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Abstract 

 

System Dynamics (SD) set its roots in servomechanism systems that were a combination 
of the earliest hardware and software systems known.  Over time, SD grew and evolved 
into a multiplicity of domains; coevolving was the domain of System Engineering.  Today, 
System Engineering has sub-domains such as architecture, design, performance and 
modeling.  The System Engineering topic of modeling has reached the stage of 
development where structure and behavior are of high-interest; and they are the very 
cornerstones of SD.  In fact, there is enough System Engineering interest in system 
structure and behavior that entirely new procurements are being considered for a 
simulation capability based on the Unified Modeling Language™ (UML), particularly 
Unified Modeling Language 2™, UML2™. 

 

This paper looks at the possibility of applying SD to the problem of modeling the system-
engineered structure and behavior of information system architectures, designs and 
performance.  What is proposed is the possibility to reconnect with the roots of SD from 
the servomechanisms systems to 21st century information systems.  Reconnecting with SD 
roots in servomechanism systems offers the opportunity to bridge SD and its structure and 
behavior capability with information systems as described using UML2™.  SD offers the 
System Engineering domain an opportunity to leverage a compatible field of interest, and 
its modeling and simulation tools without delay or costly new development. 
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1 Introduction 

Forrester (1961) discusses the evolution of industrial dynamics and its relationship to 
engineering systems with regards to World War II weapon fire-control systems.  He notes 
that before 1950 there was little or no acceptance of automated decision-making.  
However, in the time from 1935 to 1945 information systems of 20 variables were easily 
modeled using analog computers; from 1945 to 1955, information systems of 200 variables 
were modeled with digital computers (Forrester 1961).  Perhaps we are at the full circle 
point in time when it is essential to reexamine the relationship between system dynamic 
models and engineering systems.  With the advent of the Unified Modeling Language2™ 
(UML2™) to model the structure and behavior of information systems, this paper 
examines system dynamics in relationship to information systems modeling and simulating 
structure and behavior. 

2 Statement of the Problem  

The system engineering domain has a clear need to model the structure and behavior of 
information systems prior to embarking on a long and expensive implementation process.  
The information system world has concentrated on the development of a modeling 
language, UML™, that provides multiple views of a system, to include structure but little 
or no support to the aspect of behavior, particularly with regard to simulation.  Over time, 
UML2™ was developed to help close the gap between UML™’s capability to simulate the 
behavior of information system.  Studies to date indicate that UML2™ has not closed the 
gap from a simulation capabilities perspective and neither have several other 
languages/systems, e.g., SimML, Rational Rose, TauGeneration2.  This paper questions 
whether any new language is required at all  Since System Dynamics was invented to 
model system structure and simulate behavior, this paper examines whether it will apply to 
information systems.  If an information system’s structure and behavior can be described 
using UML™, will it translate readily into the System Dynamics paradigm? 

3 Literature Review 

Towill wrote that system dynamics is a methodology for modeling and redesigning 
manufacturing, business, and similar systems that are part man and part machine (1993a).  
He went on to discuss the roots of system dynamics set both in servo theory and 
cybernetics with emphasis on “input-output analyses which are the system dynamics 
equivalent of writing down balanced equations for hardware systems”, (Towill, 1993a, p.  
201).  Towill explains that system dynamics is a tool that can model, design and improve 
“hybrid” hard/soft systems. 
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System dynamics (SD) addresses building computer models of complex problem situations 
and then experimenting with and studying the behavior of the models over time (Caulfield 
& Maj, 2001).  SD models demonstrate how unappreciated causal relationships, dynamic 
complexity, and structural delays can lead to counter-intuitive outcomes.  Additionally, SD 
accommodates “soft factors” such as motivation and perceptions so that management can 
better understand problem spaces.  In Caulfield’s and Maj’s opinions, “…system dynamics 
in particular represents a choice of first resort for the broadest range of problem spaces” 
(2001, p. 2793). 

 

Caulfield and Maj (2001) see SD as part of general systems theory (GST) that they 
attribute to the work of organismic biologist Ludwig von Bertalanffy (p. 2795).  
Bertalanffy was concerned that modern science was over specialized, necessitated by 
enormous amounts of data, the complexity of techniques, and the theoretical structures 
within each field. 

 

While others were extolling the virtues of system dynamics to model complex systems, 
UML™ was appearing on the seen as a third generation object-oriented information 
system modeling language.  Kortright (1997) recognized that there was a great deal to be 
gained from the use of UML™ for simulation modeling of complex software systems.  He 
noted that an important problem in simulation is that many models are described in a large 
variety of notations or directly in a programming language (Kortright, 1997).  To the 
contrary, UML™ provided a set of proven notations for model description and permitted 
the visualization of alternative designs. 

 

Despite the power of UML™ to visualize a model, the diagram descriptions themselves 
remained static.  To perform an executable simulation, UML™ required translation into 
another language, an executable language.  Kortright said, “There is a close 
correspondence between the Java programming language and UML™” (1997, p.  45). 

 

Kobryn (1998) describes the UML™ constructs and techniques that support the modeling 
of distributed enterprise information system architectures.  He shows how UML™ can be 
used for behavioral “(or dynamic)” architectural modeling.  He makes clear that the 
information system architecture field is in its infancy and that the emphasis is on the 
structural properties of software systems rather than their behavioral properties.   

 

Miller (2002) wrote that the Object Management Group™ (OMG™) knew that UML™ 
was a compromise among several competing schools of modeling and that all the available 
“good ideas” were not included in the language.  Hence, the OMG™ initiated a request for 
proposal in 2000 for the revision of UML™ as UML2™.  Five teams submitted proposals 
in 2001 and the OMG™ is expected to release a UML2™ standard in April 2004. 
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Selic, Ramakers, and Kobryn (2002) document that practitioners and researchers have 
adopted UML™ since its introduction in 1997 at a rate exceeding OMG™’s expectation.  
Its popularity confirms the need for a communication medium for both humans and 
software tools.  At the same time, the rapid acceptance and usage has generated pressure 
for improvements and new features. 

 

Before considering changes, Selic et al. (2002) advocate an understanding of the original 
purpose of UML™, i.e. a general purpose language for modeling object-oriented 
information system applications.  The purpose of the model is to understand the suitability 
of a proposed solution before expenditure of resources to build it.  They say that the need 
for modeling becomes more apparent as the complexity of information system software 
increases; the complexity will reach to the point of challenging our ability to comprehend 
it.  So the challenge is to create a model that allows the concise expression of the essential 
aspects of information system software being designed while omitting irrelevant detail. 

 

For practical reasons, Selic et al. (2002) want to see UML™ evolve rather than be replaced 
with something new.  They see a primary requirement for UML2™ as a precise definition 
of semantics, including “its dynamic (runtime) semantics”, (Selic et al., 2002, p. 71).  They 
see the extended modeling of complex behavior as needed.  Behavior modeling needs to 
include the ability to hierarchically compose and combine individual information system 
behavior specifications.  However, they recognize that in some cases, cramming all useful 
concepts from diverse domains into a single language is not always practical.  “It is crucial 
to avoid the infamous ‘language bloat’ syndrome while retaining all the advantages of a 
standard” (Selic et al., 2002, p. 71). 

 

In contrast to Selic, et al. (2002), Dori (2002) thinks that UML™ reform may be “too little 
too late” to become the information system architect’s tool of choice for modeling complex 
software systems.  To him, UML2™ must integrate structure and behavior in a single user 
friendly manner; the scope required is significant and can only be achieved in a 
revolutionary way.  He sees UML™ problems in three categories:  “model multiplicity 
resulting from excess diagram types and symbols; confused behavior modeling; and the 
obscuring influences of programming languages” (Dori, 2002, p. 82).  He declares that 
none of the nine UML™ models clearly shows an integrated view of the most prominent 
and useful system aspects: structure and behavior.  According to Dori (2002), the 
interdependence of structure and behavior mandates that these two major system aspects be 
addressed concurrently.   

 

UML™’s segregation of structure and behavior unnecessarily strains system engineers’ 
cognitive ability by requiring they mentally integrate the various system models into a 
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coherent, holistic view.  “This cognitive load severely hinders use of UML™ as a system-
modeling tool” (Dori, 2002, p. 83).  System engineers have to struggle with complexity 
and inconsistency regarding the modeling of information system dynamics.  “UML™’s 
inherent lack of a unifying system dynamics concept calls for another comprehensive 
revision”, according to Dori (2002, p. 84). 

 

Wiklund (2003) looked at UML™ to see whether it was possible to model the dynamic 
change of behavior.  In particular, he was evaluating how on-line replacement of 
JavaFrames CompositeStates could be used to change parts of the state space during run-
time; he wanted to model the problem first with UML™.  He found that it was possible to 
model run-time introduction of composite states, using interaction diagrams in UML2™.  
He found “…no solution to modeling such dynamic change of behavior” neither with 
UML™ 1.4, 1.5, nor the proposed UML2™ standard (Wiklund, 2003, p. 2). 

 

At the time that Winlund did his research, the UML2™ superstructure standard had not 
been adopted by the OMG™ – May 2003.  On June 12, 2003, OMG™ announced at their 
technical meeting in Paris, France, that the Analysis and Design Task Force voted to 
recommend adoption of the UML2™ Superstructure specification, completing the 
definition of this major upgrade to the industry's main software modeling notation Lenehan 
(2003). 

 

De Wit (2003) has examined UML2™ as a step towards a universally accepted 
information system software performance engineering (SPE) tool.  As his test case, he used 
the work of Bütow, Mestern, Schapiro and Kritzinger (1996) that examined the means of 
predicting the performance of a communication protocol.  According to de Wit (2003), 
Bütow et al. (1996) took an approach that did not affect the syntax of the formal 
description technique and did not depend on it either.  Since Bütow et al. (1996) were able 
to use “SDL Performance Evaluation of Concurrent Systems” as a way of mapping a 
system specification to its target environment without changing the syntax of the formal 
description technique, de Wit (2003) investigated applying the same approach using 
UML2™ (pp. 4-5). 

 

What de Wit (2003) investigated is the feasibility of moving SPE from the traditional 
“start” of the development life-cycle, where requirements are determined and the “end” 
where they are verified by testing, to include a model-based approach during information 
system development that validates performance throughout the development cycle.  He 
believes that “…software specification languages (notably UML™) should incorporate the 
ability to specify performance requirements, thus bridging the gap between information 
system software design and performance analysis” (de Wit, 2003, p. 7).   
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Arief (2001) states that building a new information system requires careful planning and 
investigation in order to avoid problems in later stages of development.  Generally, using 
UML™ in the system specification eliminates or minimizes ambiguities.  The proposed 
system’s performance needs to be investigated before the implementation stage can be 
commenced (Arief, 2001).  Understanding information system performance is necessary to 
decide the following:  1.  whether a particular design will meet the requirements and 2.  
whether it is worth implementing the system or not. 

 

One way to obtain performance estimations is by simulating to mimic the execution of the 
system.  Arief (2001) points out that currently available UML™ tools do not provide any 
facilities for generating simulation programs from UML™ specifications.  His research 
involved investigating a framework that could capture the information system simulation 
model from UML™ design notation.   

 

Arief (2001) built a framework called the Simulation Modeling Language (SimML) as part 
of his Ph.D. dissertation.  Arief (2001) constructed tools that enable an automated 
transformation of a UML™ design notation into a simulation program, Figure 3-1.  

 

 

Figure 3-1  UML™ to Simulation Path 
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According to Arief (2001), the SimML framework can be used for generating simulation 
programs in other simulation languages (such as SIMULA) by modifying the program 
generator part of the SimML parser, Figure 3-2. 
 

 

Figure 3-2  Paths for Generating Simulation from UML™  

 

With the tools, he performed case studies to demonstrate their ability to create a simulation 
framework in general.  The case study of interest focuses on the makeCall operation of 
the British Telecom’s Intelligent Network (IN) application (Arief, 2001). 

4 Research Method and Design 

The research method uses a case study of a real-life problem described in UML™ and a 
non-system dynamics simulation language, SimML, and recasts the UML™ into a System 
Dynamics model using Vensim.  The work by Arief (2001) documents the real-world 
problem identified by British Telecom (BT) Intelligent Network (IN) to size the server 
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capacity needed to make and receive calls within an information system that featured the 
capability to perform caller id, call blocking, billing and more. 

 

Arief (2001) modeled the system structure using UML™ diagrams.  For behavior 
modeling, Arief (2001) created a Java language based simulation language framework he 
called SimML.  The research design reuses the UML diagrams created by Arief and 
applies them to the creation of a Stock and Flow system dynamics model.  From the stock 
and flow diagram, a Vensim model is constructed for structure and behavior performance 
comparison to the SimML model created by Arief. 

 

The intent of the research method and design is to show that UML™ diagrams support the 
construction of a System Dynamic model, Stock and Flow diagram, and that the simulation 
results produced by Vensim are comparable to Arief’s (2001) results. 

 

If the results of the System Dynamic model and Vensim simulation are comparable to the 
case study results (Arief, 2001), the hypothesis that System Dynamic models are derivable 
from UML™ is supported and the relevance of System Dynamics models to UML™ is 
substantiated, making room for Vensim and similar languages to become part of the 
information system structure and behavior modeling toolset.  Although there is limited 
comparison of model results, the focus is not to produce a comparison of SimML to 
Vensim, or the specific results of the simulations. 

5 Data Analysis 

The data analysis begins with the BT problem statement, block diagram, UML™ diagrams, 
and SimML simulation results generated by Arief (2001).  Following these artifacts are the 
System Dynamic Stock and Flow models and simulation results used for comparison to 
Arief (2001).  The focus of the comparison is the ability to produce a comparable System 
Dynamic stock and flow model, and simulation results from the same UML™ diagrams 
and requirements that were used by Arief (2001).  Although there is limited comparison of 
model results, the focus is not to produce a comparison of SimML to Vensim, or the 
specific results of the simulations; the emphasis is the ability of a system dynamics 
approach to produce a useful stock and flow model and simulation results from UML™ 
diagrams. 

5.1 Description of the BT IN Requirements 

The BT IN system added new call handling features such as credit card charges and call 
barring (Arief, 2001, p. 125).  According to Arief (2001) a call is initiated at a switch that 
passes the call request to a local computer for processing made of two operations:  1.  
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makeCall, and  2.  receiveCall.  MakeCall maintains information relating to outgoing calls 
such as should the call be barred, call barring.  ReceiveCall maintains information 
concerning incoming calls such as whether the receiver wishes to receive the call from the 
caller, call blacklisting.  The processing performed needs to be completed within a second 
for customer satisfaction. 

5.1.1 BT Physical Block Diagram 

A nonUML™ physical block diagram is presented below in Figure 5-3 (Arief 2001, p. 
134).  Parenthetical annotations of parameters are added based on analysis of the text. 
 

 

Figure 5-3  Physical Architecture of the BT IN Application 

 

5.1.2 BT Specification using UML™ 

The BT physical and applications architecture are described in the UML™ diagrams below 
(Arief, 2001, pp. 135-137). 
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5.1.2.1 UML™ Physical Architecture 

An UML™ class diagram depicts the architecture and notes many of the physical 
parameters involved in the simulation model, Figure 5-4, (Arief, 2001).  This diagram is 
particularly interesting given its identification of host memory and speed; values for these 
parameters are neither provided nor are they considered in the SimML model.  Message 
size is not considered.  Bandwidth is given but in the model it does not appear to be 
considered. 
 

 

Figure 5-4  UML™ Class Diagram of BT IN Physical and Application Architecture 

 

{bandwidth ~unknown 
and latency ~0ms}  
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5.1.2.2 UML™ Application Logic 

An UML™ Sequence Diagram, Figure 5-5, represents the application logic sequence 
(Arief, 2001).  The overall concept of the flow of the logic sequence is depicted in the 
Activity Diagram, Figure 5-6.  It is particularly important to note the performance 
requirements given textually on the lower left hand corner of the Sequence Diagram.  
When this model was built, UML™ did not provide any mechanism other than comments 
to capture performance parameters; the current plan for UML2™ does not appear to 
change that capability. 
 
The Sequence Diagram presents the steps of the processing sequence in a left to right 
manner, with looping and feedback indicated by arrows.  Time is presented on the vertical 
axis. 
 

 

Figure 5-5  UML™ Sequence Diagram of BT IN Application  

T 
 i 
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The activity diagram, Figure 5-6, presents a good overall conceptual flow of the BT IN 
system activities (Arief, 2001).  The activity diagram is a graphic concept of operation of 
the BT IN system.  There are several parts of the overall concept as presented below that 
are not modeled in SimML.  For example, the error handling activity and the activities that 
occur after the start of ringing are neither modeled nor considered within the scope of the 
performance parameters.  Performance is measured only to the point of ringing the dialed 
number phone. 
 

 

Figure 5-6- UML™ Activity Diagram for makeCall 
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5.1.3 Given BT Simulation Variables 

The SimML tool used the random number variables shown below.  The approximate 
values are culled from the textual reporting of the model, Table 5-1.  The lookupTime is 
identified as the dependent variable.  In many cases the units were not provided with the 
data and some reverse engineering was necessary to deduce the units. 
 

Table 5-1 Variables used in the makeCall simulation 

Name  Type Explanation Approx. Values 

interArr Exponential The inter arrival time of the calls 1000 calls/sec  
lookupTime Exponential The time taken by the Name Server to 

lookup for call identities 
Dependent Variable 
~ .0002 ms avg 

readTime Exponential The time taken to perform the 
barOutgoing flag evaluation 

 
.00023 ms avg 

searchTime Exponential The time taken to check the 
blacklist 

 
.0057 ms avg 

localDelay Exponential The network latency for local call objects  
~ 0 

lanDelay Exponential The network latency for LAN call 
objects 

 
1 ms 

wanDelay Exponential The network latency for WAN call 
objects 

 
50 ms 

rndCallGen Uniform Used for randomly generating the 
local/LAN/WAN call types 

 

Run time integer Duration of simulation 100,000 ms 
 

 

5.1.4 Given UML™ SimML Results 

The simulation results presented in the Table 5-2 below are from Arief (2001, p. 135) who 
found that in order to satisfy the performance requirements for the WAN calls on average 
in 500 ms, the upper limit of the lookupTime had to be 19.91 ms; in the system dynamics 
model and simulation, this compares to 20 ms and 455 ms respectively. 
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Table 5-2  SimML results of the makeCall operation 

 

 

 

 

 

 

 

 

 

 

 

5.1.5 System Dynamic Stock and Flow Model 

The System Dynamics Vensim stock and flow model, Figure 5-7, is based on the 
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Figure 5-7  SD Stock and Flow Diagram based on UML™ Diagrams 

 

For simplicity, the generalized stock and flow model above is shown without its auxiliary 
parameters.  It is the foundation structure for the System Dynamics simulation model. 
 
In order to complete the model, the auxiliary parameters were added as shown below, 
Figure 5-8.  The auxiliary parameters add the behavior to the structure of the stock and 
flow model presented above.  Additionally, the structure follows the behavior of a typical 
first-order material delay pipeline (Sterman 2000). 
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Figure 5-8  SD Stock and Flow Diagram with Auxiliary Parameters based on UML™ Diagrams 
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(2001) decision as to performance satisfaction was based on the WAN result alone. 
Therefore, the System Dynamics model concentrates only on the WAN activities. 
 
Three sets of data were generated using the System Dynamics model.  The first attempts to 
duplicate, roughly, the results of the SimML model as a reference set.  Within this set of 
simulations the sensitivity of the performance requirements are examined as a function of 
the average lookup times. 
 
The graphs that follow below show the curves labeled by the rate of calls and the average 
lookup rate (scientific notation).  The graph scale is set to display the performance at 
500ms, 5000ms (vertical line at between unit point) and 10,000ms over the course of the 
100,000ms data run. 
 

5.1.5.1 System Dynamic Model Comparable Results with Various 

Average Lookups 

The following results are for the system dynamics model where the average lookup rate is 
run at three points:  .002, .0002, and .00002 ms/call.  Very little sensitivity to average 
lookup time is shown with regard to meeting the performance requirements, Figure 5-9.  
Each of the simulation curves generally met the performance requirements at the 5000ms 
and 10,000ms points for the nominal value of 20ms (average value lookup .0002ms/call).  
None of the simulation runs in this set meet the requirement for 90% processing at the 
500ms point; the network latencies seem to prevent that occurrence.  With the slowest 
average lookup, there is an accumulation of calls at the switch that may problematic 
depending on memory capacity, Figure 5-10.  Calls identified, dialed, and ringed are 
nominal, Figure 5-11, Figure 5-12 and Figure 5-13, respectively. 
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Figure 5-9  SD Model Percentage Performance with various average Lookups 

 
Figure 5-10  SD Model Switch Messages accumulations with various average Lookups 
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Figure 5-11  SD Model Calls ID’d accumulations with various average Lookup 

 
Figure 5-12  SD Model Calls Dialed accumulations with various average Lookups  
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Figure 5-13  SD Model Calls Ringed accumulations with various average Lookups  

 

5.1.5.2 System Dynamic Model Comparable Results with Nominal 

Average Lookup and 3X Input Rate 

The following results are for the system dynamics model where the nominal average 
lookup rate (.0002 ms/call) is run with a 3x input rate (3 calls/ms).  Very little sensitivity to 
the 3x input rate is shown with regard to meeting the performance requirements, Figure 5-
14.  As with the previous run, none of the simulation runs in this set meet the requirement 
for 90% processing at the 500ms point; the network latencies seem to prevent that 
occurrence.  With a 3x input rate and the slowest average lookup, there is an accumulation 
of calls at the switch that may problematic depending on memory capacity, Figure 5-15.  
The 3x input rate also causes an accumulation at the Calls Identified stock; this is probably 
a result of the LAN latency and read rate, Figure 5-16.  Similarly, there is an accumulation 
with the 3x input rate at the Calls Dialed stock, probably as a result of the WAN latency 
and search rate, Figure 5-17.  Calls ringed increase assuming the system does not break, 
Figure 5-18. 
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Figure 5-14  SD Model Percentage 3x Performance with various average Lookups  

 
Figure 5-15  SD Model 3x Switch Messages accumulations with various average Lookups  
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Figure 5-16  SD Model 3x Calls ID’d accumulations with various average Lookups  

 
Figure 5-17  SD Model 3x Calls Dialed accumulations with various average Lookups  
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Figure 5-18  SD Model 3x Calls Ringed accumulations with various average Lookups  

 

5.1.5.3 System Dynamic Model Comparable Results with Nominal 

Average Lookup and 30X Input Rate 

The following results are for the system dynamics model where the nominal average 
lookup rate (.0002 ms/call) is run with a 30x input rate (30 calls/ms), Figure 5-19.  Very 
little sensitivity to the 30x input rate is shown with regard to meeting the performance 
requirements.  As with the previous run, none of the simulation runs in this set meet the 
requirement for 90% processing at the 500ms point; the network latencies seem to prevent 
that occurrence.  With the a 30x input rate and the slowest average lookup, there is an 
accumulation of calls at the switch that may problematic depending on memory capacity, 
Figure 5-20.  The 30x input rate also causes an accumulation at the Calls Identified stock; 
this is probably a result of the LAN latency and read rate, Figure 5-21.  Similarly, there is 
an accumulation with the 30x input rate at the Calls Dialed stock, probably as a result of 
the WAN latency and search rate, Figure 5-22.  Calls ringed increases as expected, 
assuming the system does not break, Figure 5-23. 
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Figure 5-19  SD Model Percentage 30x Performance with various average Lookups  

 
Figure 5-20  SD Model 30x Switch Messages accumulations with various average Lookups  
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Figure 5-21  SD Model 30x Calls ID’d accumulations with various average Lookups  

 
Figure 5-22  SD Model 30x Calls Dialed accumulations with various average Lookups  
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Figure 5-23  SD Model 30x Calls Ringed accumulations with various average Lookups  

 

6 Major Findings and Significance 

The major findings and significance below resulted from the data analysis.  Each major 
finding and significance presented has a header topic followed by the statement of the 
finding and its significance.  

6.1 UML and System Dynamics Models  

System Dynamics models expressed in VENSIM do not solve the problem of having to 
manually translate static UML™ diagrams into executable language as SimML automated 
this step.  However, the analysis does show that System Dynamics models using VENSIM 
have the power to support the concept of simulating information system behavior based on 
UML descriptions of the system.  Additionally, leveraging SD’s VENSIM innate 
capability to support the creation of simulation models from static UML™ diagrams was 
apparent and added benefits that were not apparent in SimML, e.g., a picture of the 
structure of the model and its organic flow. 
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There is a significant opportunity for System Dynamics using VENSIM to support the 
information system domain if a seamless interface is made between UML™ and VENSIM 
models, possibly using XML, XMI, or a new SimML parser.  Many man-years of effort 
would be saved using System Dynamics VENSIM models as opposed to the currently 
charted course of a request for proposal to create a “new” language to make static UML™ 
diagrams into dynamic models.  This would also prevent the tendency toward “language 
bloat” for UML™ by keeping its focus on the artifacts it produces so well today and not 
adding a new simulation language set of semantics and syntax. 

6.2 Integrated View of Structure and Behavior 

The study finds that System Dynamics using VENSIM shows an integrated view of the 
structure and behavior of the subject BT IN model that neither the given UML™ models 
nor the SimML language presented.  It is significant that SD and VENSIM have the 
capability to show the interdependence of structure and behavior concurrently using stock 
and flow diagrams and simulation results. 

6.3 Boundaries of the Reference Model 

Several parameters given in the customer problem statement such as host memory, 
message, and processing speed were not found in the SimML model.  Similarly, call 
barring, call blacklisting, and error handling were not modeled.   

 

Host memory, message size, and processing speed may have a significant impact on 
system throughput.  The dynamics of these parameters may have a significant influence on 
the structure and behavior of the implemented information system and should be part of 
the simulation to ensure they will not adversely affect the decision process.  Limiting the 
modeling simulation boundary to exclude what happens post “ring” may be reasonable, but 
handling the consequences of call-barring and call-blacklisting could have significant 
impact on the performance. 

6.4 Sensitivity Analysis 

The SimML model included a very limited sensitivity analysis.  The System Dynamics 
VENSIM model readily lent itself to sensitivity analysis. 

 

Without looking at the model structure and behavior with regard to sensitivity to stress, a 
significant finding may be overlooked.  In the case of this study, not looking at the 
sensitivity of the model to increased input volume may be a fatal flaw.  The input volume 
was given as 3x10E3 to 3X10E6.  The simulation was confined to the 1X10E3 magnitude 
case.  When increasing the input volume using the System Dynamics VENSIM model, an 
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accumulation of messages was observed at the switch waiting for the “lookup ID” to be 
completed.  It is very likely that the switch will not have the memory capacity to sustain an 
accumulation of this nature; further investigation is warranted. 

7 Conclusions 

The data analysis and findings support the problem statement that an information system 
described using static UML™ is translatable into a System Dynamics VENSIM simulation 
model.  The rough comparison of the System Dynamics VENSIM model simulation results 
to those from the SimML case study show comparable results.  Using System Dynamics to 
model information system architectures and software design before implementation has 
potentially significant cost benefits to an industry-wide information system problem of cost 
and schedule overruns.  

 

For credibility with the system engineering information system domain, System Dynamics 
will need to build interfaces into its simulation languages that will accept UML™ artifacts, 
perhaps documented as XML or other standards.  A seamless interface between UML™ 
and SD simulation languages is essential to be responsive to the system engineering 
information system domain; otherwise, new and specialized languages will be procured 
that will be duplicative and competitive to the System Dynamics simulation languages. 
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