 1) containing the values of the variables in periods t, t-1,…,   
t-p; Φ1, Φ2,…, Φp are matrices (n x n) containing the model parameters that can be estimated; c is a 
vector (n x 1) containing the model constants, that can equally be estimated; and εεεεt is a vector of 
random perturbation terms, also denominated innovations, as this is the only new information that 
enters in period t, with respect to what it is already available from previous periods. In this model 
ΩΩΩΩ=E(εεεεt εεεεt´) is the variance-covariance matrix (n x n) of the innovations. This matrix can be a non-
diagonal matrix reflecting the fact that innovations can be contemporaneously correlated among 
them. The model in [1] is denoted VAR(p), where the order p is the number of time lags of the 
model. Equation [1] can be written: 

 
(In -Φ 1L - Φ2L2 -…- ΦpLp) yt =Φ(L) yt = c + εεεεt [2] 

 
where Φ(L) is a matrix polynomial in the lag operator2 with (n x n) matrices Φj , and In represents 
the identity matrix of order n.

Under suitable conditions, VAR models can be transformed in moving average infinite-order 
vector models (reduced moving average form):  

 
yt = εεεεt+Ψ1111εεεεt-1+Ψ2222εεεεt-2+…+µ = (µ = (µ = (µ = (In+Ψ1L+Ψ2L2+…) ε) ε) ε) εt + µµµµ = Ψ(L) εεεεt+ µµµµ [3] 

 
where εεεεt, εεεεt-1, εεεεt-2,… are the innovations vectors in t, t-1,… ; µµµµ is a vector of constants and Ψ(L) is a 
matrix polynomial in the lag operator with infinite (n x n) matrices Ψ j. Comparing [2] and [3], 
Ψ(L)=Φ(L)-1 should apply. 

 
Notice that, as In is the identity matrix, in the VAR model in equation [2] each element of the 

vector yt (endogenous variables determined within the system) is expressed as a function of lagged 
values of all the elements in the same vector (variables predetermined in previous periods). 
However, do not appear contemporaneous relations among the variables, in other words, each 
variable is not related to the values of the others in that same period. Thus, equation [2] can be 
viewed as the reduced autoregressive form that could be obtained from a SVAR model in which 
there would be a relation among endogenous variables for the current time period: 

 
B(L) yt = (B0 - B1L - B2L2 -…- BpLp) yt = k + ut [4] 

 
where k is a vector (n x 1) with constants, ut a vector (n x 1) of perturbations, which in this 
structural model are called structural shocks, and B(L) is a matrix polynomial in the lag operator 
with (n x n) matrices Bj.

Notice how B0 denotes the contemporaneous relations among the endogenous variables3 yt.
Moreover, it is common to suppose that ut are standardized structural shocks, not 
contemporaneously correlated to each other, so that their variance-covariance matrix is the identity 
(E (ut ut´) = I). 

 
Equation [4] is the structural autoregressive form of the model. If we pre-multiply both 

members of the equation by B0
-1 we would obtain [2] -reduced autoregressive form- and, vice versa, 

known the matrix B0, the structural autoregressive form of the model can be obtained pre-
multiplying by B0 in both members of [2]. However, it can be demonstrated that the information 
 
2 The lag operator L is defined as follows: L xt ≡ xt-1; L2 xt ≡ xt-2;…; Lp xt ≡ xt-p.
3 The model in its structural form [4] cannot be directly estimated by OLS in a consistent way, as there are endogenous 
variables among the system regressors. It is therefore required to implement the estimation in its reduced form [2]. This 
problem in the OLS estimation of the models in its structural form is discussed in Greene (2003). 
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contained in yt is not enough to identify the matrix B0, and some additional restrictions are required. 
These additional restrictions can be obtained from the implications that theoretical models have on 
the expected behavior of the variables yt. In this sense, it can be affirmed that whereas in the VAR 
model of equation [2] the theoretical requirements are minimum (the set of variables whose 
interaction is going to be analyzed and the number of time lags to be included), in the SVAR model 
a greater theoretical content can be found, given by the model from which the above mentioned 
additional restrictions are obtained previously.  

 
Like VAR models in reduced form [2], VAR models in its structural form [4], under suitable 

conditions, can be transformed into the structural moving average form: 
 

yt = C(L) ut + h = (C0+C1L+C2L2+… +CsLs+…) ut + h [5] 
 

where h is a vector (n x 1) of constants, and C(L) = B(L)–1.

Equation [5] represents the model [1] in moving average form with orthogonal shocks. Each 
element ij of the matrix Cs of the polynomial C(L) -cs

ij- identifies the effect of an orthogonal unitary 
shock in yj (j=1,..,n) at date t -ujt- on the variable yi (i=1,..,n) at date t+s, under the assumption that 
there is not other kind of shock at date t or earlier. Therefore, the elements of matrix Cs describe the 
temporary effect of a unitary shock –impulse- on the model variables –response-. The matrix of 
dynamic multipliers Cs is known as the orthogonalized impulse-response function. To obtain the 
matrix polynomial C(L) it is required to calculate previously the matrix B0; and once we know B0,
we can obtain ut from εt, and C(L) from Ψ(L) according to the equation C(L) = Ψ(L) B0

-1.

Another basic element in VAR analysis, besides the impulse-response functions, is the 
variance decomposition of the forecasting error, from which it is possible to study the relative 
weight of each shock in the variability of the model endogenous variables. Thus, the weight of a 
shock in yj at date  t (ujt) in the variability of the variable yi at date t+s (yi t+s) will be given by: 

 

∑
=

n

1j

2s
ij

2s
ij

)c(

)c(
[6]

3. Design of a structural autoregressive stock and flow model in Vensim 
 
We will now show how it is possible to implement a stock and flow SVAR model using 

Vensim (version 4.04). We will explain how we have implemented this model by constructing two 
basic stock-flow sub-models (sub-model 1 and sub-model 2), each of which corresponds to different 
phases of the analysis process, as it will be showed in detail later. We want to remark here that it is 
not the purpose of this paper to design a SD model, but to provide a sort of “macro” that will facilitate 
the SD modelers the incorporation of  SVAR methodology elements. 

 
The core of both sub-models is the forecast of the variables in every period from their values 

in the previous periods, according to the reduced autoregressive form of equation [2]. The main 
difference between both sub-models is that sub-model 1 uses the real data of the variables in the 
previous periods, whereas sub-model 2 uses the forecasts for the previous periods given by the sub-
model. For this reason, we can say that the forecast horizon is one period in the first sub-model, and 
multi-period in the second one. 

 

4 We have used Vensim 4.0, which is a Trade Mark of Ventana  System Inc. 



5

Sub-model 1 is used to estimate the parameters of the model in the reduced autoregressive 
form [2] from a series of real values of the variables. This sub-model analyzes the fit between the 
forecasts of the estimated model [2] and the series of real values of the variables, computing the 
differences between them (residuals or estimated values of innovations εεεεt) and their variance-
covariance matrix. 

 
With the values of the estimated parameters, sub-model 2 is used to calculate the B0 matrix, 

with the additional restrictions that the theoretical model imposes on the dynamics of the variables. 
After that, we can obtain the structural autoregressive form from the reduced autoregressive form. 
Sub-model 2 also allows simulating the response of the variables to different impulses, in innovations 
εεεεt or in structural shocks ut -impulse-response functions-. These functions are also related to the 
moving average forms of the model. In order to obtain all these results sub-model 2 is used in three 
versions, differing only in the magnitude of the innovations. 

 
In the next two sections we present in detail the analysis process that both sub-models follow. 

In appendix A the corresponding code for both sub-models is presented, in an application to the 
study of the Spanish labor market. 

 
3.1. Detailed explanation of sub-model 1 

Sub-model 1 stock and flow diagram can be observed in figure 1 (the names of the variables 
will be indicated within quotation marks as they are explained). 

 
First, the sub-model reads the data imported from an external file obtaining "variables in t". In 

order to obtain the lags structure of the model, the level variables "variables in t-i" are generated 
(where i means the order of the lag) and updated at the end of each period. This is done with an 
inflow named “incr var” that is used to store data of vector yt, in that period and in the p-1 past 
periods, as lagged data for the following period, and an outflow named “decr var” which eliminates 
previously stored data in the level variable.  

 
As we said before, the core of sub-model 1 is the forecast of the variables for every period 

("variables forecast in t ") from their values in the previous periods, according to the model in reduced 
autoregressive form [2]. The model parameters to estimate are "variable in t-i coefficients" and the 
"constants". The variable "Time" is used to control the periods in which the model is initialized, 
introducing the real values of the variables as first lags. 

 
The estimation of the model parameters, starting from the series of the variables real values, is 

done using a modified Powell Method5 included in the “calibration” option of Vensim. By doing so, 
the values obtained for the parameters minimize the sum of the squared residuals (real values of the 
variables minus forecasts of the model) for all the periods that compose the estimation interval. A 
joint estimation is done for all the equations that compose [2], corresponding to each variable in the 
vector yt, giving the same weight to the sums of the squares of every equation residuals in the global 
payoff function to minimize. 
 
5 Among the numerical optimization techniques, the direct-search method that does not evaluate the gradient is most 
suitable for the analysis of dynamics of complex nonlinear control systems. The Powell method (Powell, 1964) is well 
known in order to have an ultimate fast convergence among direct-search methods. The basic idea behind the Powell 
method is to break the N dimensional minimization down into N separate one-dimensional (1D) minimization problems. 
Then, for each 1D problem a binary search is implemented to find the local minimum within a given range. 
Furthermore, on subsequent iterations, an estimate is made of the best directions to use for the 1D searches.  

Some problems, however, are not always assured of optimal solutions because the direction vectors are not 
always linearly independent. To overcome this difficulty, the method was revised (Powell,1968) by introducing new 
criteria for the formation of linearly independent direction vectors.  This revised method, which is the one used in this 
paper, is called “The Modified Powell Method”. 
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variables in t

variables in
t-i

incr var

decr var

variables
forecast in t

variables in t-i
coefficients

constants

<Time>

innovations

previous cov <FINAL
TIME>

cov

inc

Figure 1. Stock and flow diagram of sub-model 1 
 
With the estimated values of the parameters we obtain the estimated “innovations”, and from 

those values we obtain the estimate of the variance–covariance matrix "cov". The flow variable "inc" 
increases in every period the accumulated level "previous cov" of the sum of the residuals products 
for all the previous periods. Finally, the variable "FINAL TIME” provides the number of periods that 
it is necessary to take into account in this process. 

 
3.2. Detailed explanation of  sub-model 2 

In this section, we present in detail the analysis process that sub-model 2 follows, divided in four 
steps. In order to obtain the results of this sub-model, three versions of the same model are developed 
differing only in the magnitude of the innovations. The first version corresponds to step 1), the second 
to step 2) and the third to steps 3) and 4). The sub-model 2 stock and flow diagram can be observed in 
figure 2.  

 
1) Obtaining the polynomial matrix ΨΨΨΨ(L) corresponding to the reduced moving average form, 

and  the impulse-response functions (non orthogonalized) 
 
The non orthogonalized impulse-response functions are obtained as a result of the simulation6

of the response of the vector of variables yt to impulses in the innovations εεεεt. The specification "non 
orthogonalized" refers to the fact that innovations appear contemporaneously correlated among 
them. The response obtained as a result of the simulation is "variables forecast in t", which 
corresponds to the vector yt, obtained by means of the model in reduced autoregressive form of 
equation [2], with "variables in t-i coefficients" estimated in the sub-model 1. The "variables in t-i", 
in this sub-model 2, are generated from the forecast in t7, updating them at the end of every period 
with an input flow, "incr var", that stores as lagged data for the following period the forecast in this 
 
6 See Hamilton (1994). 
7 Initially, their  values are made equal to 0. 
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period and the variables in the p-1 previous periods, and an output flow, "decr var", which 
eliminates the information previously stored. 

 

variables in
t-i

incr var

decr var

variables
forecast in t

variables in
t-i

coefficients

innovations

duration

magnitude

payoff

cov

cov1
<FINAL
TIME> <Time>

vdfe

Figure 2. Stock and flow diagram of sub-model 2 
 
The impulse are the "innovations" εεεεt, that are made equal to 1 in the initial period for the 

corresponding variable of the vector yt, whereas they are made equal to zero for the remaining 
variables in this period and for all the variables in the following periods. Therefore, n simulations will 
be required. Each simulation will depend on which variable of the vector y experiments the initial 
unitary impulse. Nevertheless, it is possible to use subscripts in order to carry out all the simulations 
at the same time. The innovations are obtained as the product of "duration", which establishes the 
time that the innovation lasts (in this case, an initial impulse that disappears later), by the "magnitude" 
of the same innovation (in this case, the first version of sub-model 2, the "magnitude" is 1 for the 
variable that experiences the impulse and 0 for the others). 

 
From the impulse-response functions we can obtain the matrix ΨΨΨΨ(L) corresponding to the 

moving average reduced form. It is sufficient to note that in ΨΨΨΨ(L) the term corresponding to the lag s
is composed by the elements of the impulse-response functions corresponding to the period s of
simulation.  

 
2) Obtaining the matrix S = B0

-1, the structural autoregressive form, the structural moving 
average form, and the structural shocks 

 
As it was previously exposed in section 2, pre-multiplying both members of the reduced 

autoregressive form [2] by B0, the structural autoregressive form [4] can be obtained and, vice 
versa, known the matrix S = B0

-1, it is possible to obtain [2] from [4], pre-multiplying both members 
of this equation by S. Given that E (ut ut´) = I and εεεεt = S ut, then: 

 
E (εεεεt εεεεt´) = ΩΩΩΩ = S S´ [7] 

 
where ΩΩΩΩ is the variance-covariance matrix of the innovations εεεεt estimated in the sub-model 1. As ΩΩΩΩ
is a n x n symmetrical matrix, the equation [7] provides (n2+n)/2 conditions to identify the n2



8

elements of S. The other (n2-n)/2 conditions, as it was exposed in section 2, are obtained as 
implications of theoretical models.  

 
Since the sub-model 2 corresponds to the reduced autoregressive form, we must consider that, 

according to the equation εεεεt = S ut, an unitary value of one of the shocks ut is equivalent to a vector 
of innovations εεεεt of magnitude equal to the respective column of the matrix S. Therefore, the matrix 
S that we look for will be composed by the values for the variable "magnitude" in the second 
version of the sub-model 2. 

 
The numerical optimization is guided by the fulfillment of the aforementioned conditions, by 

means of the maximization of a vector of n2 variables "payoff", giving the same weight to all these 
variables. The first (n2-n)/2 variables capture the theoretical restrictions required for the identification 
of the SVAR model, while the remaining (n2+n)/2 guarantee the fulfillment of equation [7].  
Regarding theoretical restrictions, sometimes they directly influence the matrix S = B0

-1, while in other 
cases, as it happens in our application, they affect dynamic forecasts of the model acting indirectly on 
S. On the other hand, the additional (n2+n)/2 restrictions are the square of the differences among all 
non identical elements of the symmetrical matrices SS' and ΩΩΩΩ, with negative sign. Initially, in the 
second version of the sub-model 2, we impose initial unitary values to all the elements of 
"magnitude", and therefore to all the elements of S. After that, the process of optimization continues 
until the values of the above mentioned elements that approximate the payoff sufficiently to its 
maximum possible value are found. In this maximum value, the last (n2+n)/2 variables of the payoff 
function will have a value equal to zero and the theoretical restrictions will be fulfilled. In the 
variables "cov" and "cov1" (with the corresponding subscripts) are respectively the elements of the 
matrix ΩΩΩΩ estimated in the sub-model 1, and the elements of the product  SS’, obtained from the values 
of "magnitude" forming the matrix S. The variables “Time” and “FINAL TIME" are used to control 
that the payoff is calculated in the period corresponding to the theoretical restrictions used. 

 
Once the matrix S = B0

-1 has been obtained, pre-multiplying both members of the reduced 
autoregressive form [2] by B0, the structural autoregressive form [4] and the structural shocks ut = >B0 εεεεt
are obtained. The structural moving average form [5] can also be obtained from the moving average 
reduced form [3], obtained in step 1), multiplying ΨΨΨΨ(L) by S, since, as  εεεεt = S ut, we get:  

 
yt = ΨΨΨΨ(L) εεεεt + … = ΨΨΨΨ(L) S S-1 εεεεt + ... = C(L) ut +...                                  [8]  

 
where C(L) = ΨΨΨΨ(L)S is the polynomial matrix corresponding to the structural moving average 

form. 
 
3) Obtaining the orthogonalized  impulse-response functions 
 
In the third version of sub-model 2 the elements of "magnitude" are made equal to the values 

obtained for S in the previous step. Each of the parallel simulations thus carried out with the reduced 
autoregressive form corresponds to unitary values in the initial period of each one of the structural 
shocks. Therefore, the values obtained in the simulations of the variables in “variables forecast in t”, 
represent the orthogonalized impulse-response functions for these variables. The specification 
"orthogonalized" refers to the fact that the structural shocks are not contemporaneously correlated 
among each other. 

 

4) Variance decomposition of the forecasting error 
 
From the values, in each period, of the variables forecast in the orthogonalized impulse-response 

functions of the previous step, we can obtain the decomposition of the variance of the forecasting error 
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"vdfe" in the same period. This forecasting error is originated by the responses to each one of the n 
structural shocks. So, for each variable, the percentage that supposes the square of its value in each 
simulation is calculated in relation to the sum of all the squares.  

 

4. An application to the Spanish labor market  
 
We present now an application of the model explained in the previous section, implementing 

in Vensim 4.0 a SVAR model referred to the Spanish labor market8, developed by Dolado and 
Gómez (1997)9, following Blanchard and Diamond (1989). 

 
Dolado and Gómez (1997) SVAR model focuses on the quarterly series of three variables: 

unemployment (U), vacancies (V), and labor force (L). As we will see, in this model the vector yt is 
obtained from a few previous transformations, and it is composed by the variables v1=∆(v-u), 
v2=∆u and v3=∆l, where v, u and l are the logarithms of  V, U and L, and where ∆ indicates the 
first difference of the corresponding variable. These three transformed variables correspond 
respectively to the rates of growth of the  vacancies/unemployment ratio, unemployment and labor 
force. 

 
Relating each of these three transformed variables with the lagged values (up to 4 quarters) of 

all of them, the reduced autoregressive form [2] is derived, including also a vector of dummy quarterly 
variables dt with its coefficients matrix D, to control for the seasonal effects: 

 
Φ(L) yt = c + D dt + εεεεt [9] 

 
As it was mentioned in section 2, in this reduced autoregressive form, contemporaneous relations 

do not appear among the variables, that is, each variable is not related to the values of the others in the 
same period. These contemporaneous relations do appear in the structural autoregressive form [4]. The 
matrix B0, within the polynomial in the lag operator B(L), reflects the contemporaneous relations 
among the variables. As it was also exposed in section 2, the information contained in the time series yt
is not sufficient to identify the elements of B0, and therefore it is necessary to add restrictions. These 
restrictions can be obtained from the implications that theoretical models may have on the expected 
behavior of the variables yt.

Dolado and Gómez (1997) use a theoretical model, following a flow approach10 to labor 
market, made up of four blocks: the flows of job creation and job destruction, the hiring process 
through a matching function between vacancies and unemployment, the wage determination as a 
function of the excess demand in the labor market, and the labor supply or labor force as a function of 
wages and unemployment. All this is used to obtain a relation among the transformed variables that 
compose the vector yt in the structural autoregressive form [4]. At the same time, the structural 
shocks ut, are identified using three types of disturbances in the economy: aggregate activity shocks, 
due to disturbances in the different components of aggregate demand, reallocation shocks, due to 
disturbances  affecting the efficiency in the matching process between vacancies and unemployed 
(skill mismatch, geographical mismatch …) and labor force shocks, due to disturbances that affect 
directly this variable (women participation in the labor market …). The additional restrictions for 
the identification of B0, obtained as implications of this theoretical model, are that a labor force 

 
8 Pioneering works in the application of the SVAR analysis to the labor market are Blanchard y Quah (1989), Bean 
(1992) and Galí (1992). 
9 Other work in this line, for the Andalusian labor market, is Usabiaga et al. (2001). 
10 A detailed analysis of the labor market, following the flow approach, can be found in Blanchard and Diamond (1992) 
and Pissarides (2000). 
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shock does not have permanent effects on unemployment and vacancies and that a reallocation 
shock does not have permanent effects on the vacancies/unemployment ratio. 

 
In order to develop this application with Vensim we are going to follow the steps described in 

the previous section with both sub-models. Since these steps correspond faithfully to those followed 
in the process of econometric estimation of a SVAR model, the numerical results obtained are 
practically identical to those of Dolado and Gómez11. In this application, the sub-models 1 and 2 are 
renamed " labor 1 " and " labor 2 " respectively, and their code is shown in appendix A. 

 
4.1. Sub-model labor 1 
 
The stock and flow diagram corresponding to the sub-model labor 1 is presented in figure 3. 
 

data

data in t-1
incr
dat

decr dat

Variables in
t

variables in
t-i

incr var

decr var

variables
forecast in t

dummies
coefficients

variables in t-i
coefficients constants

dummies

<Time>

innovations
previous cov

<FINAL
TIME>cov

inc

Figure 3. Stock and flow diagram of labor 1 
 
First, the model reads the "data" imported from an external file: quarterly series12 of values 

for vacancies (V), unemployment (U) and labor force (L), besides the quarterly dummy variables.  
 
Later, several data initial transformations are made, obtaining "variables in t" and the 

"dummies". The variables obtained are v1=∆(v-u), v2=∆u and v3=∆l, composing the vector yt. In 
order to calculate these differences, the level variables "data in t-1" need to be calculated first, and 
are updated at the end of every period with an inflow "incr dat" that stores the data of this period as 
lagged information for the following period, and an outflow "decr dat" that eliminates the data 
stored previously. Moreover, the four seasonal dummies (d1, d2, d3, d4) are reduced to three (t1, t2, 
t3), in order to avoid the problem of perfect collinearity among them, defining: 
 
11 We have replicated the analysis developed in Dolado and Gómez (1997) using the econometric software Eviews 3.1.  
12 In appendix B we show the data that we have used in our analysis. 
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t1=d1-d4 

 t2=d2-d4                                         [10] 
 t3=d3-d4 
 
As we said previously, the core of labor 1 is the forecast of the variables for every period           

"variables forecast in t" from their values in the previous periods. The model parameters to estimate 
are "variable coefficients in t-i", "dummies coefficients" and the "constants". Using the “calibration” 
option of Vensim, with model 1, the following values are obtained for the parameters:  

 
v1 "t" -0,0227 0,1266 -1,3112 7,5704 v1 "t-1"
v2 "t" = 0,0154 + -0,0174 0,5078 -0,6107 v2 "t-1" +
v3 "t" 0,0023 -0,0026 -0,0215 0,1264 v3 "t-1"

-0,2134 0,3097 0,9093 v1 "t-2"
+ -0,0073 0,1930 -2,1762 v2 "t-2" +

0,0002 -0,0439 -0,0313 v3 "t-2"

0,2090 -0,1916 -6,1599 v1 "t-3"
+ -0,0103 -0,1398 1,1385 v2 "t-3" +

0,0007 0,0039 0,1545 v3 "t-3"

0,0646 0,9359 7,8355 v1 "t-4"
+ 0,0368 0,1115 -2,4865 v2 "t-4" +

0,0009 0,0313 0,0049 v3 "t-4"

-0,0562 0,3256 -0,2187 t1
+ 0,0095 -0,0570 0,0275 t2

-0,0008 -0,0005 0,0048 t3

With the estimated values of the parameters, we obtain the estimated “innovations” and the 
estimate of the variance–covariance matrix "cov": 

 
v1 v2 v3

v1 0,020200 -0,000163 0,000091
v2 -0,000163 0,000386 0,000017
v3 0,000091 0,000017 0,000010

Sub-model labor 2 
 
The stock and flow diagram corresponding to the sub-model labor 2 is presented in figure 4. 
 
1) Obtaining the polynomial matrix ΨΨΨΨ(L) corresponding to the reduced moving average form, 

and  the impulse-response functions (non orthogonalized) 
 
In the case of our application to the labor market, the terms of ΨΨΨΨ(L) are 3x3 matrices and their 

elements correspond to the response of each one of the three variables (v1, v2, v3) to each one of the 
three simulated unitary impulses13.

2) Obtaining the matrix S = B0
-1, the structural autoregressive form, the structural moving 

average form, and the structural shocks 
 

13 The numerical results obtained at this step are not relevant since impulse-response functions are non orthogonalized. 
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As in our example ΩΩΩΩ is a 3 x 3 symmetrical matrix, the equation [7] provides six conditions in 
order to identify the nine elements of S. The other three conditions are obtained as implications of 
the theoretical model. These conditions are that a labor force shock does not have permanent effects 
on unemployment and vacancies, and that a reallocation shock does not have permanent effects on 
the vacancies/unemployment ratio. 

 

variables in
t-i

incr var

decr var

variables
forecast in t

variables in t-i
coefficients

innovations

duration

magnitude

accumulated
forecast

previous
accumulated

forecast inc previous
accumulated

forecast

accumulated
forecast v

payoff

cov

cov1

<FINAL
TIME> <Time> vdfe

Figure 4. Stock and flow diagram of labor 2 
 

The numerical optimization is guided by the fulfillment of the aforementioned conditions, by 
means of the maximization of a vector of nine variables "payoff", giving the same weight to all these 
variables. The first three ([po1], [po2], [po3]) are the square of the forecast in the final period (long 
term) of u and v, responding to an unitary labor force shock, and the square of the forecast in the final 
period of v-u responding to an unitary reallocation shock, all of them with negative sign. The other six 
([po4], [po5], [po6], [po7], [po8], [po9]) are the square of the differences among all six non identical 
elements of the symmetrical matrices S S ' and ΩΩΩΩ, also with negative sign. That value of S is reached 
when ΩΩΩΩ = S S´, and the forecast of u and v in the final period responding to an unitary labor force 
shock, and the forecast of v-u responding to an unitary reallocation shock in that final period are all of 
them zero. Remember that the matrix S that we look for will be composed by the values that the 
variable "magnitude" takes in our model (of each innovation in each of the three simulations). The 
result obtained after the simulation is as follows: 

 
0,1161 0,0745 -0,0343

S = -0,0054 0,0127 0,014

0,0018 -0,0006 0,0025

The properties of the theoretical model refer to the values of u, v and v-u in the long term. As 
the variable "variables forecast in t” corresponds to the first differences ∆(v-u), ∆u y ∆l, the model 
recovers v-u, u and l accumulating the forecast in the variable "accumulated forecast”. The level 
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“previous accumulated forecast” is updated at the end of every period with the inflow “inc previous 
accumulated forecast”, that is equal to the forecast of the variables obtained in this period, and 
"accumulated forecast" is obtained by adding this forecast to the one accumulated previously 
(notice that the updating of the level variables at the end of every period is not registered in the 
output of the model until the following period). "Accumulated forecast v" is then obtained adding 
the levels v-u and u. 

 
3) Obtaining the orthogonalized impulse-response functions  
 
In the third version of labor 2, the elements of "magnitude" are made equal to the values 

obtained for S in the previous step. Therefore, the values obtained in the simulations of the variables u 
and l in "accumulated forecast", and of v in "accumulated forecast v", represent the orthogonalized 
impulse-response functions for these variables, recovered from their first differences. The 
specification "orthogonalized" refers to the fact that the structural shocks are not contemporaneously 
correlated among each other. 

 
As an example, we represent in figure 5 the impulse-response functions obtained for the 

variable unemployment [u = ln(U)]. A positive shock of aggregate activity (j1) permanently reduces 
unemployment, whereas a positive reallocation shock (j2) provokes a permanent increase of the 
same variable. Finally, a positive labor force shock increases unemployment in the short term; 
however, in the long term, as job creation and destruction adjust to the decrease of the real wages 
associated with the increase of unemployment, the effects on unemployment will tend to disappear. 

 

4) Variance decomposition of the forecasting error 
 
From the values, in each period, of u and l in "accumulated forecast" and v in "accumulated 

forecast v" in the orthogonalized impulse-response functions of the previous step, we can obtain the 
variance decomposition of the forecasting error "vdfe" in the same period for u, l and v. This 
forecasting error is originated by the responses to each one of the three structural shocks.  

 
In figure 6 we represent the variance decomposition of the forecasting error for 

unemployment [u = ln(U)]. In the very short term the structural shocks with more weight in 
unemployment variability are labor force (j3) and reallocation (j2). However, in the medium and 

Figure 5. Orthogonalized impulse-response functions. 
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long term the shocks of aggregate activity (j1) and reallocation (j2) explain completely the 
unemployment variability14.

5. Conclusion 
 
Our main goal has been the creation of a tool or “macro” to be used with Vensim simulation 

environment which, applied on a given SD model, provides autoregressive endogenous structure 
and short term forecasting capabilities. The main effort has been done searching for the 
correspondence, in stock-flow modeling, of the main concepts and procedures that appear in the 
SVAR model. 

 
In order to develop this stock-flow version of the SVAR model, we have built two sub-models 

using the Vensim simulation environment. Each of these sub-models corresponds to different phases 
of the process of the SVAR analysis. The lagged variables, essential in the SVAR analysis, are now 
treated as level variables. The calculation procedures have been similar to those of the original 
econometric SVAR analysis, although the analytical resolution of some of the steps of the problem 
has been done through simulation within the stock-flow sub-models. 

 
The core of the stock-flow sub-models built is the reduced autoregressive form of the SVAR 

analysis. The responses to the structural shocks have been obtained transforming them into non 
orthogonalized innovations, by means of the corresponding matrix, which also has been estimated 
with the second one of these sub-models.  

 
As an illustration, we present an application to the study of the Spanish labor market. The 

results obtained (estimates of the parameters, impulse-response functions, decomposition of the 
variance of the forecasting error) with the stock-flow sub-models reproduce faithfully those of the 
original application of the SVAR analysis.  

 

14 An important feature of the SVAR methodology is that the results obtained from the analysis of the impulse-response 
functions and the variance decomposition of the forecasting error are related to the identification restrictions adopted. 

Figure 6. Variance decomposition of the forecasting error. 
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APPENDIX A

SUB-MODEL LABOR 1 VENSIM CODE: 

Data input: 
data[x] 
x: u,v,pa,d1,d2,d3,d4 
 
Obtaining the data lagged one period: 
"data in t-1"[x]= INTEG (incr dat[x]-decr dat[x], 1) 
incr dat[x]=  data[x] 
decr dat[x]= "data in t-1"[x]  
 
Obtaining the model variables: 
Variables in t[v1]= LN(data[v])-LN("data in t-1"[v])-LN(data[u])+LN("data in t-1" [u])  
Variables in t[v2]= LN(data[u])-LN("data in t-1"[u]) 
Variables in t[v3]= LN(data[pa])-LN("data in t-1"[pa]) 
variables: v1,v2,v3  
 
Autoregressive Structure: 
"variables in t-i"[variables,lag]= INTEG (incr var[variables,lag]-decr var [variables,lag], 0)  
incr var[variables,"t-1"]= Variables in t[variables] 
incr var[variables,"t-2"]= "variables in t-i"[variables,"t-1"] 
incr var[variables,"t-3"]= "variables in t-i"[variables,"t-2"]  
incr var[variables,"t-4"]= "variables in t-i"[variables,"t-3"] 
decr var[variables,lag]= "variables in t-i"[variables,lag] 
lag: "t-1","t-2","t-3","t-4"  
 
Dummies: 
dummies[t1]= data[d1]-data[d4]  
dummies[t2]= data[d2]-data[d4]  
dummies[t3]= data[d3]-data[d4] 
quarters: t1, t2, t3   
 
Variables forecast: 
variables forecast in t[variables]= IF THEN ELSE (Time>=6, SUM("variables in t-i" 
[variables!,lag!]*"variables in t-i coefficients" [variables,variables!,lag!]) + constants[variables]+ 
SUM(dummies[quarter!]*Dummies coefficients[variables,quarter!]), 
Variables in t[variables]) 
 
Coefficients to estimate: 
"variables in t-i coefficients"[variables,variables,lag]= 0 
Dummies coefficients[variables,quarter]= 0  
constants[variables]= 0  
 
Obtaining the innovations and the variance-covariance matrix: 
innovations[variables]= Variables in t[variables]-variables forecast in t[variables] 
inc[v1v1]= innovations[v1]*innovations[v1]  
inc[v2v2]= innovations[v2]*innovations[v2]  
inc[v3v3]= innovations[v3]*innovations[v3]  
inc[v1v2]= innovations[v1]*innovations[v2]  
inc[v1v3]= innovations[v1]*innovations[v3]  
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inc[v2v3]= innovations[v2]*innovations[v3] 
previous cov[cova]= INTEG (inc[cova]/(FINAL TIME-5-16),0)   
cov[cova]= previous cov[cova]+inc[cova]/(FINAL TIME-5-16) 
cova: v1v1,v2v2,v3v3,v1v2,v1v3,v2v3 
 
Simulation control parameters: 
FINAL TIME  = 72 
 ~ Quarter 
 ~ The final time for the simulation. 
INITIAL TIME  = 1 
 ~ Quarter 
 ~ The initial time for the simulation. 
SAVEPER  = 1 
 ~ Quarter 
 ~ The frequency with which output is stored. 
TIME STEP  = 1 
 ~ Quarter 
 ~ The time step for the simulation. 
 
SUB-MODEL LABOR 2 VENSIM CODE: 

Autoregressive Structure: 
"variables in t-i"[variables,lag,j]= INTEG (incr var[variables,lag,j]-decr var [variables,lag,j], 0) 
incr var[variables,"t-1",j]= variables forecast in t[variables,j]  
incr var[variables,"t-2",j]= "variables in t-i"[variables,"t-1",j]  
incr var[variables,"t-3",j]= "variables in t-i"[variables,"t-2",j]  
incr var[variables,"t-4",j]= "variables in t-i"[variables,"t-3",j] 
decr var[variables,lag,j]= "variables in t-i"[variables,lag,j] 
lag: "t-1","t-2","t-3","t-4" 
variables : v1, v2, v3

Variables forecast: 
variables forecast in t[variables,j]= SUM("variables in t-i"[variables!,lag!,j] * "variables in t-i 
coefficients"[variables,variables!,lag!]) + innovations[variables,j] 
j: j1,j2,j3 
 
Estimated Coefficients: 
"variables in t-i coefficients"[v1,v1,lag] = 0.12661, -0.213419, 0.209034, 0.0646055 
"variables in t-i coefficients"[v1,v2,lag] = - 1.31123,0.30969,-0.19163,0.935878  
"variables in t-i coefficients"[v1,v3,lag] = 7.57044,0.909342,- 6.15989,7.8355  
"variables in t-i coefficients"[v2,v1,lag] = - 0.0174353,- 0.00726969,- 0.0102628,0.0367592  
"variables in t-i coefficients"[v2,v2,lag] = 0.507797,0.193024,- 0.13983,0.11152  
"variables in t-i coefficients"[v2,v3,lag] = - 0.610707,- 2.17617,1.13846,- 2.48651  
"variables in t-i coefficients"[v3,v1,lag] = - 0.00261106,0.000206853,0.000728788,0.0009468  
"variables in t-i coefficients"[v3,v2,lag] = - 0.0214941,- 0.0438737,0.00386141,0.0312963  
"variables in t-i coefficients"[v3,v3,lag] = 0.12642,- 0.0313129,0.154495,0.00487324 
 
Obtaining the variables in levels: 
accumulated forecast v[j]= accumulated forecast[v1,j]+accumulated forecast[v2,j] 
accumulated forecast[variables,j]= previous accumulated forecast[variables,j] + variables forecast 
in t[variables,j] 
inc previous accumulated forecast[variables,j]= variables forecast in t[variables,j] 
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previous accumulated forecast[variables,j]=INTEG(inc previous accumulated forecast[variables,j], 
0) 
 
Obtaining the matrix S (only in version 2): 
payoff[po1]= IF THEN ELSE(Time = FINAL TIME, -accumulated forecast[v1,j2]^2 , 0 ) 
payoff[po2]= IF THEN ELSE(Time = FINAL TIME, -accumulated forecast[v1,j3]^2 , 0 ) 
payoff[po3]= IF THEN ELSE(Time = FINAL TIME, -accumulated forecast[v2,j3]^2 , 0 )  
payoff[po4]= IF THEN ELSE(Time = FINAL TIME, -(1-(cov1[v1,j1]/cov[v1,j1]))^2 , 0 ) 
payoff[po5]= IF THEN ELSE(Time = FINAL TIME, -(1-(cov1[v1,j2]/cov[v1,j2]))^2 , 0 )  
payoff[po6]= IF THEN ELSE(Time = FINAL TIME, -(1-(cov1[v1,j3]/cov[v1,j3]))^2 , 0 )  
payoff[po7]= IF THEN ELSE(Time = FINAL TIME, -(1-(cov1[v2,j2]/cov[v2,j2]))^2 , 0 )  
payoff[po8]= IF THEN ELSE(Time = FINAL TIME, -(1-(cov1[v2,j3]/cov[v2,j3]))^2 , 0 )  
payoff[po9]= IF THEN ELSE(Time = FINAL TIME, -(1-(cov1[v3,j3]/cov[v3,j3]))^2 , 0 ) 
po: po1,po2,po3,po4,po5,po6,po7,po8,po9 
cov1[v1,j1] = magnitude[po1]^2+magnitude[po4]^2+magnitude[po5]^2 
cov1[v1,j2] = 

magnitude[po1]*magnitude[po7]+magnitude[po4]*magnitude[po2]+magnitude[po5]* 
magnitude[po6] 

cov1[v1,j3] = 
magnitude[po1]*magnitude[po8]+magnitude[po4]*magnitude[po9]+magnitude[po5]* 
magnitude[po3] 

cov1[v2,j2] = magnitude[po7]^2+magnitude[po2]^2+magnitude[po6]^2  
cov1[v2,j3] = 

magnitude[po7]*magnitude[po8]+magnitude[po2]*magnitude[po9]+magnitude[po6]* 
magnitude[po3] 

cov1[v3,j3] = magnitude[po8]^2+magnitude[po9]^2+magnitude[po3]^2 
cov1[v2,j1] = 

magnitude[po1]*magnitude[po7]+magnitude[po4]*magnitude[po2]+magnitude[po5]* 
magnitude[po6] 

cov1[v3,j1] = 
magnitude[po1]*magnitude[po8]+magnitude[po4]*magnitude[po9]+magnitude[po5]* 
magnitude[po3] 

cov1[v3,j2] = 
magnitude[po7]*magnitude[po8]+magnitude[po2]*magnitude[po9]+magnitude[po6]* 
magnitude[po3] 

cov[v1,j] = 0.0202,-0.000162531,9.0526e-005 
cov[v2,j] = -0.000162531,0.000385541,1.74239e-005 
cov[v3,j] = 9.0526e-005,1.74239e-005,1.02585e-005 
 
Innovations: 
 Version 1: 
innovations[variables,j]= duration*magnitude[variables,j] 
magnitude[v1,j]= 1,0,0  
magnitude[v2,j]= 0,1,0  
magnitude[v3,j]= 0,0,1 
duration = PULSE(1,1) 
 
Version 2: 

innovations[v1,j1] = duration*magnitude[po1]  
innovations[v1,j2] = duration*magnitude[po4]  
innovations[v1,j3] = duration*magnitude[po5]  
innovations[v2,j1] = duration*magnitude[po7]  
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innovations[v2,j2] = duration*magnitude[po2]  
innovations[v2,j3] = duration*magnitude[po6]  
innovations[v3,j1] = duration*magnitude[po8]  
innovations[v3,j2] = duration*magnitude[po9]  
innovations[v3,j3] = duration*magnitude[po3] 
magnitude[po1]= 1  
magnitude[po2]= 1  
magnitude[po3]= 1  
magnitude[po4]= 1 
magnitude[po5]= 1 
magnitude[po6]= 1  
magnitude[po7]= (cov[v1,j2]-magnitude[po4]*magnitude[po2]-magnitude[po5] *magnitude[po6]) / 

magnitude[po1] 
magnitude[po8]= (((cov[v1,j3]-magnitude[po5]*magnitude[po3])*magnitude[po2])-(cov[v2,j3]-

magnitude[po6] *magnitude[po3])*magnitude[po4])/(magnitude[po2]*magnitude[po1]-
magnitude[po7] * magnitude[po4])  

magnitude[po9]= (cov[v1,j3]-magnitude[po5]*magnitude[po3]-magnitude[po1]*magnitude[po8]) / 
magnitude[po4]  

duration = PULSE(1,1) 
 
Version 3: 
innovations[variables,j] = duration*magnitude[variables,j] 
magnitude[v1,j] = 0.116078,0.0745076,-0.0342579  
magnitude[v2,j] = -0.0054,0.0127004,0.0139544  
magnitude[v3,j] = 0.0018,-0.000581161,0.00251562 
duration = PULSE(1,1) 

 
Obtaining the variance decomposition of the forecasting error “vdfe” (only in versión 3): 
vdfe[v1,j]= accumulated forecast[v2,j]^2 / (accumulated forecast[v2,j1]^2+accumulated 
forecast[v2,j2]^2+accumulated forecast[v2,j3]^2)  
vdfe[v2,j]= accumulated forecast[v3,j]^2 / (accumulated forecast[v3,j1]^2+accumulated 
forecast[v3,j2]^2+accumulated forecast[v3,j3]^2) 
vdfe[v3,j]= accumulated forecast v[j]^2 / (accumulated forecast v[j1]^2+accumulated forecast 
v[j2]^2+accumulated forecast v[j3]^2) 
 
Simulation control parameters: 
FINAL TIME  = 100 
 ~ Quarter 
 ~ The final time for the simulation. 
INITIAL TIME  = 1 
 ~ Quarter 
 ~ The initial time for the simulation. 
SAVEPER  = 1 
 ~ Quarter 
 ~ The frequency with which output is stored. 
TIME STEP  = 1 
 ~ Quarter 
 ~ The time step for the simulation. 
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APPENDIX B

QUARTERLY SERIES OF VALUES FOR VACANCIES, UNEMPLOYMENT, LABOR 
FORCE AND DUMMIES 
Source: Labor Force Survey (published by INE), Employment Statistics (published by INEM)   

 
Quarters 
1977:01-
1994:04 

Vacancies 
(Thnds) 

Unemployment 
(Thnds) 

Labor  
Force 

(Thnds) 
1: 1st quarter 

 0: rest 
1: 2nd quarter

0: rest 
1: 3rd quarter  

0: rest 
1: 4th quarter 

0: rest 

Time Data[V] Data[U] Data[L] Data[d1] Data[d2] Data[d3] Data[d4] 

1 22,8 644 13265 1 0 0 0 

2 28,7 634 13285 0 1 0 0 

3 23,3 704 13337 0 0 1 0 

4 22,3 750 13380 0 0 0 1 

5 22,4 846 13377 1 0 0 0 

6 30,8 864 13287 0 1 0 0 

7 28 934 13302 0 0 1 0 

8 25,4 996 13306 0 0 0 1 

9 28,8 1061 13294 1 0 0 0 

10 33,6 1061 13257 0 1 0 0 

11 26,8 1137 13327 0 0 1 0 

12 27,1 1241 13337 0 0 0 1 

13 30,3 1384 13340 1 0 0 0 

14 25,2 1449 13261 0 1 0 0 

15 18,2 1504 13279 0 0 1 0 

16 17,4 1631 13273 0 0 0 1 

17 16,4 1755 13300 1 0 0 0 

18 16,9 1798 13251 0 1 0 0 

19 21,2 1891 13354 0 0 1 0 

20 26,6 2002 13375 0 0 0 1 

21 29 2077 13423 1 0 0 0 

22 33,9 2052 13419 0 1 0 0 

23 30,6 2148 13493 0 0 1 0 

24 33,7 2248 13572 0 0 0 1 

25 42,4 2336 13550 1 0 0 0 

26 60,2 2275 13561 0 1 0 0 

27 57,3 2352 13648 0 0 1 0 

28 47,9 2453 13703 0 0 0 1 

29 51,5 2670 13679 1 0 0 0 

30 64,9 2681 13623 0 1 0 0 

31 53,9 2745 13691 0 0 1 0 

32 50,7 2907 13719 0 0 0 1 

33 59,7 2963 13739 1 0 0 0 

34 98,3 2934 13705 0 1 0 0 

35 82,8 2931 13800 0 0 1 0 

36 80,5 2981 13853 0 0 0 1 
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Quarters 
1977:01-
1994:04 

Vacancies 
(Thnds) 

Unemployment 
(Thnds) 

Labor  
Force 

(Thnds) 
1: 1st quarter 

 0: rest 
1: 2nd quarter

0: rest 
1: 3rd quarter  

0: rest 
1: 4th quarter 

0: rest 

Time Data[V] Data[U] Data[L] Data[d1] Data[d2] Data[d3] Data[d4] 

37 103,6 3017 13916 1 0 0 0 

38 126,7 2932 13983 0 1 0 0 

39 82,6 2894 14042 0 0 1 0 

40 75,4 2925 14145 0 0 0 1 

41 96,4 2992 14232 1 0 0 0 

42 113,8 2936 14266 0 1 0 0 

43 101 2918 14440 0 0 1 0 

44 97,5 2904 14498 0 0 0 1 

45 114,6 2941 14553 1 0 0 0 

46 136,7 2899 14608 0 1 0 0 

47 120,3 2850 14701 0 0 1 0 

48 105,9 2701 14621 0 0 0 1 

49 111,3 2698 14702 1 0 0 0 

50 151,6 2555 14750 0 1 0 0 

51 138,7 2468 14895 0 0 1 0 

52 124,5 2522 14930 0 0 0 1 

53 128,5 2511 14993 1 0 0 0 

54 183,6 2438 14996 0 1 0 0 

55 129 2392 15048 0 0 1 0 

56 125,8 2424 15045 0 0 0 1 

57 114,4 2421 15000 1 0 0 0 

58 140,4 2388 15011 0 1 0 0 

59 119,2 2480 15157 0 0 1 0 

60 105,5 2566 15126 0 0 0 1 

61 100,4 2632 15082 1 0 0 0 

62 109,8 2686 15144 0 1 0 0 

63 107 2789 15202 0 0 1 0 

64 109 3047 15193 0 0 0 1 

65 79,1 3300 15181 1 0 0 0 

66 101,9 3397 15265 0 1 0 0 

67 81,7 3546 15423 0 0 1 0 

68 72,1 3682 15406 0 0 0 1 

69 65,4 3793 15428 1 0 0 0 

70 90,5 3763 15491 0 1 0 0 

71 86,9 3698 15486 0 0 1 0 

72 61,9 3698 15468 0 0 0 1 
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