

System Engineering and System Dynamics Models

Dr. Warren W. Tignor Ph.D.

Science Applications International Corporation (SAIC)

International Conference of the System Dynamics Society

Oxford, England

July 25 - 29, 2004

 ii

Abstract

System Dynamics (SD) set its roots in servomechanism systems that were a combination
of the earliest hardware and software systems known. Over time, SD grew and evolved
into a multiplicity of domains; coevolving was the domain of System Engineering. Today,
System Engineering has sub-domains such as architecture, design, performance and
modeling. The System Engineering topic of modeling has reached the stage of
development where structure and behavior are of high-interest; and they are the very
cornerstones of SD. In fact, there is enough System Engineering interest in system
structure and behavior that entirely new procurements are being considered for a
simulation capability based on the Unified Modeling Language™ (UML), particularly
Unified Modeling Language 2™, UML2™.

This paper looks at the possibility of applying SD to the problem of modeling the system-
engineered structure and behavior of information system architectures, designs and
performance. What is proposed is the possibility to reconnect with the roots of SD from
the servomechanisms systems to 21st century information systems. Reconnecting with SD
roots in servomechanism systems offers the opportunity to bridge SD and its structure and
behavior capability with information systems as described using UML2™. SD offers the
System Engineering domain an opportunity to leverage a compatible field of interest, and
its modeling and simulation tools without delay or costly new development.

 iii

Table of Contents

1 Introduction..1
2 Statement of the Problem...1
3 Literature Review...1
4 Research Method and Design ..6
5 Data Analysis ...7

5.1 Description of the BT IN Requirements ..7
5.1.1 BT Physical Block Diagram...8
5.1.2 BT Specification using UML™ ...8

5.1.2.1 UML™ Physical Architecture ...9
5.1.2.2 UML™ Application Logic...10

5.1.3 Given BT Simulation Variables ...12
5.1.4 Given UML™ SimML Results ..12
5.1.5 System Dynamic Stock and Flow Model...13

5.1.5.1 System Dynamic Model Comparable Results with Various Average
Lookups 16
5.1.5.2 System Dynamic Model Comparable Results with Nominal Average
Lookup and 3X Input Rate...19
5.1.5.3 System Dynamic Model Comparable Results with Nominal Average
Lookup and 30X Input Rate...22

6 Major Findings and Significance ...25
6.1 UML and System Dynamics Models ...25
6.2 Integrated View of Structure and Behavior ...26
6.3 Boundaries of the Reference Model...26
6.4 Sensitivity Analysis..26

7 Conclusions..27
8 References ..28

List of Tables

Table 5-1 Variables used in the makeCall simulation ...12
Table 5-2 SimML results of the makeCall operation..13

 iv

List of Figures

Figure 3-1 UML™ to Simulation Path ...5
Figure 3-2 Paths for Generating Simulation from UML™...6
Figure 5-3 Physical Architecture of the BT IN Application...8
Figure 5-4 UML™ Class Diagram of BT IN Physical and Application Architecture..........9
Figure 5-5 UML™ Sequence Diagram of BT IN Application ...10
Figure 5-6- UML™ Activity Diagram for makeCall...11
Figure 5-7 SD Stock and Flow Diagram based on UML™ Diagrams14
Figure 5-8 SD Stock and Flow Diagram with Auxiliary Parameters based on UML™

Diagrams ..15
Figure 5-9 SD Model Percentage Performance with various average Lookups17
Figure 5-10 SD Model Switch Messages accumulations with various average Lookups ..17
Figure 5-11 SD Model Calls ID’d accumulations with various average Lookup...............18
Figure 5-12 SD Model Calls Dialed accumulations with various average Lookups18
Figure 5-13 SD Model Calls Ringed accumulations with various average Lookups19
Figure 5-14 SD Model Percentage 3x Performance with various average Lookups20
Figure 5-15 SD Model 3x Switch Messages accumulations with various average Lookups

..20
Figure 5-16 SD Model 3x Calls ID’d accumulations with various average Lookups21
Figure 5-17 SD Model 3x Calls Dialed accumulations with various average Lookups21
Figure 5-18 SD Model 3x Calls Ringed accumulations with various average Lookups22
Figure 5-19 SD Model Percentage 30x Performance with various average Lookups23
Figure 5-20 SD Model 30x Switch Messages accumulations with various average

Lookups..23
Figure 5-21 SD Model 30x Calls ID’d accumulations with various average Lookups24
Figure 5-22 SD Model 30x Calls Dialed accumulations with various average Lookups ...24
Figure 5-23 SD Model 30x Calls Ringed accumulations with various average Lookups ..25

 1

1 Introduction

Forrester (1961) discusses the evolution of industrial dynamics and its relationship to
engineering systems with regards to World War II weapon fire-control systems. He notes
that before 1950 there was little or no acceptance of automated decision-making.
However, in the time from 1935 to 1945 information systems of 20 variables were easily
modeled using analog computers; from 1945 to 1955, information systems of 200 variables
were modeled with digital computers (Forrester 1961). Perhaps we are at the full circle
point in time when it is essential to reexamine the relationship between system dynamic
models and engineering systems. With the advent of the Unified Modeling Language2™
(UML2™) to model the structure and behavior of information systems, this paper
examines system dynamics in relationship to information systems modeling and simulating
structure and behavior.

2 Statement of the Problem

The system engineering domain has a clear need to model the structure and behavior of
information systems prior to embarking on a long and expensive implementation process.
The information system world has concentrated on the development of a modeling
language, UML™, that provides multiple views of a system, to include structure but little
or no support to the aspect of behavior, particularly with regard to simulation. Over time,
UML2™ was developed to help close the gap between UML™’s capability to simulate the
behavior of information system. Studies to date indicate that UML2™ has not closed the
gap from a simulation capabilities perspective and neither have several other
languages/systems, e.g., SimML, Rational Rose, TauGeneration2. This paper questions
whether any new language is required at all Since System Dynamics was invented to
model system structure and simulate behavior, this paper examines whether it will apply to
information systems. If an information system’s structure and behavior can be described
using UML™, will it translate readily into the System Dynamics paradigm?

3 Literature Review

Towill wrote that system dynamics is a methodology for modeling and redesigning
manufacturing, business, and similar systems that are part man and part machine (1993a).
He went on to discuss the roots of system dynamics set both in servo theory and
cybernetics with emphasis on “input-output analyses which are the system dynamics
equivalent of writing down balanced equations for hardware systems”, (Towill, 1993a, p.
201). Towill explains that system dynamics is a tool that can model, design and improve
“hybrid” hard/soft systems.

 2

System dynamics (SD) addresses building computer models of complex problem situations
and then experimenting with and studying the behavior of the models over time (Caulfield
& Maj, 2001). SD models demonstrate how unappreciated causal relationships, dynamic
complexity, and structural delays can lead to counter-intuitive outcomes. Additionally, SD
accommodates “soft factors” such as motivation and perceptions so that management can
better understand problem spaces. In Caulfield’s and Maj’s opinions, “…system dynamics
in particular represents a choice of first resort for the broadest range of problem spaces”
(2001, p. 2793).

Caulfield and Maj (2001) see SD as part of general systems theory (GST) that they
attribute to the work of organismic biologist Ludwig von Bertalanffy (p. 2795).
Bertalanffy was concerned that modern science was over specialized, necessitated by
enormous amounts of data, the complexity of techniques, and the theoretical structures
within each field.

While others were extolling the virtues of system dynamics to model complex systems,
UML™ was appearing on the seen as a third generation object-oriented information
system modeling language. Kortright (1997) recognized that there was a great deal to be
gained from the use of UML™ for simulation modeling of complex software systems. He
noted that an important problem in simulation is that many models are described in a large
variety of notations or directly in a programming language (Kortright, 1997). To the
contrary, UML™ provided a set of proven notations for model description and permitted
the visualization of alternative designs.

Despite the power of UML™ to visualize a model, the diagram descriptions themselves
remained static. To perform an executable simulation, UML™ required translation into
another language, an executable language. Kortright said, “There is a close
correspondence between the Java programming language and UML™” (1997, p. 45).

Kobryn (1998) describes the UML™ constructs and techniques that support the modeling
of distributed enterprise information system architectures. He shows how UML™ can be
used for behavioral “(or dynamic)” architectural modeling. He makes clear that the
information system architecture field is in its infancy and that the emphasis is on the
structural properties of software systems rather than their behavioral properties.

Miller (2002) wrote that the Object Management Group™ (OMG™) knew that UML™
was a compromise among several competing schools of modeling and that all the available
“good ideas” were not included in the language. Hence, the OMG™ initiated a request for
proposal in 2000 for the revision of UML™ as UML2™. Five teams submitted proposals
in 2001 and the OMG™ is expected to release a UML2™ standard in April 2004.

 3

Selic, Ramakers, and Kobryn (2002) document that practitioners and researchers have
adopted UML™ since its introduction in 1997 at a rate exceeding OMG™’s expectation.
Its popularity confirms the need for a communication medium for both humans and
software tools. At the same time, the rapid acceptance and usage has generated pressure
for improvements and new features.

Before considering changes, Selic et al. (2002) advocate an understanding of the original
purpose of UML™, i.e. a general purpose language for modeling object-oriented
information system applications. The purpose of the model is to understand the suitability
of a proposed solution before expenditure of resources to build it. They say that the need
for modeling becomes more apparent as the complexity of information system software
increases; the complexity will reach to the point of challenging our ability to comprehend
it. So the challenge is to create a model that allows the concise expression of the essential
aspects of information system software being designed while omitting irrelevant detail.

For practical reasons, Selic et al. (2002) want to see UML™ evolve rather than be replaced
with something new. They see a primary requirement for UML2™ as a precise definition
of semantics, including “its dynamic (runtime) semantics”, (Selic et al., 2002, p. 71). They
see the extended modeling of complex behavior as needed. Behavior modeling needs to
include the ability to hierarchically compose and combine individual information system
behavior specifications. However, they recognize that in some cases, cramming all useful
concepts from diverse domains into a single language is not always practical. “It is crucial
to avoid the infamous ‘language bloat’ syndrome while retaining all the advantages of a
standard” (Selic et al., 2002, p. 71).

In contrast to Selic, et al. (2002), Dori (2002) thinks that UML™ reform may be “too little
too late” to become the information system architect’s tool of choice for modeling complex
software systems. To him, UML2™ must integrate structure and behavior in a single user
friendly manner; the scope required is significant and can only be achieved in a
revolutionary way. He sees UML™ problems in three categories: “model multiplicity
resulting from excess diagram types and symbols; confused behavior modeling; and the
obscuring influences of programming languages” (Dori, 2002, p. 82). He declares that
none of the nine UML™ models clearly shows an integrated view of the most prominent
and useful system aspects: structure and behavior. According to Dori (2002), the
interdependence of structure and behavior mandates that these two major system aspects be
addressed concurrently.

UML™’s segregation of structure and behavior unnecessarily strains system engineers’
cognitive ability by requiring they mentally integrate the various system models into a

 4

coherent, holistic view. “This cognitive load severely hinders use of UML™ as a system-
modeling tool” (Dori, 2002, p. 83). System engineers have to struggle with complexity
and inconsistency regarding the modeling of information system dynamics. “UML™’s
inherent lack of a unifying system dynamics concept calls for another comprehensive
revision”, according to Dori (2002, p. 84).

Wiklund (2003) looked at UML™ to see whether it was possible to model the dynamic
change of behavior. In particular, he was evaluating how on-line replacement of
JavaFrames CompositeStates could be used to change parts of the state space during run-
time; he wanted to model the problem first with UML™. He found that it was possible to
model run-time introduction of composite states, using interaction diagrams in UML2™.
He found “…no solution to modeling such dynamic change of behavior” neither with
UML™ 1.4, 1.5, nor the proposed UML2™ standard (Wiklund, 2003, p. 2).

At the time that Winlund did his research, the UML2™ superstructure standard had not
been adopted by the OMG™ – May 2003. On June 12, 2003, OMG™ announced at their
technical meeting in Paris, France, that the Analysis and Design Task Force voted to
recommend adoption of the UML2™ Superstructure specification, completing the
definition of this major upgrade to the industry's main software modeling notation Lenehan
(2003).

De Wit (2003) has examined UML2™ as a step towards a universally accepted
information system software performance engineering (SPE) tool. As his test case, he used
the work of Bütow, Mestern, Schapiro and Kritzinger (1996) that examined the means of
predicting the performance of a communication protocol. According to de Wit (2003),
Bütow et al. (1996) took an approach that did not affect the syntax of the formal
description technique and did not depend on it either. Since Bütow et al. (1996) were able
to use “SDL Performance Evaluation of Concurrent Systems” as a way of mapping a
system specification to its target environment without changing the syntax of the formal
description technique, de Wit (2003) investigated applying the same approach using
UML2™ (pp. 4-5).

What de Wit (2003) investigated is the feasibility of moving SPE from the traditional
“start” of the development life-cycle, where requirements are determined and the “end”
where they are verified by testing, to include a model-based approach during information
system development that validates performance throughout the development cycle. He
believes that “…software specification languages (notably UML™) should incorporate the
ability to specify performance requirements, thus bridging the gap between information
system software design and performance analysis” (de Wit, 2003, p. 7).

 5

Arief (2001) states that building a new information system requires careful planning and
investigation in order to avoid problems in later stages of development. Generally, using
UML™ in the system specification eliminates or minimizes ambiguities. The proposed
system’s performance needs to be investigated before the implementation stage can be
commenced (Arief, 2001). Understanding information system performance is necessary to
decide the following: 1. whether a particular design will meet the requirements and 2.
whether it is worth implementing the system or not.

One way to obtain performance estimations is by simulating to mimic the execution of the
system. Arief (2001) points out that currently available UML™ tools do not provide any
facilities for generating simulation programs from UML™ specifications. His research
involved investigating a framework that could capture the information system simulation
model from UML™ design notation.

Arief (2001) built a framework called the Simulation Modeling Language (SimML) as part
of his Ph.D. dissertation. Arief (2001) constructed tools that enable an automated
transformation of a UML™ design notation into a simulation program, Figure 3-1.

Figure 3-1 UML™ to Simulation Path

 6

According to Arief (2001), the SimML framework can be used for generating simulation
programs in other simulation languages (such as SIMULA) by modifying the program
generator part of the SimML parser, Figure 3-2.

Figure 3-2 Paths for Generating Simulation from UML™

With the tools, he performed case studies to demonstrate their ability to create a simulation
framework in general. The case study of interest focuses on the makeCall operation of
the British Telecom’s Intelligent Network (IN) application (Arief, 2001).

4 Research Method and Design

The research method uses a case study of a real-life problem described in UML™ and a
non-system dynamics simulation language, SimML, and recasts the UML™ into a System
Dynamics model using Vensim. The work by Arief (2001) documents the real-world
problem identified by British Telecom (BT) Intelligent Network (IN) to size the server

UML Tool

SimML
Parser

Simulation
Program

Textual
notation

uses

uses

generates

generates

UML Tool

SimML
Parser

Simulation
Program

Textual
notation

uses

uses

generates

generates

UML Tool

SimML
Parser

Simulation
Program

Textual
notation

UML Tool

SimML
Parser

Simulation
Program

Textual
notation

uses

uses

generates

generates

 7

capacity needed to make and receive calls within an information system that featured the
capability to perform caller id, call blocking, billing and more.

Arief (2001) modeled the system structure using UML™ diagrams. For behavior
modeling, Arief (2001) created a Java language based simulation language framework he
called SimML. The research design reuses the UML diagrams created by Arief and
applies them to the creation of a Stock and Flow system dynamics model. From the stock
and flow diagram, a Vensim model is constructed for structure and behavior performance
comparison to the SimML model created by Arief.

The intent of the research method and design is to show that UML™ diagrams support the
construction of a System Dynamic model, Stock and Flow diagram, and that the simulation
results produced by Vensim are comparable to Arief’s (2001) results.

If the results of the System Dynamic model and Vensim simulation are comparable to the
case study results (Arief, 2001), the hypothesis that System Dynamic models are derivable
from UML™ is supported and the relevance of System Dynamics models to UML™ is
substantiated, making room for Vensim and similar languages to become part of the
information system structure and behavior modeling toolset. Although there is limited
comparison of model results, the focus is not to produce a comparison of SimML to
Vensim, or the specific results of the simulations.

5 Data Analysis

The data analysis begins with the BT problem statement, block diagram, UML™ diagrams,
and SimML simulation results generated by Arief (2001). Following these artifacts are the
System Dynamic Stock and Flow models and simulation results used for comparison to
Arief (2001). The focus of the comparison is the ability to produce a comparable System
Dynamic stock and flow model, and simulation results from the same UML™ diagrams
and requirements that were used by Arief (2001). Although there is limited comparison of
model results, the focus is not to produce a comparison of SimML to Vensim, or the
specific results of the simulations; the emphasis is the ability of a system dynamics
approach to produce a useful stock and flow model and simulation results from UML™
diagrams.

5.1 Description of the BT IN Requirements

The BT IN system added new call handling features such as credit card charges and call
barring (Arief, 2001, p. 125). According to Arief (2001) a call is initiated at a switch that
passes the call request to a local computer for processing made of two operations: 1.

 8

makeCall, and 2. receiveCall. MakeCall maintains information relating to outgoing calls
such as should the call be barred, call barring. ReceiveCall maintains information
concerning incoming calls such as whether the receiver wishes to receive the call from the
caller, call blacklisting. The processing performed needs to be completed within a second
for customer satisfaction.

5.1.1 BT Physical Block Diagram

A nonUML™ physical block diagram is presented below in Figure 5-3 (Arief 2001, p.
134). Parenthetical annotations of parameters are added based on analysis of the text.

Figure 5-3 Physical Architecture of the BT IN Application

5.1.2 BT Specification using UML™

The BT physical and applications architecture are described in the UML™ diagrams below
(Arief, 2001, pp. 135-137).

(60-1000, geo. Distributed)

(approx. 10)

(LAN, 100 Mbps, 1ms latency)

(WAN, 34 Mbps, 50 ms latency)

(callers 10E5 to 10E8)

(3 x 10E3 to 3 x 10E6
messages/sec)

(60-1000, geo. Distributed)

(approx. 10)

(LAN, 100 Mbps, 1ms latency)

(WAN, 34 Mbps, 50 ms latency)

(callers 10E5 to 10E8)

(3 x 10E3 to 3 x 10E6
messages/sec)

 9

5.1.2.1 UML™ Physical Architecture

An UML™ class diagram depicts the architecture and notes many of the physical
parameters involved in the simulation model, Figure 5-4, (Arief, 2001). This diagram is
particularly interesting given its identification of host memory and speed; values for these
parameters are neither provided nor are they considered in the SimML model. Message
size is not considered. Bandwidth is given but in the model it does not appear to be
considered.

Figure 5-4 UML™ Class Diagram of BT IN Physical and Application Architecture

{bandwidth ~unknown
and latency ~0ms}

 10

5.1.2.2 UML™ Application Logic

An UML™ Sequence Diagram, Figure 5-5, represents the application logic sequence
(Arief, 2001). The overall concept of the flow of the logic sequence is depicted in the
Activity Diagram, Figure 5-6. It is particularly important to note the performance
requirements given textually on the lower left hand corner of the Sequence Diagram.
When this model was built, UML™ did not provide any mechanism other than comments
to capture performance parameters; the current plan for UML2™ does not appear to
change that capability.

The Sequence Diagram presents the steps of the processing sequence in a left to right
manner, with looping and feedback indicated by arrows. Time is presented on the vertical
axis.

Figure 5-5 UML™ Sequence Diagram of BT IN Application

T
 i
m
e

 11

The activity diagram, Figure 5-6, presents a good overall conceptual flow of the BT IN
system activities (Arief, 2001). The activity diagram is a graphic concept of operation of
the BT IN system. There are several parts of the overall concept as presented below that
are not modeled in SimML. For example, the error handling activity and the activities that
occur after the start of ringing are neither modeled nor considered within the scope of the
performance parameters. Performance is measured only to the point of ringing the dialed
number phone.

Figure 5-6- UML™ Activity Diagram for makeCall

 12

5.1.3 Given BT Simulation Variables

The SimML tool used the random number variables shown below. The approximate
values are culled from the textual reporting of the model, Table 5-1. The lookupTime is
identified as the dependent variable. In many cases the units were not provided with the
data and some reverse engineering was necessary to deduce the units.

Table 5-1 Variables used in the makeCall simulation

Name Type Explanation Approx. Values

interArr Exponential The inter arrival time of the calls 1000 calls/sec
lookupTime Exponential The time taken by the Name Server to

lookup for call identities
Dependent Variable
~ .0002 ms avg

readTime Exponential The time taken to perform the
barOutgoing flag evaluation

.00023 ms avg

searchTime Exponential The time taken to check the
blacklist

.0057 ms avg

localDelay Exponential The network latency for local call objects
~ 0

lanDelay Exponential The network latency for LAN call
objects

1 ms

wanDelay Exponential The network latency for WAN call
objects

50 ms

rndCallGen Uniform Used for randomly generating the
local/LAN/WAN call types

Run time integer Duration of simulation 100,000 ms

5.1.4 Given UML™ SimML Results

The simulation results presented in the Table 5-2 below are from Arief (2001, p. 135) who
found that in order to satisfy the performance requirements for the WAN calls on average
in 500 ms, the upper limit of the lookupTime had to be 19.91 ms; in the system dynamics
model and simulation, this compares to 20 ms and 455 ms respectively.

 13

Table 5-2 SimML results of the makeCall operation

5.1.5 System Dynamic Stock and Flow Model

The System Dynamics Vensim stock and flow model, Figure 5-7, is based on the
preceding UML™ diagrams that were used for the SimML model.

341.991.03E8301091473.33278.94275.8319.90

366.831.10E8300945498.13303.76300.7119.91

391.641.18E8300804522.87328.58325.6019.92

416.421.25E8300650547.61353.33350.4419.93

441.191.33E8300511572.33378.10375.2519.94

465.911.40E8300353597.00402.79400.0519.95

490.651.47E8300223621.68427.49424.8819.96

515.291.55E8300053646.22452.12449.6719.97

539.931.62E8299889670.77476.76474.3919.98

564.581.69E8299748695.36501.38499.1319.99

589.201.77E8299603719.90526.02523.8020.00

avgTimetimedoneWANLANlocal

all callsaverage timeslookup
Time

341.991.03E8301091473.33278.94275.8319.90

366.831.10E8300945498.13303.76300.7119.91

391.641.18E8300804522.87328.58325.6019.92

416.421.25E8300650547.61353.33350.4419.93

441.191.33E8300511572.33378.10375.2519.94

465.911.40E8300353597.00402.79400.0519.95

490.651.47E8300223621.68427.49424.8819.96

515.291.55E8300053646.22452.12449.6719.97

539.931.62E8299889670.77476.76474.3919.98

564.581.69E8299748695.36501.38499.1319.99

589.201.77E8299603719.90526.02523.8020.00

avgTimetimedoneWANLANlocal

all callsaverage timeslookup
Time

 14

Figure 5-7 SD Stock and Flow Diagram based on UML™ Diagrams

For simplicity, the generalized stock and flow model above is shown without its auxiliary
parameters. It is the foundation structure for the System Dynamics simulation model.

In order to complete the model, the auxiliary parameters were added as shown below,
Figure 5-8. The auxiliary parameters add the behavior to the structure of the stock and
flow model presented above. Additionally, the structure follows the behavior of a typical
first-order material delay pipeline (Sterman 2000).

Calls at
Switch

Calls UID'd Calls Made

Error Calls

connect assign UID bar call

Calls
Received

Calls
Connected

Calls Not
Answered

blacklist call

ring call hangup

end ring call

 15

Figure 5-8 SD Stock and Flow Diagram with Auxiliary Parameters based on UML™ Diagrams

The “analytic knife” was applied to the generalized model based on reverse engineering of
the Arief (2001) model material. For instance, the model above neither processes error
conditions nor considers post “ring” activities such as calls connected. Additionally, even
though the discussion of the Arief (2001) model includes processes for barring and
blacklisting calls, no evidence of their inclusion in the model results was found. Lastly,
although the Arief (2001) model simulated Local, LAN and WAN activities, the Arief

Switch
Messages

connect

avg arrival
rate

avg # sites

<TIME STEP>

<Time>

Calls ID'd
lookup

avg
lookup
time

processing rate

Calls Dialed
unbarred

calls

avg
WAN

network
latency

fraction calls
unbarred

Calls Ringed

unblacklisted
calls

fraction calls
unblacklisted

avg search timeavg LAN
network latency

avg LOCAL
network latency

avg read time

%

Calls

 16

(2001) decision as to performance satisfaction was based on the WAN result alone.
Therefore, the System Dynamics model concentrates only on the WAN activities.

Three sets of data were generated using the System Dynamics model. The first attempts to
duplicate, roughly, the results of the SimML model as a reference set. Within this set of
simulations the sensitivity of the performance requirements are examined as a function of
the average lookup times.

The graphs that follow below show the curves labeled by the rate of calls and the average
lookup rate (scientific notation). The graph scale is set to display the performance at
500ms, 5000ms (vertical line at between unit point) and 10,000ms over the course of the
100,000ms data run.

5.1.5.1 System Dynamic Model Comparable Results with Various

Average Lookups

The following results are for the system dynamics model where the average lookup rate is
run at three points: .002, .0002, and .00002 ms/call. Very little sensitivity to average
lookup time is shown with regard to meeting the performance requirements, Figure 5-9.
Each of the simulation curves generally met the performance requirements at the 5000ms
and 10,000ms points for the nominal value of 20ms (average value lookup .0002ms/call).
None of the simulation runs in this set meet the requirement for 90% processing at the
500ms point; the network latencies seem to prevent that occurrence. With the slowest
average lookup, there is an accumulation of calls at the switch that may problematic
depending on memory capacity, Figure 5-10. Calls identified, dialed, and ringed are
nominal, Figure 5-11, Figure 5-12 and Figure 5-13, respectively.

 17

Figure 5-9 SD Model Percentage Performance with various average Lookups

Figure 5-10 SD Model Switch Messages accumulations with various average Lookups

Switch Messages
20.00

10.00

0.0100
500 1925 3350 4775 6200 7625 9050

Time (ms)

Switch Messages : 1call per ms & 2E-05 avg lookup calls
Switch Messages : 1call per ms & 2E-03 avg lookup calls
Switch Messages : 1call per ms & 2E-04 avg lookup calls

%
98.89

93.89

88.89
500 1925 3350 4775 6200 7625 9050

Time (ms)

"%" : 1call per ms & 2E-05 avg lookup Dmnl
"%" : 1call per ms & 2E-03 avg lookup Dmnl
"%" : 1call per ms & 2E-04 avg lookup Dmnl

 18

Figure 5-11 SD Model Calls ID’d accumulations with various average Lookup

Figure 5-12 SD Model Calls Dialed accumulations with various average Lookups

Calls Dialed
107.68

80.55

53.43
500 1925 3350 4775 6200 7625 9050

Time (ms)

Calls Dialed : 1call per ms & 2E-05 avg lookup calls
Calls Dialed : 1call per ms & 2E-03 avg lookup calls
Calls Dialed : 1call per ms & 2E-04 avg lookup calls

Calls ID'd
3.300

2.206

1.112
500 1925 3350 4775 6200 7625 9050

Time (ms)

Calls ID'd : 1call per ms & 2E-05 avg lookup calls
Calls ID'd : 1call per ms & 2E-03 avg lookup calls
Calls ID'd : 1call per ms & 2E-04 avg lookup calls

 19

Figure 5-13 SD Model Calls Ringed accumulations with various average Lookups

5.1.5.2 System Dynamic Model Comparable Results with Nominal

Average Lookup and 3X Input Rate

The following results are for the system dynamics model where the nominal average
lookup rate (.0002 ms/call) is run with a 3x input rate (3 calls/ms). Very little sensitivity to
the 3x input rate is shown with regard to meeting the performance requirements, Figure 5-
14. As with the previous run, none of the simulation runs in this set meet the requirement
for 90% processing at the 500ms point; the network latencies seem to prevent that
occurrence. With a 3x input rate and the slowest average lookup, there is an accumulation
of calls at the switch that may problematic depending on memory capacity, Figure 5-15.
The 3x input rate also causes an accumulation at the Calls Identified stock; this is probably
a result of the LAN latency and read rate, Figure 5-16. Similarly, there is an accumulation
with the 3x input rate at the Calls Dialed stock, probably as a result of the WAN latency
and search rate, Figure 5-17. Calls ringed increase assuming the system does not break,
Figure 5-18.

Calls Ringed
9,889

5,166

444.45
500 1925 3350 4775 6200 7625 9050

Time (ms)

Calls Ringed : 1call per ms & 2E-05 avg lookup calls
Calls Ringed : 1call per ms & 2E-03 avg lookup calls
Calls Ringed : 1call per ms & 2E-04 avg lookup calls

 20

Figure 5-14 SD Model Percentage 3x Performance with various average Lookups

Figure 5-15 SD Model 3x Switch Messages accumulations with various average Lookups

Switch Messages
20.00

10.00

0.0100
500 1925 3350 4775 6200 7625 9050

Time (ms)

Switch Messages : 3call per ms & 2E-04 avg lookup calls
Switch Messages : 1call per ms & 2E-05 avg lookup calls
Switch Messages : 1call per ms & 2E-03 avg lookup calls
Switch Messages : 1call per ms & 2E-04 avg lookup calls

%
98.89

93.89

88.89
500 1925 3350 4775 6200 7625 9050

Time (ms)

"%" : 3call per ms & 2E-04 avg lookup Dmnl
"%" : 1call per ms & 2E-05 avg lookup Dmnl
"%" : 1call per ms & 2E-03 avg lookup Dmnl
"%" : 1call per ms & 2E-04 avg lookup Dmnl

 21

Figure 5-16 SD Model 3x Calls ID’d accumulations with various average Lookups

Figure 5-17 SD Model 3x Calls Dialed accumulations with various average Lookups

Calls Dialed
322.94

188.18

53.43
500 1925 3350 4775 6200 7625 9050

Time (ms)

Calls Dialed : 3call per ms & 2E-04 avg lookup calls
Calls Dialed : 1call per ms & 2E-05 avg lookup calls
Calls Dialed : 1call per ms & 2E-03 avg lookup calls
Calls Dialed : 1call per ms & 2E-04 avg lookup calls

Calls ID'd
9.894

5.503

1.112
500 1925 3350 4775 6200 7625 9050

Time (ms)

Calls ID'd : 3call per ms & 2E-04 avg lookup calls
Calls ID'd : 1call per ms & 2E-05 avg lookup calls
Calls ID'd : 1call per ms & 2E-03 avg lookup calls
Calls ID'd : 1call per ms & 2E-04 avg lookup calls

 22

Figure 5-18 SD Model 3x Calls Ringed accumulations with various average Lookups

5.1.5.3 System Dynamic Model Comparable Results with Nominal

Average Lookup and 30X Input Rate

The following results are for the system dynamics model where the nominal average
lookup rate (.0002 ms/call) is run with a 30x input rate (30 calls/ms), Figure 5-19. Very
little sensitivity to the 30x input rate is shown with regard to meeting the performance
requirements. As with the previous run, none of the simulation runs in this set meet the
requirement for 90% processing at the 500ms point; the network latencies seem to prevent
that occurrence. With the a 30x input rate and the slowest average lookup, there is an
accumulation of calls at the switch that may problematic depending on memory capacity,
Figure 5-20. The 30x input rate also causes an accumulation at the Calls Identified stock;
this is probably a result of the LAN latency and read rate, Figure 5-21. Similarly, there is
an accumulation with the 30x input rate at the Calls Dialed stock, probably as a result of
the WAN latency and search rate, Figure 5-22. Calls ringed increases as expected,
assuming the system does not break, Figure 5-23.

Calls Ringed
29,664

15,054

444.45
500 1925 3350 4775 6200 7625 9050

Time (ms)

Calls Ringed : 3call per ms & 2E-04 avg lookup calls
Calls Ringed : 1call per ms & 2E-05 avg lookup calls
Calls Ringed : 1call per ms & 2E-03 avg lookup calls
Calls Ringed : 1call per ms & 2E-04 avg lookup calls

 23

Figure 5-19 SD Model Percentage 30x Performance with various average Lookups

Figure 5-20 SD Model 30x Switch Messages accumulations with various average Lookups

Switch Messages
60.00

30.00

0.0100
500 1925 3350 4775 6200 7625 9050

Time (ms)

Switch Messages : 30call per ms & 2E-04 avg lookup calls
Switch Messages : 3call per ms & 2E-04 avg lookup calls
Switch Messages : 1call per ms & 2E-05 avg lookup calls
Switch Messages : 1call per ms & 2E-03 avg lookup calls
Switch Messages : 1call per ms & 2E-04 avg lookup calls

%
98.89

93.89

88.89
500 1925 3350 4775 6200 7625 9050

Time (ms)

"%" : 30call per ms & 2E-04 avg lookup Dmnl
"%" : 3call per ms & 2E-04 avg lookup Dmnl
"%" : 1call per ms & 2E-05 avg lookup Dmnl
"%" : 1call per ms & 2E-03 avg lookup Dmnl
"%" : 1call per ms & 2E-04 avg lookup Dmnl

 24

Figure 5-21 SD Model 30x Calls ID’d accumulations with various average Lookups

Figure 5-22 SD Model 30x Calls Dialed accumulations with various average Lookups

Calls Dialed
3,229

1,641

53.43
500 1925 3350 4775 6200 7625 9050

Time (ms)

Calls Dialed : 30call per ms & 2E-04 avg lookup calls
Calls Dialed : 3call per ms & 2E-04 avg lookup calls
Calls Dialed : 1call per ms & 2E-05 avg lookup calls
Calls Dialed : 1call per ms & 2E-03 avg lookup calls
Calls Dialed : 1call per ms & 2E-04 avg lookup calls

Calls ID'd
98.95

50.03

1.112
500 1925 3350 4775 6200 7625 9050

Time (ms)

Calls ID'd : 30call per ms & 2E-04 avg lookup calls
Calls ID'd : 3call per ms & 2E-04 avg lookup calls
Calls ID'd : 1call per ms & 2E-05 avg lookup calls
Calls ID'd : 1call per ms & 2E-03 avg lookup calls
Calls ID'd : 1call per ms & 2E-04 avg lookup calls

 25

Figure 5-23 SD Model 30x Calls Ringed accumulations with various average Lookups

6 Major Findings and Significance

The major findings and significance below resulted from the data analysis. Each major
finding and significance presented has a header topic followed by the statement of the
finding and its significance.

6.1 UML and System Dynamics Models

System Dynamics models expressed in VENSIM do not solve the problem of having to
manually translate static UML™ diagrams into executable language as SimML automated
this step. However, the analysis does show that System Dynamics models using VENSIM
have the power to support the concept of simulating information system behavior based on
UML descriptions of the system. Additionally, leveraging SD’s VENSIM innate
capability to support the creation of simulation models from static UML™ diagrams was
apparent and added benefits that were not apparent in SimML, e.g., a picture of the
structure of the model and its organic flow.

Calls Ringed
296,583

148,513

444.45
500 1925 3350 4775 6200 7625 9050

Time (ms)

Calls Ringed : 30call per ms & 2E-04 avg lookup calls
Calls Ringed : 3call per ms & 2E-04 avg lookup calls
Calls Ringed : 1call per ms & 2E-05 avg lookup calls
Calls Ringed : 1call per ms & 2E-03 avg lookup calls
Calls Ringed : 1call per ms & 2E-04 avg lookup calls

 26

There is a significant opportunity for System Dynamics using VENSIM to support the
information system domain if a seamless interface is made between UML™ and VENSIM
models, possibly using XML, XMI, or a new SimML parser. Many man-years of effort
would be saved using System Dynamics VENSIM models as opposed to the currently
charted course of a request for proposal to create a “new” language to make static UML™
diagrams into dynamic models. This would also prevent the tendency toward “language
bloat” for UML™ by keeping its focus on the artifacts it produces so well today and not
adding a new simulation language set of semantics and syntax.

6.2 Integrated View of Structure and Behavior

The study finds that System Dynamics using VENSIM shows an integrated view of the
structure and behavior of the subject BT IN model that neither the given UML™ models
nor the SimML language presented. It is significant that SD and VENSIM have the
capability to show the interdependence of structure and behavior concurrently using stock
and flow diagrams and simulation results.

6.3 Boundaries of the Reference Model

Several parameters given in the customer problem statement such as host memory,
message, and processing speed were not found in the SimML model. Similarly, call
barring, call blacklisting, and error handling were not modeled.

Host memory, message size, and processing speed may have a significant impact on
system throughput. The dynamics of these parameters may have a significant influence on
the structure and behavior of the implemented information system and should be part of
the simulation to ensure they will not adversely affect the decision process. Limiting the
modeling simulation boundary to exclude what happens post “ring” may be reasonable, but
handling the consequences of call-barring and call-blacklisting could have significant
impact on the performance.

6.4 Sensitivity Analysis

The SimML model included a very limited sensitivity analysis. The System Dynamics
VENSIM model readily lent itself to sensitivity analysis.

Without looking at the model structure and behavior with regard to sensitivity to stress, a
significant finding may be overlooked. In the case of this study, not looking at the
sensitivity of the model to increased input volume may be a fatal flaw. The input volume
was given as 3x10E3 to 3X10E6. The simulation was confined to the 1X10E3 magnitude
case. When increasing the input volume using the System Dynamics VENSIM model, an

 27

accumulation of messages was observed at the switch waiting for the “lookup ID” to be
completed. It is very likely that the switch will not have the memory capacity to sustain an
accumulation of this nature; further investigation is warranted.

7 Conclusions

The data analysis and findings support the problem statement that an information system
described using static UML™ is translatable into a System Dynamics VENSIM simulation
model. The rough comparison of the System Dynamics VENSIM model simulation results
to those from the SimML case study show comparable results. Using System Dynamics to
model information system architectures and software design before implementation has
potentially significant cost benefits to an industry-wide information system problem of cost
and schedule overruns.

For credibility with the system engineering information system domain, System Dynamics
will need to build interfaces into its simulation languages that will accept UML™ artifacts,
perhaps documented as XML or other standards. A seamless interface between UML™
and SD simulation languages is essential to be responsive to the system engineering
information system domain; otherwise, new and specialized languages will be procured
that will be duplicative and competitive to the System Dynamics simulation languages.

 28

8 References

Arief, L. B. (2001). A Framework for Supporting Automatic Simulation Generation from
Design. Unpublished Ph.D. dissertation, University of Newcastle Upon Tyne, from
http://homepages.cs.ncl.ac.uk/l.b.arief/home.formal/Papers/PhDThesis.pdf

Bütow, M., Mestern, M., Schapiro, C., & Kritzinger, P. S. (1996). Performance Modelling
with Formal Specification Language SDL. Retrieved December 10, 2003, from
http://people.cs.uct.ac.za/~psk/

Caulfield, C.W., & Maj, S.P. (2001). A case for systems thinking and system dynamics.
IEEE, 2793-2798.

De Wit, N.D. (2003). Software Performance Engineering with UML-RT and UML 2.0.
Retrieved December 10, 2003, from
http://people.cs.uct.ac.za/~ndewet/Performance_with_UML-RT.pdf

Dori, D. (2002). Why significant uml change is unlikely. Communications of the ACM,
45, No. 11, 82-85.

Forrester, J. W. (1961). Industrial Dynamics. Portland: Productivity Press.

Kobryn, C. (1998). Modeling enterprise software architectures using uml. IEEE, 25-34.

Kortright, E. V. (1997). Modeling and simulation with uml and java. IEEE, 43-48.

Lenehan, N. (2003). UML 2.0 Standard Officially Adopted at OMG Technical Meeting in
Paris. Retrieved December 9, 2003, from http://www.omg.org/news/releases/pr2003/6-12-
032.htm

Miller, J., (2002). What uml should be. Communications of the ACM, 45, No. 11, 67-69.

Selic, B., Ramackers, G., & Kobryn, C. (2002). Evolution, not revolution.
Communications of the ACM, 45, No. 11, 70-72.

Sterman, J.D., (2000). Business Dynamics. Boston: Irwin McGRaw-Hill.

Towill, D. R. (1993a). System dynamics-background, methodology, and applications, part
1. Computing & Control Engineering Journal, October, 201-208

Towill, D. R. (1993b). System dynamics-background, methodology, and applications, part
2. Computing & Control Engineering Journal, December, 261-268

Wiklund, A. (2003). Using Ericsson NorArc’s frameworks as test bed for dynamic change
behavior based on CompositeStates. Unpublished M.S. thesis, Agder University College.

	back to the top:
	ToC Button:
	Go Back Button:

