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Abstract 
When is it better to use an agent based (AB) model, and when should differential equation (DE) models 

be used?  We compare and contrast the dynamics of AB models with those of the corresponding mean-field DE 
model, using the common and important context of the spread of contagious disease as an example.  We 
compare the dynamics of the well-known SEIR model of contagion, a lumped nonlinear DE system, to those of 
an explicit AB model of the same system.  We examine both the impact of heterogeneity in agent attributes and 
the impact of different network structures for the interactions among the agents, including fully connected, 
random, Watts- Strogatz small world, scale free, and ring-lattice networks.  We further show how agent based 
models can be formulated in continuous time while preserving the full stochastic character of state transitions, 
allowing AB and DE elements to be combined in the same model.  Sensitivity analysis demonstrates the 
conditions under which the extra complexity of the AB representation leads to different conclusions compared 
to the aggregated DE model.   

 
Introduction 
 
Spurred by growing computational power, agent-based modeling (AB) is increasingly applied to 

problems previously modeled with nonlinear differential equations (DE). Scholars interested in the dynamics of 
physical, biological, social, and economic phenomena can now choose from highly disaggregate, agent-based 
representations to highly aggregated models. 

The extended toolset has enabled many interesting and valuable studies, which have contributed to a 
better understanding of diverse phenomena. See (Schelling 1978; Carley 1992; Axelrod 1997; Axtell, Epstein et 
al. 2002; Epstein 2002; Tesfatsion 2002) for some interesting examples. AB models can readily include 
heterogeneity in the attributes of the agents, and in the network structure of their interactions. However, this 
increased detail comes at the cost of introducing large numbers of parameters.  It can be difficult to analyze the 
behavior of an AB model, and the computation required to carry out necessary sensitivity and policy analysis 
can be prohibitive, even with small populations of agents. Therefore modelers always choose among different 
modeling assumptions and methodologies with different strengths and weaknesses. 

Agent-based models in system dynamics are not new.  Indeed, the first system dynamics model, 
Forrester’s supply chain model (Forrester 1958; Forrester 1961), represents the interactions of four “agents” — 
in this case, the four organizations in the supply chain (retailer, wholesaler, distributor, and manufacturer).  Each 
of these, furthermore, is modeled as a set of “agents” (organizational departments) which exchange information 
such as inventory levels, order rates, and cash balances.  As in modern agent models, these individual 
organizational departments are conceived of as distinct entities, each responsible for specific decisions (e.g., 
production starts in the factory, hiring in the human resources department, advertising in the sales and marketing 
organization), and each has access to a specific subset of information cues that they use as a basis for their 
decisions. That is, the market and organizations within it are modeled as consisting of distinct boundedly 
rational entities, each with a specific and possibly different set of information upon which to base decisions, and 
each interacting with others according to well specified rules indeed.  While he did not use the now-current 
jargon, one of Forrester’s key contributions to modeling methodology was precisely to view systems as 
comprised of multiple interacting agents, each perceiving only a limited subset of all available information, and 
each with their own local goals, norms, and decision rules.  Forrester is adamant that organizations be modeled 
in this descriptive fashion and not as a single entity whose overall behavior was conceived of as the solution to a 
global optimization problem (see Morecroft (1983; 1985) for elaboration of the representation of bounded 
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rationality and limited information in system dynamics models).  Many system dynamics models since 1958 
likewise consist of multiple agents interacting in some context such as a market, organization, or ecosystem.   

While agent-based modeling is not new in system dynamics, there are differences between many 
modern agent models and typical system dynamics models.  First, while the example of Forrester’s supply chain 
model show that SD can portray distinct agents, there are other SD models in which a system is highly 
aggregated, with a small number of state variables capturing large populations of agents.  Forrester’s (1971) 
World Dynamics is perhaps the paradigm case: here the entire world system is portrayed in just five state 
variables (aggregate world population, nonrenewable resources, persistent pollution, and stocks of capital in 
industry and agriculture).   

There are other differences.  Most modern agent-based models are stochastic, discrete time systems.  
Agents are often modeled as being in a finite number of discrete states, and the state transitions among them are 
often stochastic, with probabilities that are either constant or dependent on the states of other agents, as in 
cellular automata where a cell’s state or probability of taking a state depends on the states of the cell and its 
neighbors; (see Conway’s famous “game of life” and Wolfram (2002); see Larsen and Lomi (2001) for 
organizational examples). In contrast, typical system dynamics models are formulated as systems of ordinary 
nonlinear differential equations. SD models often do not explicitly model heterogeneity among different 
elements accounted for in a stock, instead lumping different entities into a set of stocks at an appropriate level of 
disaggregation; within each compartment or stock it is typically assumed that all entities are perfectly mixed.  
The flows affecting these stocks are usually formulated using the “mean field” approximation familiar in 
physics, that is, as the expected or average value of the underlying probabilistic transitions from one state to 
another (though many SD models do include random variations in these average flows).  For example, the 
perfect mixing assumption within compartments means the probability of exit from a stock, S, is Poisson, that is, 
independent of an individual item’s residence time in the stock, τi, leading to the mean-field approximation that 
the outflow is given by the total stock and the mean residence time, S/τi. Understanding where the agent-based 
approach brings additional insights can guide system dynamicists to make a better use of agent based ideas in 
their modeling projects and therefore can significantly benefit the practitioners and the researchers in the field. 

Unfortunately, AB and DE models are seen by many as incompatible modeling paradigms rather than 
points on a spectrum, and it is currently difficult to integrate both AB and DE elements in the same modeling 
framework. Therefore to compare and understand the effects of different assumptions and to integrate the 
differential equation and agent based ideas in mixed mode models some bridging concepts and tools should be 
developed. For example, the continuous vs. discrete time dichotomy needs to be reconciled and unit consistency 
should be introduced into AB models. 

In this paper we contribute to the discussion on both these fronts by comparing the classical SEIR 
disease diffusion model developed under both DE and AB paradigms. We use the same software to develop both 
versions in parallel and enforce good modeling practices (e.g. unit consistency, independence of simulation 
output from the simulation time step) in both models. The results shed light on challenges and opportunities of 
integrating DE and AB approaches to build mixed mode system dynamics models that are consistent with good 
modeling principles. Moreover, we do extensive sensitivity analysis to examine where the two approaches 
converge and under what conditions the extra disaggregation required to build AB models pays off with new 
insights or different conclusions. Furthermore, this paper is informative in light of a recent policy debates on 
containing a smallpox bioterrorist attack (Halloran, Longini et al. 2002; Kaplan, Craft et al. 2002; Koopman 
2002) which highlights the importance of a comparative study between DE and AB models of disease diffusion.  

The next section discusses the characteristic differences between AB and DE models and reviews the 
literature comparing the two approaches.  Next we describe the structure of the DE and AB model. Next the 
analysis of the two models is described and finally we present conclusions, lessons learned, and directions for 
future work.  

 
Differential Equation vs. Agent Based 
 
It is possible to outline a spectrum of modeling approaches that include different DE and AB models. In 

fact in the context of epidemiologic modeling Koopman and colleagues (Koopman, Jacquez et al. 2001) offer a 
hierarchy of models based on different aggregation assumptions, and go through the benefits and problems of 
each. Their categories include ordinary differential equations (DE), stochastic compartmental (SC) models 
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where the rates of change are discrete but the rest of the model is similar to DE’s, individual event history (IEH) 
where the model tracks the states of individuals, but their network of relationships is ignored, and dynamic 
network (DNW) models where not only individuals, but also their network of contacts are explicit.  

 
Even though it is unrealistic to put a hard boundary between DE and AB modeling practices, these two 

modeling paradigms as the limits of a spectrum of possibilities differ in some important dimensions. One of the 
significant dimensions that separates DE models from AB ones is the level of aggregation. DE models tend to 
have a higher level of aggregation (less detail) while AB models lean towards more detailed representation of a 
concept. However, there is no dichotomous choice when dealing with aggregation. For example in modeling 
world population, one can imagine a continuum of possible aggregation levels, where at the highest level there 
is only a single variable representing the number of people, this can be diaggregated by age and country, or 
further to the level of individuals.  Indeed, why stop at the level of the individual person?  Individuals could be 
modeled as of ‘agents’ in the form of organs, the organs as consisting of ‘agents’ of cells, the cells as consisting 
of organelles, organelles as consisting of molecules, and so on.  Agent models, like all models, make 
aggregation assumptions and lump together all structure below some threshold.  The level of aggregation must 
always be chosen to be appropriate to the model purpose and is constrained by available computer power, data 
availability, client needs, and the time available for the study. 

Another difference between the two approaches is the way change through time is represented. DE 
models use a continuous time numerical integration approach where change comes in very small increments 
added to each other over very small intervals (denoted DT), time step. AB models typically use events that 
change variables to different values in an instant at pre-specified “periods” through simulation. This approach 
usually highlights the stochastic nature of change in AB models, even though stochastic elements are commonly 
added to DE models as well. Table 1 summarizes the main characteristics of the two modeling paradigms (see 
also (Scholl 2001).) 

 
Table 1- Differential Equation vs. Agent Based approaches. The two panes outline the main assumptions 

typically used in each method (though there are exceptions for both classes). 

Differential Equation Agent Based 
- dx/dt = f(x,u) 
x, vector of states; u, vector of exogenous 
inputs, including stochastic shocks; f() typically 
nonlinear 
- Typically in continuous time but difference 
equations also common 
Finite number of compartments (elements of 
x) 
- No heterogeneity within a compartment.  
Heterogeneity added by enlarging number of 
compartments, e.g.: 
Disaggregation by spatial structure: 
World population P becomes population by 
country, state/province, county, health status, 
gender, etc. Pijk…
Disaggregation by attribute  
People P become Pijk…, where, e.g., i, j, k = 
sex, age, health status, behavior, etc.). 
 

- Set A = {a1, … an} of agents, each agent has 
states xa  
x can be e.g. health status, location, wealth, 
beliefs, decision rules, etc. 
States xa change according to rules of 
interaction, e.g. Nearest neighbor (on lattice, 
torus, etc.) or other network structure; 
Stochastic or deterministic. 
- Discrete time: xa(t) = Rule[xa(t-1)] for all a in 
{A}]  
- Heterogeneity across agents.  Often, 
distribution of states across agents (often 
assigned randomly) 
Aggregation: 
Population is sum of agents; Number of people 
in each category (e.g., health status, gender) is 
sum of agents with those attributes each period. 
 

 
Even though AB models and especially DE models have a fairly long history, to the best of our 

knowledge published research at the intersection of the two modeling methodologies is limited. Scholl (2001) 
reviews the modeling principles underlying system dynamics and agent based models and suggests that there is 
room for the two communities to learn from each other’s work. A few researchers in recent system dynamics 
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publications have taken on this task by introducing mixed models where agents are modeled in detail with 
differential equations (Akkermans 2001; Schieritz 2002; Grobler, Stotz et al. 2003). 

 
On the question of comparing the DE and AB models, a few papers in different domains have looked at 

the problem. Picard and Franc (2001) compare the results of an individual based model of forest growth with 3 
different aggregate models. The results show that the AB model fit the data better. However, the results should 
be interpreted with caution as the AB models by definition have many more parameters that can be used to fit 
the data.  Further the aggregate models were not fitted to the data; instead their parameters are taken from those 
of the AB model. Edwards et al (2003) present an agent based model of innovation selection where 
heterogeneous agents have different thresholds for adoption of an innovation and compare it to the 
corresponding aggregate model. The analysis suggests that the two models show similar behavior or diverge 
under different parameter settings. Specifically, when multiple attractors exist in the deterministic version of the 
aggregate model, the behavior may follow a different path than that of agent based model. Koopman et al (2002) 
analyze the effect of having integer changes in number of individuals, rather than continuous variables, in 
disease modeling. Their results suggest that under some conditions the difference between the two settings 
become significant (for small populations). Keeling (1999) formulates a DE model that captures the first order 
effects of spatial structures in disease diffusion, traditionally only captured in AB models, that approximates the 
behavior of equivalent AB model extremely well even when highly correlated network structures link the 
individuals. 

 
In summary these primary studies suggest that in modeling the same phenomenon, the extra complexity 

captured in AB models sometimes leads to conclusions that differ from those of the corresponding DE model, 
while in many cases the two models have very similar behavior. Such divergence is particularly important if it 
changes the policy implications that follow from the modeling effort. For example, Kaplan et al. (2002) used DE 
methodology to model the spread of smallpox following a hypothetical bioterrorist attack and compared two 
alternative policies, mass vaccination and targeted vaccination, concluding that mass vaccination is far more 
effective in lowering the risk of the attack. In contrast, Halloran et al.(2002) develop an AB model and 
concluded that targeted vaccination is more effective. It is not clear if the difference in the results come from 
differences between the AB and DE methods (Ferguson, Keeling et al. 2003) or other assumptions.  The great 
importance of the policy issues at stake require an answer. 

In this paper we compare the behavior of the classic differential equation SEIR disease diffusion model 
with that of a parallel AB model. In this respect we follow the model alignment and docking concept of (Axtell, 
Axelrod et al. 1996). However, the AB model is far more complex than the DE version and captures the network 
structure between individuals and heterogeneity in individual attributes. This enables us to investigate the 
sensitivity of the gap between the two models’ behavior to different parameters and network structures. 
Epidemic models are well suited for this type of analysis because the effects of different networks of contacts 
among individuals seem to be very important in the diffusion process, leading to a relatively strong test for 
differences between the two methodologies. 

The results can inform the discussion on the fitness of DE and AB models to investigate different 
diffusion scenarios.  No matter how powerful computers become, modelers will always face tradeoffs between 
the size and complexity of a model and the ability to understand its behavior, carry out sensitivity analysis, and 
test policies. Due to limited time, budget, cognitive capabilities and client attention, modelers must always 
choose whether to capture more details of agent heterogeneity in attributes or in the network structure of their 
interactions, expand the model boundary to capture additional feedback processes, or keep the model simple so 
that it can be analyzed more thoroughly.  For example, in studying possible responses to a smallpox bioterror 
attack, Kaplan, Craft and Wein (2002) augmented the traditional lumped SEIR (Susceptible-Exposed-Infected-
Recovered) epidemic model to include rapid response immunization.  By using a lumped DE model they traded 
off the ability to consider heterogeneity in agent behavior and the network structure of relationships for the 
ability to include the impact of capacity constraints on crash immunization programs in a large city with a 
population of millions, and they are able to carry out comprehensive sensitivity analysis on the model.  In 
contrast, Halloran et al. (2002) used an AB model to consider the same problem, opting to model the contact 
network explicitly and capture heterogeneity in the behavior of individuals, while giving up the ability to 
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examine a population larger than a few thousand, capacity constraints on immunization, and the ability to carry 
out comprehensive sensitivity analysis. 

 
Models 

Mathematical modeling of infectious disease goes at least back to the 1920’s when Kermack and 
McKendrick (1927) developed the SIR (Susceptible, Infectious, Recovered) model. The SIR model is a lumped 
nonlinear differential equation model in which all members of the population are in one of three stages of the 
disease, namely Susceptible (S), Infected (I), or Recovered (R). Infected individuals can transmit the disease to 
susceptibles before they recover (or die) and stop infecting othersi. A typical extension of the SIR model is the 
SEIR formulation, which includes another state variable, the Exposed population, to capture diseases with 
significant latency between the transmission of the disease and the emergence of symptoms and development of 
infectiousness.  The SEIR model can be parameterized so that the exposed (asymptomatic infected) population 
may also transmit the disease but at different rates, reflecting their different health status compared to the 
Infectious population.  Typically, the rate of contacts between susceptibles and exposed is higher than that 
between susceptibles and infectious because the exposed are healthier (asymptomatic) and, often, unaware that 
they are potentially contagious, while the infectious are typically ill (and self-quarantined). S(E)IR models have 
been developed and applied successfully to many types of infectious diseases.  The S(E)IR paradigm (lumped 
nonlinear differential equations) has been extended to include multiple additional states (compartments) to 
capture more complex disease lifecycles, diagnostic categories and therapeutic protocols, to capture 
heterogeneity among the population, and to capture factors such as birth/recruitment of new susceptibles, loss of 
immunity of the recovered, and a host of other factors.  However, the lumped, aggregated formulation makes a 
number of simplifying assumptions including homogeneity of the population and perfect mixing within each 
compartment, and typically assumes that the flows between states are expected values.  Proponents of agent 
based modeling argue that heterogeneity in networks of social contacts and in individual attributes such as 
contact rates and infectivity, along with the inherently stochastic nature of contacts among individuals, can make 
significant differences in the evolution of an epidemic (see for example (Epstein, Cummings et al. 2004)). In this 
paper we analyze and compare a differential equation SEIR model and its agent based counterpart.  

Figure 1 shows an overview of the causal structure governing classical SEIR model. Two positive 
contagion loops fuel the spread of disease, where more exposed (and subsequently) infectious people result in 
more infection and even larger numbers of exposed people. Therefore a few initial exposed/infectious 
individuals start a growing epidemic. The main loop that slows down the epidemic after some time is the decline 
in the number of susceptibles (the negative Depletion loop in the figure). The two minor negative loops 
governing the Emergence and Recovery rates indicate that the rate of emergence and recovery depend on the 
number of Exposed/Infectious individuals. 
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Figure 1- Feedback structure of the SEIR model. The positive (self-reinforcing) contagion loops generate the 
epidemic, which ends when the susceptible population is sufficiently reduced that the negative depletion feedback 
dominates the dynamics. 

The classic SEIR model embeds a few key assumptions including the following: 
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• Contagion only occurs as a result of an infectious contact between a susceptible and an exposed (or 
infectious) individual. 

• The total population is fixed and only can be in one of the four states of susceptible, exposed, infectious, 
and recovered. 

• The recovered population is immune and immunity is permanent. 
• Individuals remain in the exposed or infectious state for some time before moving to the next state. 

These are the boundary assumptions of the classic SEIR model; we maintain them for both the DE and 
the AB models we compare in this paper, noting however that all these assumptions are easily and often relaxed 
in actual applications of the SEIR framework.  

The DE representation of the SEIR framework, however, imposes some additional assumptions that 
allow simpler equations. These include: 

• Perfect mixing of individuals within each compartment, so that everybody has the same chance of 
meeting everybody else. Moreover, the chances of any two people from two compartments contacting 
each other is the same. 

• Homogeneity of individuals in one compartment, so that the contact frequency and disease parameters 
are the same for all the individuals which are in the same state. 

• Exponential distribution for waiting times of individuals in each stock. 
• Mean field aggregation assumption so that the rates of change equal the expected values for summation 

of individual rates of change. 
With these assumptions the classical SEIR model, in which new cases arise only from constacts between 

the S and I populations, reduces to a few simple equations. Specifically, the infection rate is the expected 
number of contacts between infectious and susceptible populations resulting in infection of a susceptible person. 
Total contacts between infectious and susceptible populations is given by the total number of infectious 
individuals multiplied by their average contact rate, multiplied by the ratio of population that is susceptible, or 
CIS*I*(S/N). Here CIS is the average number of contacts for an infectious individual if the rest of the population 
was susceptible, I is the number of infectious individuals, and S/N is the ratio of susceptibles to the total 
population. Each contact between an infectious and a susceptible has an infectivity iIS,  which is the probability 
that a susceptible contracts the disease conditional on contact with an infectious person, putting the final 
infection rate at: 

IR= iIS*CIS*I*(S/N) 
Typically the parameters CIS and iIS cannot be independently estimated, and the infection rate is written 

IR = kIS/N where k = CISiIS, the rate of infectious contacts between S and I populations, with k estimated to 
provide the best fit to the data.   While these formulations are mathematically equivalent, it is conceptually more 
clear to separate these parameters. Moreover, each of these parameters is potentially influenced by different 
feedbacks in the system and therefore keeping them separate enables the modeler to easily incorporate new 
feedbacks. For example the contact rate C changes if people stay at home in fear of epidemic, while infectivity i 
changes if people wear masks in public (e.g., to protect against SARS) or use safe practices such as condoms 
and needle cleaning (e.g., to protect against HIV). The formulation is easily expanded to include the possibility 
of infectious contact between exposed and susceptible populations:  

)/(*)( NSIicEicIR ISISESES +=  
The “Emergence Rate” and “Recovery Rate” in the DE model follow a simple first order delay, where 

ε/EER =  and , consistent with the perfect mixing assumption. The details of the DE model 
formulations and how they can be derived from the AB model are discussed in appendix 1.  

dIRR /=

An agent based model can avoid the simplifying assumptions of DE formulation by introducing 
heterogeneity among individuals and assuming different contact structures among them—at the cost of more 
model complexity. As in the classic SEIR framework, we assume a fixed population of N individuals who 
interact with each other. Each individual is in one of the states of susceptible, exposed, infectious, and 
recovered. To keep the parallelism with the DE case in representation and description, we use four stock 
variables for each agent:  S[j], E[j], I[j], and R[j] for j = (1, …, N). These stock variables can be 1 or 0, 
depending on whether the agent is in that state or not.  

At the beginning of the simulation a few of these individuals are exposed, and the rest are susceptible. If 
any of the exposed or infectious individuals come into contact with a susceptible individual, there is a chance 
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the disease is transmitted to the susceptible person and s/he becomes exposed. Therefore for any short time 
interval time step of length DT one can calculate the probability that an individual changes her state from 
susceptible to exposed and use that probability and a draw of a random number to determine if an infectious 
contact happens between individuals j and k. If an infectious contact happens between individual j and any of 
the other people, the individual’s Infection Rate (IR[j]) during that period is calculated so that the state of 
individual j changes from susceptible to exposed.  

The probability of two individuals contacting each other depends on the structure of the network of 
relationship among individuals, as well as the state they are in.  Contacts are stochastic, and can only occur 
between people who are connected to each other in their network.  Heterogeneity is captured in two ways:  first, 
a class of people may have different mean contact rates.  For example, infectious people typically have a lower 
contact rate than exposed because they too sick to leave home or self-quarantine.  This type of heterogeneity is 
captured in the DE model through differences between cIS and cES and between iIS and iES.  In addition, the 
individuals in a disease state may have different contact rates and infectivities, making explicit the heterogeneity 
within compartments that the DE model cannot capture.  Agent heterogeneity section describes in detail how 
individual heterogeneity and different network structures are captured. 

For each individual the transition from E to I states (emergence) and I to R states (recovery) is a 
stochastic process determined by the probability of emergence and recovering in each period.  Those 
probabilities in turn are the reciprocal of the mean emergence time and duration of disease, respectively.  To 
maintain parallelism with the classic SEIR model we assume an exponential distribution for the residence time 
in each state. Details of the formulation for the AB model and how the DE model is derived from it are found in 
Appendix 1. 

In developing our AB model we adhere to good modeling practices, such as unit consistency and 
independence of the dynamics from the time step used in the numerical integration of the equationsii.  In 
contrast, many AB models are formulated in discrete time and one cannot change the length of the time period 
between calculations without reparameterizing the model.  These features not only enable a consistent 
integration of AB and DE structures in a single model, but also avoid ad hoc simulation periods which can in 
fact change the dynamics of interest (See (Low 1980) for an example of how arbitrary periods can result in 
erroneous conclusions about the origins of model behavior). 

In summary, the DE model has 4 state variables, three of which are independent since S + E + I + R = 
N, , and the AB model has 4*N states, and must also track interactions among the N individuals. Therefore the 
difference in the complexity of the two models increases on the order N2, so the size of the AB version grows 
very fast with the agent population. For example with a total population of N = 200, the DE model has a total of 
35 variables, parameters, and initial conditions, while the AB model includes over 400,000 (the main 
complexity comes from tracking the network of interactions among different agents). 

We use two general parameterization schemes.  In the base case the DE model uses the mean values of 
the parameters characterizing individuals in the AB model.  In the calibration case the parameters of the DE 
model are estimated to provide the best fit to the mean of an ensemble of simulations of the AB model. In the 
base case we parameterize the model based on the estimates for smallpox. This parameter setting makes the 
model relevant to the smallpox bio-terrorist attack policy analysis. Moreover, smallpox has a mid range basic 
reproduction numberiii (R0 ≈ 3 –10) and therefore is a good choice to observe potential differences between DE 
and AB models: diseases with R0 << 1 die out quickly for (nearly) any network structure, while for those with 
R0 >> 1 a severe epidemic is unavoidable in (nearly) any network of interactions.  

Our base case parameters are obtained from parameter values of other studies (Halloran, Longini et al. 
2002; Kaplan, Craft et al. 2002; Ferguson, Keeling et al. 2003). There are a few caveats in this parameterization 
process. First, smallpox is usually modeled in four, rather than three stages, where an individual is initially 
infected but goes through an incubation period, than s/he becomes prodromal with high infectivity but few 
symptoms, and then transfers into symptomatic before recovery (or death). This distinction is necessary to 
model different vaccination policies which have different effects during different stages. However, for the focus 
of our model, we aggregate the incubation and prodromal stages into the exposed population and therefore we 
use aggregate estimates for this stage. Second, there is a lot of uncertainty around the values of key parameters; 
we select middle ground values from the above studies. Moreover, it is very hard to empirically distinguish the 
contact rate and the infectivity, because only their product matters to the infection rate and disease diffusion. 
Consequently most studies do not distinguish between the two and report only their product. Therefore we 
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choose a typical contact rate for asymptomatic people and choose infectivity to yield R0 of approximately 3. 
Table 2 reports the base case parameter values for the DE model. The same parameters are used for the AB 
model when applicable. It is explained in the text when heterogeneous parameters are used for different agents, 
rather than those reported in the table. The parameters are fully described in Appendix 1. 

Table 2- Parameter values for the model without calibration of DE parameters. 

Parameter Shorthand Value Unit 
Total Population N 200 Person 
Contact Rate for Healthy Asymptomatic AC 5 1/Day 
Relative Contact Rate for Exposed RCE 0.8 Dimensionless 
Relative Contact Rate for Infectious RCI 0.25 Dimensionless 
Contact Rate Exposed CES 4 1/Day 
Contact Rate Infectious CIS 1.25 1/Day 
Infectivity of Exposed iES 0.05 Dimensionless 
Infectivity of Infectious iIS 0.06 Dimensionless 
Average Incubation Time ε 15 Day 
Average Duration of Illness δ 15 Day 
 

 
Experimental design 
 
We seek to analyze differences in the behavior of AB vs. DE models arising from the network structure 

between the individuals and heterogeneity across individuals in their contact frequency. We explore five 
different network structures and two settings for heterogeneity of individuals, leading to ten different 
experimental settings. For each setting we create an ensemble of 1000 simulations of the AB model. In the 
second regime of analysis we find the best fitting parameters for the DE model, which can replicate the mean 
behavior of the symptomatic population in AB model for each of the ten network and heterogeneity settings 
above. This set of simulations informs the facilities and limitations of the DE model in following different 
settings of the AB model behaviors. The same ten experimental conditions are used in these parameter 
estimation exercises. The five network structures and two settings of individual heterogeneity, as well as the 
calibration of the DE model are explained below.  

 
Network structure 
 
The literature on networks has been growing fast in the last decade. Researchers with different 

disciplinary backgrounds, from mathematics to sociology and biology, have contributed to a better 
understanding of how widespread and important the networks are in the world around us(Watts 1997; Watts and 
Strogatz 1998; Barabasi and Albert 1999; Barabasi 2002; Strogatz 2003). One of the main advantages of an AB 
model in comparison to DE models is its ability to capture the relationship network among individuals 
(Koopman 2002). While DE models assume a complete mixing of individuals in the population, equivalent to 
the possibility of anybody being able to meet anybody else at any time, realistic networks are far more sparse, 
with most people contacting only a small fraction of the population. Further, most contacts are comparatively 
‘local’ in some sense (geographical or in some other space of similarity).  The network structure determines 
which individuals can possibily meet each other and potentially transmit the disease. Consequently, what is 
important in this setting is the topology of the network of relationships among individuals. Researchers have 
identified at least three important types of random network topologies: completely random graphs, small-worlds 
networks (Watts and Strogatz 1998), and scale-free topologies (Barabasi and Albert 1999), which cover a large 
range of real world networks. In this study we include all three of these random topologies, along with a regular 
lattice and a fully connected network, to cover a large range of possible network interactions in the AB model. 

All the networks used in the AB model have the same population (N=200) and mean links per node 
(k=10). The population of 200 is smaller than most real world settings where modeling is used for policy 
analysis, e.g., cities or nations. However, the effects of network structure and stochastic elements seem to be 
more important in the small populations (Kaplan and Wein 2003) and therefore this population level gives us a 
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better opportunity to surface the differences between the DE and AB models. A small population also yields 
tolerable computation times, allowing more extensive sensitivity analysis. A mean of 10 links per person is 
realistic for relationship networks and makes the model resemble small human population centers, e.g. small 
towns  

At one extreme is the fully connected network, in which every person interacts, with equal probability, 
with every other. While unrealistic, the fully connected network corresponds most closely to the assumptions of 
the DE SEIR model.  Therefore it allows us to distinguish the differences between AB and DE models arising 
solely from stochastic effects and integer vs. continuous state variables. In fact these differences are not always 
trivial. One study (Rohani, Keeling et al. 2002) suggests that the stochastic effects are required to account for 
the irregular cyclical modes of whooping cough epidemics and another study (Koopman, Chick et al. 2002) 
concludes that stochastic effects arising from discrete events can have important effects on the final number of 
infected individuals. 

Moving away from the uniformity of the classic SEIR assumptions, the next network topology we use is 
the Erdos-Renyi (Erdos and Renyi 1960) random graph, the oldest and the best studied random network 
topology. Here people do not interact with all others, but with a subset.  However, each node (person) has the 
same probability of being linked to every other node. Several modifications have been proposed to better align 
the properties of this topology to what is observed in the real world networks (see (Newman 2002) for a review). 
In our model we use the original formulation where every two nodes are connected with the same probability, p. 
Therefore if each node has an average of k links to other nodes (average degree of a vertex=k) in the population, 
p, the probability of a link between two individuals, will be k/(N-1), where N is the size of the population. 

Random networks also conform well to the assumptions of the DE SEIR model, but are not good 
representations of most real life networks, in which most connections are local and only a few are distant.  That 
is, the probability of your having a link with another person tends to fall off with the distance between you and 
that other person (in the relevant space).  In their classic paper (Watts and Strogatz 1998), Watts and Strogatz 
provide a simple random network which falls between regular network structures and the completely random 
ones, and captures realistic features of clustering and short path lengths between any two nodes. They name this 
structure small-world, following the small-world, or six degrees of freedom, phenomenon. To build their small-
world topology one starts with a ring lattice with N nodes and k edges per node connecting each node to its 
immediate neighbors. The links between nodes are then randomly rewired with probability p (See Figure 2), 
resulting in a few long-range connections in a predominantly locally connected lattice structure.  

 
Figure 2- The Watts-Strogatz small-world network structure on a 1-dimensional lattice. The long-range 

links are distinguished with thicker, red lines. 

 

Watts and Strogatz examine the diffusion of an infectious disease in this network and conclude that the speed of 
diffusion is much faster than in a pure lattice structure with no long range connections, even for very small p 
values, because a few long-range links can disseminate the disease to different areas in the network. In this study 
we use a similar network with the probability that any link is long-range set at 0.05. This yields a relatively 
locally centered network, yet with realistic level of long-range networks to resemble it to human settings, e.g. 
small towns (Watts 1997).  We also analyze the pure ring lattice network in which there are no long range links 
(all links are to immediate neighbors). We expect this lattice structure to show the strongest network effects, 
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since by restricting contacts to neighbors it stands in direct contrast to the free mixing assumption of the DE 
model. 

The next network topology we examine is the scale-free network. Scale-free networks attracted a lot of 
attention after Barabasi and Albert (1999) showed how they can emerge from the normal growth and evolution 
of a network when the probability a new node links to an existing node is increasing in the number of links the 
existing node already has.  Such rules for network growth, known as preferential attachment, amounts to a rule 
where new nodes want to link to those that are already most popular, creating an obvious positive feedback 
through which popular nodes become even more popular, while those with few links are unlikely to make new 
connections.  Preferential attachment  can result in a power law for the probability that a node has k links, 
Prob(k)=k-γ, where γ empirically has fallen between 2 and 3. Scale free networks are characterized by a number 
of “hubs” with a large number of links, while the rest of the network is mainly connected to these hubs. Several 
real world examples including networks of relationships among journal citations, movie actors, internet 
websites, and some biological systems show scale-free properties. Diffusion in scale-free networks is expected 
to be faster than random networks, as the hubs get infected very quickly and then spread the disease to remote 
parts of the network (Barthelemy, Barrat et al. 2003). It is possible to argue that large differences across 
individuals in the number of contacts they have can result in some scale-free properties. For example, in the 
early diffusion of AIDS one individual, usually referred to as patient zero, a flight attendant with a large network 
of sexual contacts, is suspected to be linked to over 40 early cases of AIDS, thus seeding the epidemic 
throughout North America (Barabasi 2003). Appendix 2 explains how we construct a scale free network for this 
study. 

 
 
 
Heterogeneity among individuals 
 
While in the DE model the population is homogeneous, the AB model allows each individual to be 

different. In our diffusion setting each individual has four relevant characteristics: the contact rate, infectivity, 
incubation time, and average disease length. We focus our analysis on contact rate. This will enable us to keep 
the dimensions of sensitivity analysis at a manageable level with little compromise on capturing the difference 
of DE and AB models. For one thing only the product of the contact rate and infectivity matters. Moreover, the 
exponential distribution for incubation time and disease length results in significant heterogeneity across 
individuals, even though their underlying probability distribution parameters are identical.  

Contact rates for individuals depend on two distinct factors. First, individuals with higher number of 
links in the network of relationships have a higher chance of contacting other people. In fact, if an individual is 
not restraint by available resources for contact (e.g. time), in expectation her contact rate will be proportional to 
the number of links she has. Such setting is equivalent with having similar chances of contact for every link in 
the network. However, time is often limited and therefore higher number of links for an individual can result in 
lower chance of contact through each link that the individual is a part of.  Therefore we can discount the contact 
probability based on the number of links the two individuals at each side of a connection have, 1/(K[i]*K[j])α , 
where K[j] is the total number of links individual j has, and α is the strength of this discounting. The second 
factor that influences the contact rate is the tendency of two individuals to use their links: some links are used 
more than others, as some friends are more often visited. In the model, we capture this effect by assigning 
individuals different tendencies to use their links, TUL[j], and assuming that the chance that the link between 
individuals i and j is used is proportional to multiplication of individual tendencies to use links, TUL[i]*TUL[j].  
Therefore, we capture the heterogeneity in individual contact rates by capturing both these factors in the 
probability that a link is used for a contact: LCR[i,j]=L*TUL[i]*TUL[j]/ (K[i]*K[j])α , where LCR[i,j] is the 
average contacts per day for the link between individuals i and j, and L is an appropriate constant. 

We use this formulation to design two scenarios for individual contact rates in the AB model that fall in 
the two extremes of heterogeneity. In the homogenous case the effect of extra links of an individual is 
compensated by the negative effect of link multiplicity (α=1) and individuals have no difference in their 
tendency to use their links (σTUI=0).  In the heterogeneous extreme, not only number of links differentiate 
between low contact and high contact individuals (α=0), but also individual tendencies to use links are 
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distributed. We use a uniform distribution with a wide range, TUL[j] ~ U(.25, 1.75),  to assess the extent of 
individual heterogeneity effect.  We select the parameter L so that the expected contact rate for each realization 
of network equals the total contact rate for the whole population, AC*N.  Figure 3 illustrates the distribution of 
individual expected contact rates driven from the formulation above in a random sample of 1000 individuals. 

 

 Homogeneous Heterogenous 

U
ni

fo
rm

 

0

200

400

600

800

1000

1200

0
20

40
60

80
100

120
140

160
180

 

R
an

do
m

 

σ = 1.95 σ = 0 

0

100

200

300

400

500

600

0
20

40
60

80
100

120
140

160
180

 

Sc
al

e-
 F

re
e 

σ = 0.59 σ = 2.58 

0

50

100

150

200

250

300

350

0

50

100

150

200

250

 

Sm
al

l W
or

ld
 

σ = 1.58 σ = 6.42 

0

100

200

300

400

500

600

0
20

40
60

80
100

120
140

160
180

 

σ = 0.17 σ = 2.13 

 11



R
in

g 
L

at
tic

e 

0

200

400

600

800

1000

1200

0
20

40
60
80

100
120
140

160
180

 

 2 3 4 5 6 7 8 9 10 11 12  

2 3 4 5 6 7 8 9 10 11 12  

σ = 0 σ = 2.09 

Figure 2- Histogram for expected contact per individual i per day, ∑
J

jiLCR ],[ , for different network and 

heterogeneity settings. The mean is 5 for all cases and the standard deviation is indicated on the figure.  Histograms 
are built on data from 1000 random individuals (5 random realizations of each network setting) 

 
 

Calibrated DE Model 
 
The DE model is also analyzed when parameters are calibrated to the mean of a large ensemble of AB 

simulations. In real world applications the individual level parameter values are rarely known with a reasonable 
degree of confidence and are usually estimated from aggregate behavior. For example in epidemiological 
context rough estimates for the mean and distribution of the incubation period and duration of infectivity  are 
usually available from clinical data, however, data on R0 are much less certain and hence it is usually estimated 
from historical data. In the case of new emerging diseases, micro-level estimates of key parameters do not exist.  
The SARS epidemic provides a typical example, where clinical and biological data were initially unavailable so 
key parameters were estimated from data from the first few weeks of outbreak (Dye and Gay 2003; Lipsitch, 
Cohen et al. 2003; Riley, Fraser et al. 2003).Therefore comparing the DE model parameterized with the same 
underlying parameters as individuals in AB is not realistic for typical policy applications and exaggerates the 
difference between the two models.   

To capture the realistic situation in which the parameters of the DE model are set to those that provide 
the best fit to the aggregate data, we treat the AB model as the “real world” and set the parameters of the DE 
model to those that provide the best fit to the meaniv of the ensemble of AB simulationsv.  If there are behavioral 
or policy differences between the best-fitting DE and the AB models it would indicate that the aggregation 
assumptions of the DE model are inappropriate.  If, however, there are no meaningful differences between the 
best fitting DE and AB models the aggregation and perfect mixing, and homogeneity assumptions of the DE 
model are adequate and the extra detail of the AB model unnecessary.  For the calibration cases, the best fitting 
parameters for infectivity of exposed and infectious (iES and iIS) as well as the residence times in both exposed 
and infected states (ε and δ) are found and used to simulate the DE modelvi. Table 3 reports the parameter values 
used in the calibrated DE models for each of the network and heterogeneity scenarios. 
Table 3- Value of parameters in DE model fitted to mean behavior of symptomatic population in each AB scenario. 
The corresponding parameters in the original DE model are 0.05, 0.06, 15 day, and 15 day. 

  Network Structure 

 Heterogeneity? Uniform Random 
Scale 
Free 

Small 
World Lattice 

Homogeneous 0.0501 0.0452 0.0425 0.0352 0.0367 Infectivity of 
Exposed 

Heterogeneous 0.0543 0.0565 0.076 0.038 0.0366 

Homogeneous 0.022 0 0 0.0073 0.0068 Infectivity of 
Infectious 

Heterogeneous 0 0.0093 0.0104 0.0023 0.0032 
Average Homogeneous 13.0 12.0 11.0 8.7 5.9 
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Incubation Time Heterogeneous 16.9 7.34 4.6 8.7 6.4 

Homogeneous 15.2 16.6 17.2 23.5 29.5 Average 
Duration of 
Illness Heterogeneous 14.1 17.0 17.9 23.4 30.0 

 
In summary our experimental design includes five distinct network structures and two scenarios for 

individual heterogeneity in contact frequency, resulting in ten experimental conditions.  This design allows us to 
examine the effects of three distinct sources of divergence between AB and DE models: First, the stochastic 
effects that result from discrete events can be a source of difference between AD and deterministic DE models.  
Second, the effect of the structure of the network of relationships among individuals is captured in our study by 
examining five different network structures and comparing them with what is observed in the DE model. 
Finally, our analysis examines the effect of individual heterogeneity in the pattern of diffusion.  These 
comparisons are carried forward for both base case and calibrated DE model which constitute two views on 
what is the parallel DE model for an AB formulation. 
 

 
Analysis 
 
For each of the ten scenarios we simulate the AB model 1000 times and compare the results with the DE 

model behavior, both for the base case and the calibrated DE modelvii. We discuss two types of sensitivities in 
examining the results. Numerical sensitivity captures quantitative changes in the values of variables (e.g., the 
peak infected population or final fraction infected).  Behavior mode sensitivity assesses changes in the general 
mode of behavior (e.g. from S-shaped to linear diffusion). These types of sensitivity are discussed with regard to 
three measures. The diffusion fraction, F = R∞/Nviii,  is the fraction of the initial population that ultimately is 
infected; it measures the total burden of morbidity and mortality borne by the population.  The time from the 
introduction of patient zero to the maximum of the infected population (the peak time, Tp) measures how quickly 
the epidemic spreads, a parameter of great importance in mobilizing public health measures.  Finally, the peak 
value (Imax) of the symptomatic infected population determines the maximum load on public health resources. 
Figure 4 shows a sample AB simulation and explains these measures.  
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Figure 4- A sample simulation from AB model, showing the evolution of 4 different population groups. The 
main output measures, Diffusion Fraction, Peak Time, and Peak Value, are defined on this figure. 

 
The first set of graphs (Figure 5) shows the envelopes of simulated symptomatic population for each 

parameter setting and network structure we discussed.   The mean of the AB simulations is shown, along with 
the trajectory of the DE model with both the mean AB (Base Case) and best-fit parameters.  Also shown are the 
simulation envelopes encompassing different percentiles of the ensemble of simulations 

A few important patterns are observed in the data. First, the general mode of behavior does not change 
across different network or heterogeneity conditions and is similar to that of the base case DE model, except for 
the lattice network structure. In nearly all cases the epidemic generates the classic S shape diffusion pattern 
where initially the epidemic spreads at an increasing rate, then slows, peaks, decline, and finally ends when the 
majority of people have recovered. The similarity is no surprise:  The initial growth is driven by the positive 
contagion feedbacks where an increase in the exposed and infectious populations increases the rate of infection 
and therefore further pushes up the number of exposed and infectious.   The epidemic must end when the 
susceptible population is sufficiently depleted that the (mean) number of new cases generated by the exposed 
and infected populations is less than the rate at which infected individuals recover.  

One the other hand there is some numerical sensitivity to the network structure The gap between base 
DE and AB models widens as we move from uniform, to random, to scale free, small world, and lattice 
structures. In fact, as expected, the homogeneous uniform network is very similar to the  DE base case, while the 
lattice structure shows the largest difference in the timing and magnitudes of the epidemic.  
 
 

 Homogeneous Heterogeneous 
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Two concepts are central in explaining the variation across different network structures. First, how big 
is the network of relationships for an individual in the system: given the contact rate, the bigger the network of 
potential contacts, the higher is the chance of meeting a new person and therefore passing the disease to 
somebody new. Second, the degree of clustering:  when there is a high level of clustering (mostly local 
contacts), a given infectious person is likely to contact the same people again and again, so that after these 
neighbors are infected, the chance that an infectious person can contact a susceptible and generate a new case 
declines, even if the total susceptible population remains high.  That is, when most contacts are local, the 
epidemic can burn out in a local patch of the network, reducing the effective reproduction rate and slowing 
disease diffusion below what would occur if contacts were random. With these concepts in mind, we can explain 
the various levels of diffusion across different networks. In the uniform network with homogeneous agents, the 
positive contagion loop is strongest, because an individual can have contacts with everybody else, and the 
overlap of contacts for two infected individuals is minimum (the chance of sampling the same two people out of 
the entire population). The base DE and mean of the AB models are very close.  Note, however, that even here 
the epidemic in the base DE model is slightly faster than the mean of the AB simulations.  In the DE model the 
populations in each compartment are treated as continuous variables so that the number of exposed people 
increases immediately on introduction of patient zero, while in the AB model some time typically passes before 
the first new case is generated by a random encounter between people.  In effect, the discrete stochastic nature 
of contacts and state transitions adds a small additional delay in the contagion loop, slowing the epidemic 
slightly compared to the continuous time and continuous valued DE model.  However the base DE model 
remains within the 75% interval of AB simulations nearly all the time, so its behavior is statistically 
indistinguishable from that of the AB model.   

The random network closely follows the uniform network because it shares the second property (few 
common links for two infected individuals), yet the diffusion slows down slightly at the end as the number of 
common links between infected individuals increases over what is expected in completely homogenous 
population. The scale free network behaves in a very similar fashion because a few hubs have very high number 
of links; as soon as the infection is transferred to these hubs, they quickly spread the disease across the 
population. This results in a period of slow diffusion followed by a burst in disease as soon as the hubs are 
infected. In fact in case of heterogeneous scale-free the initial take off is even faster than DE case because hubs 
are not only well-connected, but also have larger contact rates. However, the larger contact rates of hubs trades-
off with lower contact rate of majority of other nodes, therefore after infection of main hubs, the rest of the 
network has lower contact rate and the epidemic stops at lower levels of diffusion fraction (Compare the median 
of homogeneous and heterogeneous scale-free scenarios in table 4). As in the uniform and random networks, the 
base DE trajectory remains within the 75% envelope of AB simulations most of the time and almost never falls 
outside the 95% interval, so the differences between the base DE and mean of AB simulations is not significant.   

Small world networks show slightly slower diffusion speed because their clustering coefficient is high 
and they lack nodes with large numbers of links.  Nevertheless, the few long-range links in this architecture are 
enough to sustain the typical S-shape pattern of diffusion, which is in line with Watts and Strogatz’s original 
results about diffusion in small-world networks (Watts and Strogatz 1998).The main impact of individual 
heterogeneity is an increase in the dispersion of the results among the ensemble of AB simulations and increase 
the speed of diffusion slightly. Nevertheless, the similarity of the right and left columns of the graphs suggests 
that in neither of the network scenarios adding individual heterogeneity makes a substantial difference in the 
general mode of behavior.  

Table 4 shows the diffusion fraction, F. We look at the mean, standard deviation, and the percentage of 
simulations with less than 10% diffusion fraction for the disease. The latter category is introduced to track the 
relative frequency of the non-diffusion mode of behavior in which the epidemic never takes off. In the DE 
model there is always an epidemic if R0 > 1.  Due to the stochastic nature of interactions in the AB model, it is 
possible that no epidemic occurs or that it ends early even when R0 >1.  Table 4 shows that the network structure 
strongly conditions the probability of takeoff, with the fraction of cases experiencing takeoff highest for the 
uniform and random networks, and lower in networks where most interactions among agents are local (as in the 
small world and lattice networks). The lattice network shows the greatest divergence in behavior from the DE 
case because the epidemic spreads almost linearly as it reaches a quasi-equilibrium in which encounters with 
new susceptibles are balanced by recovery of infectious individuals; the probability the epidemic burns out at 
any time in this regime is roughly constant.  Note that the 10% cutoff value is arbitrary and the results are not 
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sensitive to it because, except for the case of lattice network structures, two general modes of behavior exist, one 
dominant mode where diffusion fraction is fairly high and the epidemic sweeps through the population, and one 
where the epidemic dies off because the initially sick individuals recover before they pass the disease to others. 
Therefore if more than a few percent of population are infected, then most of the population will be infected and 
the diffusion fraction will go beyond 10% anyway.  

Table 4- Diffusion fraction F (final fraction of population infected).  The fraction of simulations with F ≤0.1, 
as a measure of non-diffusion mode of behavior, for the Diffusion Fraction statistic across different scenarios. 
Diffusion Fraction for DE model is: 0.984. Also Diffusion Fractions for the DE model fitted to mean of AB 
simulations in each scenario is reported. */**/*** denotes DE simulation falls outside the 90/95/99% confidence 
bound for AB simulations. 

 
NW 

Structure Uniform Random Scale Free Small World Lattice 

Median 0.980 0.965 0.929 0.955 0.505 

Mean 0.971 0.942 0.892 0.876 0.525* 

Stdev 0.103 0.139 0.181 0.237 0.310 

% F<0.1 1.1 2.1 3.9 5.2 8.1 

H
om

og
en

eo
us

 

Fitted DE 0.943 0.840 0.763 0.548 0.248 

Median 0.949 0.909 0.838 0.904 0.359 

Mean 0.931 0.865 0.789 0.812 0.404*** 

Stdev 0.130 0.195 0.205 0.257 0.268 

% F<0.1 1.9 4.8 6.2 7.9 12.0 

H
et

er
og

en
eo

us
 

Fitted DE 0.973 0.756 0.660 0.510 0.189 

 
These results distinguish the lattice structure from the rest: while majority of simulations in every other 

network structure end up with over 90% diffusion fractions, the lattice structure is widely spread on this 
dimension.  One interesting issue is that contrary to usual ranking of network structures, scale free networks 
have slightly lower diffusion fraction than small-world. The reason is that the power law distribution of network 
links leaves most of the nodes in this network with fewer than average links, therefore after diffusion of 
epidemic among highly connected hubs the disease may die out before spreading to the whole population. The 
high standard deviations for diffusion fractions are because of two distinct modes of behavior, one with almost 
complete diffusion, and one with the epidemic dying out shortly after the start and therefore exhibiting low 
diffusion fractions. The differential equation model cannot reproduce the second mode of behavior. 

To find out how often the epidemic dies off, we look at the fraction of simulations where diffusion 
fraction is smaller than 10%. The results suggest that the frequency of non-diffusion is fairly low, less than 10%, 
except for the lattice network case. In the lattice network scenarios, the diffusion fraction is fairly evenly 
distributed between 0 and 1 and the diffusion pattern often includes a relatively fixed rate of contagion, a 
different mode of behavior than other scenarios and the DE model. The reason is that the epidemic can grow 
only locally on a ring lattice and therefore the number of infectious people linked with susceptible ones is more 
or less constant throughout the diffusion. If at any time all the individuals on the infectious side of such links 
recover before passing the disease to susceptible side of the link, the disease dies out. The probability of this 
event is fairly stable throughout the simulation because of the stable number of such links, and therefore the 
epidemic has similar chances of burning out throughout most of the lifecycle. Figure 6 shows the histogram of 
diffusion fraction for the lattice network. Note that the decreasing trend in the percent of simulations with high 
diffusion fractions is consistent with the explanation above, as a constant probability of stopping through time 
will lead to decreasing number of epidemics that remain active and get a chance to proceed further. 
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Figure 6- The histogram for diffusion fraction in the case of heterogeneous lattice network. The lattice 

network is different from other networks which show two distinct modes, one with simulations concentrated at high 
diffusion farctions and another with a few simulations in very low levels (no diffusion mode).  

 Next we examine the dynamics of diffusion as related to the peak time and peak value for the infectious 
population. Peak time is important in a real epidemic scenario because it determines the time available to 
mobilize public health resources for fighting the epidemic. For well understood diseases these delays include 
deploying health workers, information about the disease, setting up treatment facilities, and, if available, 
vaccines.  For new diseases such as SARS, additional delays are created by the need to isolate the infectious 
agent, sequence its genome, identify vectors and routes of transmission, formulate and test treatments and 
vaccines, and so on.  The peak value, representing the total number of sick people at the peak of epidemic, 
determines the maximum load on public health resources, and likewise of great importance for policy purposes. 
Table 5 shows the mean and standard deviation of both variables across different scenarios, along with their 
values for the base case and fitted DE models. 

These results, along with the graphs in figure 5, show that uniform, random, and scale free networks 
have similar diffusion speeds that are also close to the deterministic DE model. The epidemic proceeds 
significantly slower, which also lowers the peak fraction as more people recover before new cases are added, 
peak time increases and peak values fall, indicating slower diffusion as we move from more random to more 
locally clustered networks. The standard deviations of both peak times and peak values also increase, indicating 
that the more locally clustered networks generate more variability in outcomes.  Intuitively, the placement of 
patient zero in the network makes no difference in the uniform and random networks, but can matter quite a lot 
in highly clustered networks (if patient zero is well connected diffusion is more likely and more likely to be 
rapid than if patient zero arrives in a poorly connected hinterland).  This increase in standard deviation suggests 
that despite the increase in the gap between AB and DE models as we go through different network structures, 
our ability to distinguish network structure from a given trajectory does not increase as fast as the differences in 
means would suggest (the differences only become significant for peak value in the case of lattice and 
(marginally for) small-world networks.) Finally, the behavior of the fitted DE model is very close to the average 
for the corresponding AB scenario, suggesting that the DE model can capture most of the network and 
heterogeneity effects. 
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Table 5- The mean and standard deviation for the peak time of infectious population for different networks 
scenarios, across 1000 simulations. The peak time for the DE model is 49 days and the peak value is 55 people. Also 
reported are the peak times and peak values for DE models fitted to the mean behavior of each AB scenario. 
*/**/*** denotes DE simulation falls outside the 90/95/99% confidence bound for AB simulations. 

  
NW 
Structure Uniform Random 

Scale 
Free 

Small 
World Lattice 

Mean 50.5 59.5 65.1 98.7 102.3 
Stdev 9.4 14.6 19.6 42.3 81.0 Homogeneous 
Fitted DE 51.1 60.5 66.6 94 90.4 
Mean 47.0 49.8 41.7 86.5 87.7 
Stdev 10.3 14.7 14.0 37.5 74.3 Pe
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e 

Heterogeneous 
Fitted DE 48 53.8 45.37 86.8 67.9 
Mean 58.5 52.1 46.0 32.0** 14.1*** 
Stdev 8.2 9.6 10.7 10.6 5.3 Homogeneous 
Fitted DE 50.8 42.2 36.0 21.3 6.8 
Mean 57.2 50.4 48.6 31.9** 13.1*** 
Stdev 9.6 12.2 13.3 11.5 5.3 Pe

ak
 V

al
ue

 

Heterogeneous 
Fitted DE 49.3 41.8 37.0 21.4 6.5 

 
The effect of agent heterogeneity on the dynamics of diffusion remains relatively small. The main effect 

is that the agent heterogeneity decreases the peak time. To understand this effect we note that individuals with 
higher contact rates form a sub-population with higher rates of diffusion than what is observed in the 
homogenous case, therefore a quick diffusion of epidemic in this sub-population. This effect is more 
pronounced in scale-free network because high contact rate is accompanied with high connectivity, creating a 
subpopulation of highly connected hubs that give rise to a quick initial diffusion. On the other hand, in 
heterogeneous networks we also have a sub-population with lower-than-average contact rates that becomes 
involved later in the epidemic, therefore, at the later stages of diffusion epidemic dies out faster in these 
networks when the reproduction number goes bellow 1 faster for this weakly connected group, than a 
homogenous population. This effect is evident in table 4 where heterogeneous networks show lower diffusion 
fractions. 

One would expect faster diffusion to increase peak value, because more people are infected before those 
already sick recover, yet peak value statistics do not show such effect. To understand this we note that at higher 
contact rates, each extra contact per day adds less to the chance that an individual contracts the disease from a 
neighbor, because at some point it is almost certain that the individual will contract the disease if all her 
neighbors are sick. Therefore heterogeneity in contact rates decreases the chances of infection more from people 
with lower levels of contact than it adds to the people with higher levels of contact. In fact in the extreme case 
where people are either hermits or very social, the effective population size will be reduced and therefore we 
will have quick diffusion among a smaller population, leading to smaller peak values. 

Tables 4 and 5 also suggest that most of the differences between base DE and different AB scenarios are 
statistically insignificant at 90% confidence level. When there is a difference, often network structure, and not 
the heterogeneity, appears to be the distinguishing factor.  For uniform, random, and scale-free none of the three 
metric can distinguish base DE from a typical simulation in the ensemble of AB simulations. For small-world 
and lattice networks, the differences are enough to distinguish the two model performances through one or two 
of the metrics (Peak Time never becomes significant).  This observation highlights both the fact that DE model, 
even in the base case, behaves quite similar to AB models, and that network structure and heterogeneity increase 
the variability of AB simulations, making it harder to distinguish AB and DE outputs. 

The differences between the models are much smaller when we compare the results of the AB model to 
the best-fit DE model.  Indeed, the dynamics of the best fitting mean-field model and mean of the AB 
simulations are hardly distinguishable (R2 for different scenarios are between 0.97 and 1.00) and none of the 
metrics in tables 4 and 5 distinguish between behavior of a typical AB model and the fitted DE.  Note that we fit 
the DE model to the mean of infectious population in the ensemble of AB model runs.  In practice model 
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parameters are obtained from historical data, analogous to one, or at most a few, realizations of the AB 
simulation, degrading the fit and yielding much broader confidence intervals for parameters.  Further, when the 
epidemic fails to take off, the DE estimate of the basic reproduction rate will be less than one even if the 
underlying value of R0 >1.  This small sample problem is equally a difficulty in parameterizing the DE and AB 
models. 

 
Discussion 
 
The assessment of modeling methods is always contingent on the purpose of the model. The purpose 

determines what variables are of interest, what level of precision is required, and what level of sensitivity to 
different assumptions is acceptable. Meanwhile, it is useful to categorize different sensitivity types to facilitate 
connecting different model purposes with different types of sensitivity to enhance assessment of appropriateness 
of different sets of assumptions for a modeling project.  

In this context it is useful to distinguish numerical, behavioral, and policy sensitivity (Sterman 2000). 
Numerical sensitivity exists when change in parameters or assumptions cause changes in the numerical values of 
some output measures that matter to the purpose. Behavioral sensitivity exists when the model’s mode of 
behavior is sensitive to some parameter value or assumption, e.g. an S-shaped diffusion mode changes into 
overshoot and collapse.  Policy sensitivity arises when the recommended policy resulting from a model is 
sensitive to changes in a parameter or an assumption, e.g. if mass vaccination is indicated by one set of 
assumptions and ring vaccination by another set.  Usually the existence of behavior mode sensitivity implies 
numerical sensitivity. Policy sensitivity is closely related to the purpose of the model, yet, for most strategic 
applications of simulation models, policy sensitivity to an assumption implies both numerical and behavioral 
sensitivity. 

The importance of each sensitivity type depends on the purpose of the modeling project. Numerical 
sensitivity is most important when we deal with point forecasting, or in high precision applications, e.g. 
designing the trajectory of the space shuttle. In general, numerical sensitivity to one parameter or assumption 
can be important only to the degree that we have confidence about the other parameters and assumptions of the 
model and the data used to calibrate and build the model. For example in applying epidemic models to real 
world problems, a 1% change in the diffusion fraction as a result of a change in one parameter is not important, 
if we don’t have any reliable data on the network structure (which appears to have far more influence on the 
diffusion fraction). Behavior mode sensitivity is important when long-term strategies and decisions are studied, 
e.g. investigating policies to stimulate the growth of a firm. In these settings the uncertainty around the issue is 
so high that the analyst is not concerned with the exact numerical values but cares mainly about the overall 
trajectories. Moreover, behavioral sensitivity is also important when the main purpose of the model is to 
understand the structural sources of dynamics. In such cases usually a change in the behavior mode is what 
signals a shift in the structural features responsible for the dynamics and therefore provides a window into better 
understanding of the structure-behavior relationship. Finally, policy sensitivity is by definition important. 

Our analysis discusses the numerical and behavioral sensitivity of disease propagation to the main 
assumptions that distinguish typical AB and DE models. Specifically, we explore two critical assumptions. First, 
that there is a network of relationships between agents governing social interactions; and second, that agents are 
heterogeneous in their relevant characteristics. The five network structures span a wide range of different 
patterns of relationship, from completely random to highly organized. The results show that the numerical 
sensitivity of the aggregation assumption to this dimension depends on the network structure. For uniform, 
random, and scale-free structures, numerical sensitivity is low, for a typical small-world it is medium, and for 
ring lattice network it is high. Moreover, the stochastic nature of AB models offers an additional insight into the 
range of uncertainty in model behavior that comes from different assumptions about the network and agent 
heterogeneity. Behavioral sensitivity to this aggregation assumption is evident in existence of two modes of 
behavior in the AB models that don’t show up in the DE model. First, the non-diffusion mode of behavior which 
happens when initial infectious people recover before they transmit the disease to others, and second, the linear 
diffusion that shows up in the lattice network. Nevertheless, these modes of behavior are infrequent (except for 
the lattice network case, see table 4) and the dominant mode of behavior in four of the network structures is 
identical to the DE case. These results imply that if overall knowledge of network portrays a structure close to 
lattice network in being highly local and low variation in the number of links per node, then using a DE model 
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with the same parameters will be inappropriate. We note that in modern human societies, with their high 
mobility, a pure lattice is unrealistic: there is simply too much travel and mixing among people.  The lattice 
network is more appropriate for the spread of diseases among immobile plant populations (see the spatial 
epidemic models in e.g. Murray’s Mathematical Biology (Murray 2002).)  If the network is small-world with 
sparse long-distance links, then disaggregation of simulation model into agents is needed in order to get 
numerical precision in our results, but a simple DE model will be able to capture the main dynamics at work. 
Finally, the behaviors of uniform, random, and scale-free networks are similar enough to the DE case that the 
main value added from disaggregation is in observing the non-diffusion mode and getting an idea about the 
variability of model outcomes caused by the stochastic encounters among individuals. 

The influence of individual heterogeneity remains even smaller. Despite changing the heterogeneity of 
agents in a wide range, the simulations show little sensitivity of dynamics to this dimension. The main insight 
from adding heterogeneity is that it distinguishes two sub-populations, one highly connected and one with sparse 
interaction, therefore an epidemic diffuses faster in the first sub-population before slowing down in the second 
group. The result is slightly sooner peak-times, followed by slightly lower diffusion levels in comparison of 
heterogeneous and homogeneous networks. This dynamic is similar to what has been observed in case of 
diffusion of HIV, where initial diffusion was faster than later stages due to the host population of dominantly 
male, homosexual, with large contact rates. 

The calibration results suggest that the simple DE model with fitted parameters can replicate the 
behavior of a detailed AB model under multiple network and heterogeneity scenarios. This comparison is 
important in the light of the fact that often parameter values for policy models are obtained through conceptually 
similar calibration processes. The fitted DE model is hardly distinguishable from a typical AB simulation in any 
of the networks and therefore shows little numerical sensitivity, yet, it can does not answer questions about 
variability of results, and does not show multiple modes of behavior (e.g. non-diffusion) with a single parameter 
setting, unless stochastic elements are added. In short, the calibrated DE model can be used for most policy 
purposes, as long as the questions of interest pertain mainly to aggregate variables and their expectations.  

The calibration results also highlight an important methodological issue. The parameter values obtained 
by fitting the aggregated DE model to the data from an AB simulation (and therefore from the real world) do not 
necessarily resemble the individual level parameters governing the micro-level interactions among agents 
(compare the fitted parameters in table 3 with the individual level parameters in table 2).  The reason is that the 
aggregate parameter values not only account for the individual level concept they represent (e.g. number of 
contacts per person per day) but also capture the impact on diffusion of the contact network and agent 
heterogeneity. This is an important consideration in parameterizing both AB and DE models.  For example the 
best fitting estimate of R0 may differ substantially from its true value when the network structure is dominated 
by local interactions (and that value varies as the disease spreads within a network).  Fahse (Fahse, Wissel et al. 
1998) offer a method for estimating aggregate level parameters from available individual level parameters so 
that one can use the more manageable aggregate model for policy analysis, while making the best use of all 
individual level data available.  

Our analysis and discussion focused on the effects of different simplifying assumptions typically used in 
DE models, as one of the important criteria for deciding between DE vs. AB models. However, there are several 
other considerations that need to be taken into account. First, in modeling social systems, data availability is 
usually an important concern. In absence of data, disaggregation can indicate whether the model is potentially 
sensitive to some aggregation assumption or not, but does not take the analysis any further in the policy 
conclusions for real problems. For example our results indicate numerical and behavioral sensitivity of the 
diffusion pattern to aggregation assumptions in the case of lattice networks, however, in the absence of any 
useful data about the type of the network structure in a population of interest, this result does not warrant the use 
of disaggregate AB model because the analyst has no reason to assume the lattice network structure, among all 
possibilities. 

Second, a more disaggregate, agent based model offers some leverage points and policy options that do 
not exist in the case of an aggregate model. For example, if the network of relationships in a population is 
known, one can examine the effect of altering this network in an AB model by removing a node or creating new 
links, to the overall social behavior of interest in the group, while such questions can not be asked in the DE 
model. 
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Third, there is a tradeoff between model complexity and an analyst’s ability to build confidence in and 
understand the model. AB models require significantly more computation resources than corresponding DE 
models, preventing modelers from carrying out full sensitivity analyses and limiting the size of the population 
that can be considered.  Our version of the DE SEIR model has a total of 35 variables, initial conditions, and 
parameters.  To simulate a population of only 200 individuals the corresponding AB model requires between 5 
to 50 thousand variables, depending on the network structure, plus the associated parameters, initial conditions, 
and random number calls.  Complete mapping of model behavior in parameter space takes a few seconds of 
simulation time in the DE model but is completely infeasible in the AB counterpart; policy analysis for a 
realistic population such as that of a nation or large city is likewise infeasible. 

Fourth, the purpose of the modeling project determines the cost of different types of error, and 
consequently the potential cost of different assumptions. In the case of the diffusion of epidemics an assumption 
that potentially underestimates the chances of diffusion of a disease is likely to be more costly, because it can 
result in avoidable morbidity and mortality due to inadequate preparation, immunization, or deployment of 
health care resources.  Therefore some researchers suggest that one should be mainly concerned with the upper 
limits on the speed of diffusion of disease, which usually are very close to the DE model’s behavior (Kaplan and 
Lee 1990; Kaplan 1991). The same argument would suggest that the cost of the aggregation assumption is 
increased in studies of diffusion of innovations, where diffusion is usually the desired outcome. 

Finally, the complexity of a model can be expanded in different directions. One direction is the 
disaggregation of populations into their constituent agents, which is one of the typical distinctions between DE 
and AB models. Another direction is expanding the boundary of the model by including feedbacks from other 
subsystems that can influence the behavior of interest. Yet another option is making the DE model more realistic 
by disaggregating the population into additional compartments or including noise in the mean-field rates of 
change. In a world of limited resources the researcher frequently needs to make decisions on which of these 
directions to choose. For example, by using an aggregate, DE model, Kaplan, Craft and Wein (2002) were able 
to include the dynamics of vaccination, including capacity limits on mass vaccination, in their model of 
smallpox attack, without sacrificing extensive sensitivity analysis. 

 
 
Conclusions 
 
In this paper we compare the AB and DE modeling methodologies . The propagation of an epidemic is a 

good context for examining this problem because both modeling methods are widely used even though the 
differences between the two are potentially pronounced in this setting. Therefore this study provides insights for 
choosing an appropriate set of assumptions in the tradeoff between complexity and understandability in other 
modeling problems. Moreover, models of diffusion of disease, innovations, and ideas (Rogers 2003) are 
structurally very similar, making the results of this study partially applicable to other diffusion problems.  

Our analysis suggests that, in the context of diffusion, disaggregating population into agents adds 
additional insights mainly when we deal with locally structured networks such as a lattice, or when we are 
interested in some marginal modes of behavior such as non-diffusion as a result of stochastic contacts, or 
reservoirs of disease in scale-free networks that prevent it from dieing out. In fact even in the case of locally 
dense networks, the main mode of behavior is usually well captured by a calibrated DE model. In the other 
network structure and heterogeneity scenarios we analyzed, the differences between DE and AB models were 
small, warranting AB disaggregation only in the presence of detailed network data on the specific population 
under study, and provided that the computational burden does not prevent sensitivity analysis or inclusion of 
other key feedbacks that may condition the dynamics.  These conclusions are reinforced by other tradeoffs 
involved in selecting an appropriate level of aggregation. 

We further showed how AB models can be formulated in continuous time so that AB structures can be 
integrated with DE structures in a single modeling environment while adhering to good modeling practice 
including dimensional consistency and independence of dynamics from the length of the time step used in the 
numerical integration of the equations.  The ability to mix DE and AB elements in a single model enhances the 
ability of analysts to build models with structure and assumptions suited to the problem under study, expanding 
the toolkit available to model important policy issues efficiently and effectively. 
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Appendix 1- The detailed model formulation 
 
In this section we develop an agent based SEIR model of epidemic diffusion and drive the classical 

differential equation model from it. At the time when S(E)IR models were developed, in absence of powerful 
computers, only the simplest differential equation models where tractable, therefore it is only recently that, with 
progress in computational power, AB models of disease are being developed and adopted. Nevertheless, 
following the more tangible logic of an AB epidemic model and deriving the DE model from it highlights the 
assumptions made in the process and clarifies the relationship of the two. The formulation for infection rate is 
explained in detailed for the agent based model, followed by derivation of the aggregate DE formulation for 
infection rate from the AB formula. 

In and AB model, if an infectious contact happens between individual j and any of the other people, the 
individual’s Infection Rate (IR[j]) during that period is calculated so that the state of individual j changes from 
susceptible to exposed. Formally: 
 IR[j]= IF THEN ELSE (TIC[j]>0,1,0)/time step 
 
Here TIC[j] is the “Total Infectious Contacts” in the last time step for individual j and is the summation of all 
infectious contacts in that time step between individual j and other people (See Figure 7). 
 

TIC[j]= C[j,k] ∑
k
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Figure 7- The infection rate formulation in the AB model 

 
Contact between individuals j and k happens stochastically. If a uniform random number Rn[j,k] is 

smaller than the probability of infectious contact between the two persons, contact will be 1, otherwise, it is 0: 
C[j,k]= IF(CP [j,k]*CR[j]*CR[k]*IP[k]*S[j]>Rn[j,k],1,0)  Where Rn[j,k]~Uniform[0,1] 

Here CP[j,k] is the probability of a contact between the two individuals during the current time step, if 
they were both healthy, CR[j]*CR[k] corrects the probability to reflect that unhealthy individuals have fewer 
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contacts (See below), IP[k] is the probability of infection upon a contact between individual k and a susceptible, 
and S[j] is 1 if the individual is susceptible and 0 otherwise.  

Probability of contact, CP[j,k], depends on the contact rates for different links (LCR[j,k]) and the 
simulation time step, so that we calculated the probability of a contact happening in one time step. For small 
probabilities we have: 
CP[j,k]=LCR[j,k]*time step 
 Contact rates for different links are calculated so that the total expected number of contacts remain 
similar to that of DE model (AC*N) while we account for different levels of heterogeneity as discussed in the 
text: 

LCR[j,k]= 
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Where NW[j,k] is a 0 or 1 variable that indicates if individuals j and k have a relationship in the given network 
of peopleix and is described in more detail in the analysis section. Average Contact (AC) is the average number 
of contacts per day that an individual in this population has if everybody else was healthy, and N is the total 
population. Tendency to Use Links for Individuals (TUL[j,k]) factors in the differences between individuals in 
their propensity to use their network links, and is either 1 (for homogeneous setting) or distributed with 
Uniform[0.25, 1.75] distribution (for heterogeneous setting).  The total number of links individual j has in the 
network, K[j], is used to capture cases where having more links reduces the chances of using those links, and α 
determines how strong this effect is (α=0 is when no such effect exists, heterogeneous, and α=1 is when extra 
links proportionately cut down on chances of contact). 

Contact Risks (CR[j]*CR[k]) factor in the effect of different disease stages on individual activity:  
CR[j]= (S[j]+E[j]*RCE+I[j]*RCI+R[j])/( S[j]+E[j] +I[j] +R[j]) 

Here Relative Contact rate for Exposed (RCE) and Relative Contact rate for Infectives (RCI) are 
parameters between 0 and 1 which adjusts for the effect of different disease stages on individual activity, 
relative to their activity level when healthy. 

Infection Probability (IP[k]) depends on which stage the individual is in, so susceptible and recovered 
people are not infectious around, while exposed and infectious individuals have a positive possibility of 
infecting a susceptible upon contact:  
IP[k]= (E[j]* iES +I[j]* iIS)/( S[j]+E[j] +I[j] +R[j]) 

Here iES and iIS are the infectivities of exposed and infectious people, i.e. the probability of a susceptible 
catching the disease upon a contact with an exposed/infectious person. 

To drive the DE equivalent of this model, we first note that infection rate (IRDE) in the DE model is for 
the whole population rather than individuals, and therefore we are looking for the summation of IR[j] in the AB 
model: 

∑
J

IR[j]= TIC[j]/time step= 1/time step*∑
J

∑∑
J K

C[j,k] x

C[j,k] is an stochastic variable. To drive the deterministic DE equivalent, expectation of C[j,k] is used: 

IRDE =1/time step*  CP [j,k]*CR[j]*CR[k]*IP[k]*S[j] ∑∑
J K

=1/time step* S[j]*CR[j]*  LCR[j,k]*time step CR[k]*IP[k] ∑
J

∑
K

In the DE model, homogeneity of population results in everybody having the same number of links, 
K[j]=K[k]=K, and same propensity to use their links, TUL[j]=TUL[k]=TUL. Therefore: 
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NW[j,k] depends on the network structure, however, in the DE model, one assumes that the network 
structure is homogeneous, i.e. everybody has the same chance of meeting everybody else at any time. Therefore  

NW[j,k]/ NW[j,k]=1/N∑
jk ,

2. Therefore LCR[j,k]=AC*N*1/N2=AC/N. Putting this into the equation for 

infection rate we will have: 

IRDE = S[j]*CR[j]* AC/N*CR[k]*IP[k] ∑
J

∑
K

 
S[j] is 0 for all people which are not susceptible, as CR[j]=1 for susceptibles, we will have: 

IRDE =AC/N* S[j]* CR[k]*IP[k]  ∑
J

∑
K

Considering that individuals are always in one and only one of the four states,  S[j]+E[j]+I[j] +R[j]=1 
and therefore 

IRDE = AC/N* S[j]* (S[k]+E[k]*RCE+I[k]*RCI+R[k]) (E[k]* i∑
J

∑
K

ES +I[k]* iIS) 

For individuals not exposed or infectious, (E[k]* iES +I[k]* iIS)=0 and therefore its multiplication with 
S[k] and R[k] will be zero, so we do not need to include the first term in those cases, and we can rewrite the 
equations as: 

IRDE = AC/N* S[j]* ( E[k]*RCE+I[k]*RCI) (E[k]* i∑
J

∑
K

ES +I[k]* iIS) 

Moreover, an individual can not be in both exposed and infectious states at the same time, therefore 
E[k]*I[k]=0. So more simplification is possible: 

IRDE = AC/N* S[j]* ( E[k]*RCE* i∑
J

∑
K

ES +I[k]*RCI* iIS) 

Finally, denoting the total number of susceptible, exposed, and infected S, E, and I respectively, we will 
have: 

IRDE = AC/N* S[j]*(RCE* i∑
J

ES E[k]+RCI* i∑
K

IS * ∑
K

I[k]) 

=AC/N* S[j]*(RCE* i∑
J

ES*E+RCI*iIS*I) 

=AC*(RCE* iES *E+RCI* iIS*I)*(S/N) 
  
Note that AC*RCE is the average number of contacts for an exposed individual, if everybody else was 

healthy (cES) and AC*RCI is the same variable for infectious infividuals (cIS)xi. Therefore we get to the typical 
SEIR formulation for Infection Rate (IRDE) (See Figure 8) 

)/(*)(IR DE NSIicEic ISISESES +=  
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Figure 8- The structure of SEIR differential equation model. 

The events of an individual transferring from Exposed to Infectious, and from Infectious to Recovered, 
are more straight forward and follow a similar logic, which is explained in detail for Recovery Rate (RR) (See 
Figure 9). 
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Figure 9- A very simple DE structure with its parallel AB formulation. 

The main idea for formulating the “Recovery Rate RR” is to switch “Infectious I’” from 1 to 0 at some 
specific time step which is selected randomly based on the probability of recovery at any time for each 
individual. This can be achieved through the following formulation: 
RR[j]= If Then Else( R[j]< Probability of Recovery[j], Infectious I’[j]/time step, 0) 

Here R is a random number taken from a uniform(0-1) distribution. It is generated each time step for 
each individual to test that, if Infectious, the individual can recover at that step or not. The “Probability of 
Recovery” is the probability that the individual will recover during a time step and depends on the probability 
distribution of recovery times for individuals. Here we assume an exponential distribution with parameter λ=1/d, 
where d is the average duration of illness in days. Therefore the probability of recovery is independent of how 
long the individual has been sick (See footnote ii). This value can be found based on the fact that the probability 
of not recovery during one day is 1-One Day/d, which itself equals to probability that an individual does not 
recover in any of the time steps during one day, or (Probability of Recovery)time step/One Day. Writing these 
equations and recovering the probability of recovery we get: 

Probability of Recovery[j]=1-(1-One Day/d)time step/One Day

The parallel DE formulation can be obtained by noticing that recovery rate is the summation of recovery 
rates over all the individuals. While the AB model recovery rate for each individual is a stochastic variable for 
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the parallel DE case we use the deterministic expected value of the recovery rate in calculating the summation of 
individual recover rates:  

RRDE= ∑ −−
=

−−

J

OneDayTimeStepOneDayTimeStep

TimeStep
dOneDayI

TimeStep
dOneDay // )/1(1*)/1(1

 

Expanding (1- /d)Day One time step/One Day, we note that the first two terms of expansion are a good 
approximation for this part of equation, as long as 1/d<1 and time step<1, both of which are good assumptions 
in this context. Therefore we replace (1- /d)Day One time step/One Day with 1-time step/dxii: 

RRDE = d
II =

step time
 step/d) time-(1-1*  

Therefore the parallel formulation in the DE case is a simple exponential decay with recovery rate being 
equal to population divided by waiting time, RR=I/d. Following this argument, all the equations for the DE 
model are listed bellow: 
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Appendix 2- The construction of scale free network 
Barabasi and Albert (1999) outline a simulation algorithm to grow scale-free networks. This algorithm 

starts with m0 number of initial nodes and adds one new node to the structure at every time t. The new node is 
connected to the previous nodes through m new links, where the probability of each old node j to receive one of 

the new links is m*kj/ k∑
J

j. In the resulting network the probability that a node j has connectivity smaller 

than k after t time steps is determined by the following equation:  
 
P(kj[t]<k)=1-m2t/(k2(t+m0)) 

 
To avoid the computational challenges of growing a thousand networks of size 200*200 outside our 

simulation software and importing them for the sensitivity analysis of scale-free network setting, we use the 
following algorithms to obtain, in closed form, scale-free networks with link distributions similar to Barabasi 
and Albert (BA) algorithm. 

 
We first randomly pick the number of links for each node, Nj, from the given probability distribution of 

having k links (equation above). The resulting link numbers are between m and 199, with the exception of the 
m0 initial nodes that can have less than m links. Then we find the probability for existence of a link between 
individuals j and i, , so that the expected number of links for every individual equals NjiP j. Finally, we use 

these  probabilities to determine if there is a link between individuals i and j.  jiP

Formally we need to find so that we have: jiP

j
I

ji NP =∑    for all j 

ijji PP =           for all i and j 

0=jjP            for all j 

10 ≤≤ jiP      for all i and j 
 
This set of equations is under-specified, i.e. there are more variables than equations, and therefore one can find 
infinite number of link settings that satisfy these conditions. Among these solutions, we pick the one that 
assumes no correlation between the links for different nodes, i.e. the probability of nodes i and j having a link is 
independent of whether they share other links in the network, and only depends on the total number of links they 

have. ∑
∏ ∑

∞=

= =

=

=
k

k kl

l
J

j

ij
ji l

kk

N

NN
P

0

0
2
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This solution is consistent with the BA algorithm assumption that the probability of link between new nodes to 
the older ones only depend on the total links an older node holds, and not on the specific network of 
relationships between different old nodes. 

The solution for is a polynomial series where each new term adds to the precision of the results. We 

use the first three terms (k=0, 1, 2) in our simulations, which is enough to give s that are 0.1% close to the 
real values. 

jiP

jiP

In the algorithm, the parameters m, m0, and t are set in order to get the desired number of links per 
node. Moreover, following the examples of BA paper, we keep m=m0. Note that by drawing a random number 
and comparing that with  to connect every two links, the expected number of links for node j will be NjiP j, but 
the exact number of links are binomially distributed, therefore we have a possibility of having unconnected 
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nodes, hermits, in our network. Such agents are indeed not susceptible to disease because they never meet 
anybody else. This issue is not problematic in our analysis because the average number of links for each 
individual is high enough to ensure the connectedness of the network in limits, and therefore the rare event of 
having a few hermits at worst slightly over emphasizes the effect of networks, but does not change the general 
trends. Our simulations show that the probability of having a hermit, and individual with no link to any other 
individual, is about 0.11% with the parameter settings of the scale free network. Note that with 2 initial exposed 
individuals, the chance of both of these individuals being a hermit is as low as 10-6, therefore the chances of 
non-diffusion as a result of first exposed individuals being a hermit is negligible in our analysis. 
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∑
S

i Traditionally the S(E)IR formulation denotes the R compartment “removed” and lumps both those who recover (and gain 
immunity) and those who die. This assumption is not completely harmless when there is a large number of deaths (e.g., 
smallpox, HIV/AIDS), since the at-risk population shrinks as the epidemic progresses, changing contact probabilities 
among individuals. Nevertheless we maintain the traditional assumption for comparability to the classical formulation. 
ii The current formulations are based on Euler numerical integration technique. Use of Runge-Kutta or other techniques may 
create problems in robustness of formulations. 
iii The basic reproduction number (R0) is the expected number of people that one infected individual can transmit the 
disease to when all others are susceptible, and measures the propensity of the disease to spread (it is related to the net gain 
of the feedbacks governing the growth of the infectious populations). In the DE model, for the situation when the entire 
population is susceptible the basic reproduction number can be written as:  

R0=Infectivity[S]*Contact frequency[S]*duration[S], where S is the stage of the disease. 

The observed reproduction number in the AB model can be determined by tracking how many individuals each person 
infects before recovering, and averaging. 
iv Mean performance was chosen because it gives an overall impression of diffusion pattern across all 1000 simulations. An 
alternative would be to calibrate the model to the behavior of a representative simulation from the ensemble of AB 
simulations. This alternative has the advantage of being closer to one historical realization of an epidemic. 
v Calibration was done using the Vensim™ software’s optimization engine and mean square error function. 
vi The infectivity parameters where constraint to be above 0, the average incubation time to be between 0 and 30 and 
average duration of illness to be between 5 and 30 days. The latter constraints are based on the fact that people have some 
understanding of disease length and therefore do not calibrate the model with no restriction on parameters. 
vii We start a simulation with 2 randomly chosen, initially exposed individuals and simulate for 300 days for Uniform, 
Random, and Scale-Free networks, 400 days for Small-World, and 600 days for Lattice network. This ensures that 
epidemic finishes in all the simulations. We use a numerical integration time step of 0.5. Sensitivity analysis shows no 
change in the overall performance of models when cutting the time step to 0.25 and 0.125. The simulations are done in the 
Vensim™ software. 
viii In fact we use (S0-S300)/N ≈ (R∞-E0)/N, rather than R∞/N, because E0 is not infected by the endogenous epidemic. R∞/N ≈ 
(R∞-E0)/N when E0 is small (as is the case in our simulations). (R∞-E0)/N = (S0-S∞)/N because at the end of the epidemic all 
the population are either in S or R state. Yet we simulate for a finite time of 300 days, therefore we use (S0-S300)/N rather 
than (R300-E0)/N because S300 is closer to its equilibrium value. This will bring our metric closer to what is observed at the 
real end of epidemic, should we continued the simulations longer, which is important in case of lattice network where 
epidemic is not always finished in 300 days. 
ix The network structure can be probabilistic, for example by having a continuous 0-1 variable rather than the binary choice. 
Here, except for one case of continuous probability network, we select the binary version as it is more in line with normal 
practice in AB modeling of networks, and highlights the effects of network structure better. 
x Note that in small time steps, there is little chance that TIC[j]>1 and therefore the Min function is not carried over. 
xi The parameter CES (CIS ) is representing the average number of contacts an asymptomatic (symptomatic) person will have, 
if everybody else was asymptomatic. Therefore these parameters are conditional on the other side of contact, which is here 
an asymptomatic individual. In general, if we have M different population categories, each with population Ni, they would 
have (M2+M)/2 different contact rates Cij ( for every i, j pair as well as i=j. Because contact between i and j is the same as j 

and i, Cij= Cji). In this case the average number of contacts for an individual from each category will be: Ci= ∑
J

Cij*Nj/N 

where N is the total population. In the case of disease epidemic, we are only interested in contacts between susceptible and 
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infectious populations, therefore, only the contact rates between exposed / infectious and susceptible (CES and CIS) are 
included in typical models. Similar argument is valid for the infectivity parameters, iES and iIS. 
xii The parameter One Day has the value 1 and the unit Day. Even though mathematically the same, it is required to have a 
conceptually coherent and unit wise consistent equation. 
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