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Abstract 

The paper proposes a policy design method for system dynamics models based 

on neural network and genetic algorithms. Algorithmic approaches to policy design 

traditionally are accomplished by either optimization or modal control methods, 

which achieve the designer’s goal through an indirect way. The approach presented 

here instead is more directly. A model designer can specify any desired behavior 

pattern and let the learning algorithm to point out where to consider for changes.  It 

needs no objective function as required by optimization algorithms nor suffers the 

limitations of linearization and complex control mechanism as modal control 

approaches usually do. The approach is based on our previous work that shows a 

system dynamics model (i.e., a flow diagram) is equivalent to a specially-design 

partial recurrent network which both operate under the same numerical propagation 

constraints. Several experimental studies are conducted to evaluate performance of 

the new approach. The results show that it is at least as effectiveness as other 

competent approaches but more convenient and straightforward. 
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1. Introduction 

The utmost goal of studying system dynamics is to develop policies that improve 

the dynamic behavior of a system [Coyle, 1996]. Traditional or analytic (called by 

Porter [1969]) approaches to policy design rely on a domain expert’s insight and 

experiences to solve the problem in a trial-and-error style [Starr, 1980; Coyle, 1977]. 

Thus, strategies derived for some specific models are usually hard to be generalized. 

Talavage [1980] points out that traditional practices of policy design are 

time-and-money-consuming. Synthetic approaches [Porter, 1969], on the other hand, 

use algorithmic methods to automatically search for a candidate policy, and are 

generally applicable to an arbitrary model. 

Current synthetic approaches are based on two categories of theory: (1) 

optimization theory and (2) modal control theory. The former generates policies 

through a process of searching for a combination of (all) parameter values in order to 

optimize an objective function (not system behavior) [Burns and Malone, 1974; Coyle, 

2000]; the latter changes the behavior patterns of a model by shifting the eigenvalues 

of the differential equations that define the model [Talavage, 1980; Mohapatra and 

Sharma, 1985]. 

Each of the above approaches has strengths and weaknesses. The success of 

optimization algorithms depend on assigning an appropriate objective function so that 

the optimization result will reflect in changes of behavior as user specified. If 

choosing a wrong objective function, the changes indicated by the algorithm may not 

necessarily result in the expected model behavior. In a multi-criteria condition, 

identifying such an objective function is not an easy task (i.e., “black art” by Coyle 

[1996; 1999]). 

On the other hand, approaches using modal control theory can directly modify a 
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system’s behavior. But again the relationships between the eigenvalues and the 

system behaviors are not straightforward; it requires strong mathematical training 

background in order to do so. Besides, the approaches can only adjust overall 

behavior patterns. It cannot fine-tune individual variable’s behavior as may specified 

by users. 

In this paper, we present an algorithm that is different from the above two 

approaches but inherits their strengths; it adjusts a system’s behavior directly without 

the needs of an objective function or changing eigenvalues. The idea behind is based 

on our previous research [Chen and Jeng, 2002], which demonstrates that a system 

dynamics model is equivalent to a specially designed neural network. Given this, we 

therefore view policy design for a system dynamics model as a learning problem, and 

a genetic algorithm (an evolutionary approach) based on the neural network model is 

applied. 

To use this kind of algorithms, one needs first to encode the problem, i.e., to 

translate the problem/solution into a code string that represents a chromosome, and 

define how the operations of mutation and cross-over are implemented. Therefore, in 

our problem, we have to encode a structure of a system dynamics model into a string, 

and this is not easy. Fortunately, we have shown that a system dynamics model is a 

partial recurrent network. Thus, the easiest way is to encode the network structure and 

there are already many methods doing this [Prusinkiewicz and Lindenmayer, 1992]. 

We’ll show this in the later of the paper. The remaining of the paper is organized as 

follows. Section 2 is a brief survey of past approaches in policy design. Section 3 

introduces the SDM-PRN model transformation and the genetic algorithm approach to 

generating policies by fitting the desired system behavior pattern. Section 4 presents 

an experimental study that evaluates the performance of this new approach. The last 

section concludes the paper. 



 4

2. Review of Traditional Methods 

According to Forrester’s [1968a] description, policies are “… the rate 

equations … that tell how ‘decisions’ are made. The policy (rate equation) is the 

general statement of how the pertinent information is to be converted into a decision.” 

Traditionally, policies and rate equations are usually synonymous terms. Designing a 

new policy is an activity of (1) assigning alternative values for parameters, (2) 

changing linkages among system elements, and/or (3) inserting alternate elements into 

a model [Starr, 1980]. 

As it is mentioned, synthetic policy design methods fall into two categories: 

optimization theory and modal control theory. We briefly introduce each of them 

here. 

Optimization is the act of obtaining the best result under given circumstances. 

On design, construction, and/or maintenance of an engineering system, engineers 

have to make many technological and managerial decisions at different stages. The 

ultimate goal of all such decisions is either to minimize the required effort/cost or to 

maximize the desired benefit/utility. Since cost or utility can be expressed as an 

objective function of certain decision variables, optimization can be defined as a 

process of searching for the conditions that generate the maximal or minimal value of 

the function. The existence of optimization methods can be traced to days of Newton, 

Lagrange, and Cauchy [Rao, 1996] 

Several optimization methods have been used in policy design to modify system 

behavior patterns according to a user’s expectation. Burns and Malone [1974] are 

possibly the first pioneers who apply optimization algorithms in the context of system 

dynamics modeling. They propose two algorithms. One uses the Powell method 

[1964], which searches the conjugate directions of the matrix of system equations, to 
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determine a set of optimal parameter values; the other uses the steepest descent 

algorithm [Bryson and Ho, 1969] to determine the direction of a set of time-varied 

parameter trajectories that optimizes the objective function. Both algorithms are 

applied to the Forrester model of World Dynamics [1973], and the latter is reported to 

have a better performance. However, the first method is later adopted by the software 

package VENSIM [1994]. 

Different from the Powell method, the search algorithm used in DYSMAP 

Optimizer [Keloharju, 1983] (which utilizes the pattern search strategy [Hooke and 

Jeeves, 1961]) is simpler. It only allows one parameter value be modified at each 

iteration in the search procedure. This method has been applied to many applications. 

Coyle [1996; 1999] uses it to solve the problem of a domestic manufacturing 

company. Wolstenholme and Al-Alusi [1987] apply it to a military defense model in 

order to generate a better formation change strategy for the attacking force in response 

to the fire strategies made by the defending force. Kivijärvi and Tuominen [1986] use 

it to solve economic optimal control problems. Keloharju and Wolstenholme [1989] 

show the value of DYSMAP Optimizer in the optimization of a project management 

model. 

Kleijnen [1995] proposes a heuristic optimization method, which is later called 

the robust concept exploration method (RCEM) by Bailey et al. [2000]. Treating a 

system dynamic model as a black box, it first creates a set of regression equations to 

fit the input (or parameter)/output (or system state, level) patterns of the model. The 

statistical Design Of Experiments (DOE) is applied to determine which parameters 

are significant. It drops the insignificant parameters, views the regression equations as 

the response surfaces (or constraint), and then optimizes the objective function using 

the traditional Lagrange multiplier method. The parameter values obtained through 

the procedure are the final solution. A case study in the Wolstenholme’s coal 
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transportation model [Wolstenholme, 1990] shows the advantages of the approach.  

Bailey et al. [2000] enhance RCEM and use it in a high-level model of an 

industrial ecosystem. They do not view the solution of RCEM as a final answer, but 

instead, consider it as a guide to the real one. Their approach identifies the exploration 

points surrounding the solution of RCEM and then find a set of real best-combination 

of parameters from them. 

Finally, Grossman [2002] proposes a genetic algorithm that searches the solution 

space in multiple and random directions, and demonstrates his algorithm in the 

Information Society Integrated Systems Model. 

Except RCEM, all other methods described above treat the optimization problem 

as a search problem in a solution space. The only difference is in searching directions, 

which determine efficiency and effectiveness of the algorithms. The Powell method 

might be the most efficient since it searches only in the conjugate directions. On the 

other hand, Grossman’s genetic algorithm might be the most effective since it 

explores the largest solution space and does not get trapped in a local optimum. 

All methods reported better performance than an experts’ analytical approach. 

However, there are a couple of weaknesses in these approaches [Coyle, 1996; 1999]. 

First, the algorithms do not always guarantee to find an optimal solution. The other 

and the most serious problem is that the objective function for a problem is not easily 

to choose, which means that a poor objective function might be “truly disastrous” 

[Coyle, 1996; 1999]. 

Another mainstream of synthetic policy design methods applies the modal 

control theory. As Mohapatra and Sharma [1985] stated, a linear dynamical system 

can be represented by a state differential equation of the following type: 

x(t+∆t) = Ax(t) + Bu(t)                                            (1) 

where x is a n*1 vector of state or level variables, u is a m*1 vector of control (or 
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policy or rate) variables, A is an n*n system matrix, and B is an n*m matrix. 

If the control vector u is a linear feedback of the state vector x according to the 

following control law 

u(t) = Fx(t)                                                     (2) 

where F is the feedback matrix of dimension m*n, then Eq. 1 can be represented as  

x(t+∆t) = (A+ BF)x(t) = A1x(t)                                     (3) 

where A1 is an n*n closed-loop system matrix. 

Wonham [1967] has shown that if a system with equations like Eq. 1 is state 

controllable, then the closed-loop system matrix A1 can be assigned with any set of 

eigenvalues by an appropriate choice of the feedback matrix, F. In addition, Porter 

and Crossley have shown how to derive control rules of shifting eigenvalues, from 

locations λ1, λ2,..., λm, of the A matrix to desired locations, ρ1, ρ2,…, ρm. Since 

eigenvalues determine the response characteristics of a system behavior, ability to 

generate the desired eigenvalues makes it possible to produce a desired system 

behavior pattern [Mohapatra and Sharma, 1985]. 

Based on the modal control theory, Talavage [1980] describes a procedure called 

MODEMAP that uses a piecewise-linearization process to linearize the model. In 

addition, he shows an example to apply the method to a version of the market-growth 

model described by Forrester [1968b]. 

Mohapatra and Sharma [1985] also present a policy design approach based on 

the modal control theory and use the production and stock system as an example to 

illustrate the method. In their approach, policy variables are treated as control 

variables by isolating them from other variables, which leads to a greatly simplified 

model that is linear. With a reduced system being linear and controllable, control 

policies then is generated synthetically by their method to ensure any prescribed 

degree of stability. 
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Although the modal control theory approaches can generate desired patterns, 

they still suffers a problem when being applied in policy design. That is, there is no 

explicit relationship between the patterns generated by the modified eigenvalues and 

the behavior that a policy designer wants to generate. This makes the approaches 

difficult to be applied. In addition, these approaches can only adjust the overall 

behavior patterns. It cannot fine-tune individual variable’s behavior as may specified 

by users. 

3. Policy Design by Fitting a Desired Behavior Pattern 

In our previous work [Chen and Jeng, 2002], we have shown that a traditional 

flow diagram for a system dynamic model can be equal to a specially-designed partial 

recurrent neural network. Since the latter is adaptable, we can therefore view policy 

design for a system dynamics model as a learning problem for the neural network 

structure in order to fit a specified (output) behavior pattern. Our learning method 

here is a genetic algorithm based on the neural network model. In the following 

section, we will show how to do this. But before that, we need to give a brief touch 

how the SDM-PRN Transformation looks like. 
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3.1. The SDM-PRN Transformation 

Inventory
(I)

Order Rate
(OR)

Adjustment Time
(AT)

Desired Inventory
(DI)

 
Figure 1 An inventory model 

Shown in Fig. 1 is a simple flow diagram for an inventory control system. In this 

model, there is a decision point (Order Rate; OR) that controls the flow into a level 

(Inventory; I). The goal is to minimize the difference between desired inventory (DI) 

and I within adjustment time interval (AT), where DI and AT are constants and 

propagated to OR through wires. 

The numeric equations/constraints related to the system in Fig. 1 are  

I(t) = I(t – DT) + (OR) × DT 
OR = (1/AT) × (DI – I) 
DI = 6000 
AT = 5 

We have shown that a system dynamics model can be transformed into a partial 

recurrent neural network through the algorithm FD2PRN [Chen and Jeng, 2002].The 

above model in neural network form will be look like Fig. 2(c). This diagram may be 

hard to understand at a first sight without knowing its structure. It composes of three 

parts: the top left two nodes are input units, which feed data into the network at 

initialization; the bottom two nodes are output units; and the top right two nodes are 

state units, which keep the previous values of the output units. The relationship with 

the original model is following. As illustrated in Fig. 2(a), level (inventory: I) and 

constant (DI) are each mapped to three units: input II, output OI, state SI ; and input 
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IDI, output ODI, state SDI, respectively. Rate (OR) and the flow, as shown in Fig. 2(b), 

are mapped to a hidden unit HOR, and the link from HOR to OI, respectively. The other 

type of constants (e.g., AT) that appear as a coefficient in a rate equation is mapped to 

the weights of the links from SI to HOR and from SDI to HOR, respectively, as shown in 

Fig. 2(c). 

For your reference, the details of the individual relationships between the 

corresponding components in two models are listed in Table 1. Not shown in Fig. 2 

are the values that propagate within the network. We have shown also that the 

equations between the two models are the same. However, in order to maintain the 

clarity of the paper, we will omit this part here. Interested readers may find the proof 

of the equivalence in detail from [Chen and Jeng, 2002]. 
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Figure 2 The inventory model in PRN format 
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Table 1 The component mappings between SDM and PRN 
Components for SDMs Components for PRNs 
Level variable, constant (not for 
coefficient) 

A triple of input, output, and state units 

Rate (or auxiliary) variable Hidden unit 
Wire Link from a state unit to a hidden unit 
Flow Link from a hidden unit to output unit 
Level equation A weighted sum of the values of hidden and 

state units connecting to an output unit via 
links 

Rate equation (including constants as 
coefficients) 

Any function of the values of state units 
connecting to a hidden unit via links 

Equation for initial value Link from an input unit to an output unit 
Constant equation Link from a state unit to an output unit  

3.2. Genetic Algorithms 

Genetic algorithms (GAs), first introduced by John Holland for the formal 

investigation of the mechanisms of natural adaptation [Holland, 1975], are now 

widely applied in science and engineering as adaptive algorithms for solving 

problems. Any problem that is suitable to be solved by the generate-and-test paradigm 

can use this approach. A unique characteristic of genetic algorithms is that they create 

an environment to mimic the biological evolution process and let various 

combinations of parameters related to the problem to compete with each other in 

order to generate the best breed of solution without the intervention of human beings. 

Such an algorithm requires the creation of a special kind of data called “chromosome” 

which includes the whole information that is needed to solve the problem. So it is a 

solution in fact. The algorithm initially generates a set of such solutions as the first 

generation. Then the biological evolution process comes in and each solution is 

evaluated based on its “fitness”. Those with a higher “fitness” score receive a better 

chance in the competition to win the right to breed their next generation using the 

operations of cross-over and mutation; otherwise, they die. (“Survival of the fittest”, 

as introduced by Darwin [1859]) The process stops either after a certain generation or 
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at a special termination criterion. The best one for the final solution is then chosen 

from the pool of the created chromosomes. 

Because of the unique way of solving problems, GA is particularly known to be 

suitable for multidimensional global search problems where the search space 

potentially contains multiple local optima. Unlike other search methods, it does not 

converge to local optima and correlations between the search variables are generally 

not a problem either. In addition, GA basically does not require extensive knowledge 

of the search space, such as solution bounds or functional derivatives, etc. since it 

solves problems by “guess”, not through an analytical process. This fact ensures that 

GAs may be readily applied on fitness landscapes (or potential surfaces) which may 

contain discontinuities or singularities without any special treatments. Past research 

has shown that genetic algorithms are applied very successfully in various areas and 

different applications [Koza and et al., 2003]. 

Under the same process, however, there is much flexibility in the detail 

implementations of the algorithm. For example, someone might prefer to apply the 

mutation operator only to generate new individuals without a selection operator from 

the entire population. Others might choose from different selection schemes like 

"Roulette wheel" selection, tournament selection, random selection, or stochastic 

sampling. There is also a multitude of methods to create a new individual from two 

parents. Crossover is the process by which two parents get combined but there are 

many ways to implement. The most commonly used form is single-point crossover. 

Another alternative is chromosome mixing, where intact chromosomes are randomly 

swapped. As a random algorithm, there are also parameters to be set, i.e., mutation 

rate, crossover rate, etc. There is no agreement in the GA community over which is 

the preferred variation; their relative performance is dependant upon the particular 

problem [Adcock, 2003]. 
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3.3. Fitting a Desired Behavior Pattern 

Now we introduce our method how to make policy design become a learning 

problem. We will explain it in four steps in the following subsections. 

3.3.1. Genetic Encoding 

The first step of using genetic algorithms in problem solving is encoding, i.e., to 

encode a solution of the problem as a chromosome. In our case, the solution is a SDM, 

and to encode it directly is not easy. Since we have rephrased a SDM in terms of a 

PRN representation, we have a choice by encoding the neural network structure 

instead, and there are existing ways to do it [Gruau and Whitley, 1993, Prusinkiewicz 

and Lindenmayer, 1992]. 

The encoding schemes can be divided into direct ones and indirect ones. In the 

former, each link weight of a network is directly encoded. In the later, only some 

characteristics of a network are encoded, such as the number of hidden layers, the 

number of hidden nodes in each layer, the number of connections between two layers, 

etc [Yao, 1999]. For simplicity, our current approach will only encode the network 

link that represents a wire into the chromosomes. In addition, those that currently do 

not exist but have the potential to be considered later in policy design will also be 

included. On the other hand, the ones that cannot be modified in policy design will be 

excluded from the code since they can be treated as constants. At this moment, we 

will not consider the possibility of introducing new network nodes or changing a rate 

equation, which touches the boundary problem of policy design. 

How to represent a chromosome is the third problem. Previous way to this is to 

represent it into a binary format. But this will create a long string with imprecise 

information [Holland, 1975]. So later approaches use real numbers to represent the 
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chromosome, and so is ours. We will let each weight in a wire correspond to a real 

number in the code. 

3.3.2. The Fitness Function 

In order to evaluate a solution (i.e., chromosome) generated by the genetic 

algorithm, we need to define a fitness function. The one we used here is very 

straightforward, just a set of desired behavior patterns derived from a policy 

designer’s intention for system variables. The patterns specify what outcomes s/he 

wants the system to generate. The fitness function then measures the closeness 

between the actual pattern generated by the solution and target pattern, and the closer 

the higher of the fitness score. Our equation is based on the reciprocal of SSE (Sum of 

Squared Error):  

∑∑ −
=

i t
itit yy

fitness 2)ˆ(
1 ,  

where yit is an desired output, itŷ  is the real output of a chromosome, and t 

represents the tth time point, i represents the index of a variable. 

The policy designer may multiply the SSE by a weight wi to emphize the 

importance of the variables, i.e. 

∑ ∑ −
=

i t
ititi yyw

fitness 2)ˆ(
1  

There are many possible ways to prepare the desired behavior patterns. The 

policy designer can either edit existing behavior data by him- or herself or use any 

tool to create them. However, there is a heuristic rule in preparation of the data 

depending on the type of a problem. If the goal is to search for a policy that will 

generate a stable trajectory, then a flat line is enough to represent the intention. 

Otherwise, the goal is to search for a growing policy and a growing trajectory has to 
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be generated, e.g. constant growth, exponential growth. 

3.3.3. The Evolution Process 

Having defined the fitness function, the following step is to set up the evolution 

process to reproduce the individuals generation by generation. The first parameter to 

be chosen is the size of population, which determines the number of parallel searching 

path. It’s the bigger the faster to find better solutions but more computation efforts. 

We set the population size to 120 and the evolution process will stop at the 1000th 

generation. Then we define the schemes and parameters of operators. There are three 

operators in GA: selection, mutation and crossover. When a chromosome wins the 

right to enter the next generation, it has three possible choices depending on a 

stochastic process. One is untouched and enters the next generation pool directly; the 

second is modified by a mutation operation; and the third is to combine with another 

one through a crossover operation [Adcock, 2003].  In this research, we choose only 

second and third which are defined by following scheme and rate: selection scheme is 

Stochastic Sampling, mutation scheme is single-point randomize, crossover scheme is 

double-point crossover, crossover rate is 0.9, and mutation rate is 0.3. The detail of 

scheme described above can be referred in [Adcock, 2003]. 

3.3.4. Generating a Policy 

The evolution process stops either because a certain number of generations has 

reached or a termination criterion is satisfied. After that, we need to inspect whether 

the best one(s) that generated from the evolution process is (are) a good one. If yes, 

then use that one as the final solution for the problem and output the content of the 

policy for the human designer to consider; otherwise, another evolution process starts. 

Genetic algorithms are a kind of stochastic searching processes. So it may require 
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more than a certain number of trails in order to obtain an expected outcome. However, 

there is a limitation of the trials and endless of loop is meaningless. A usual 

convention is to repeat the evolution for 10 times.  

If the result is still unsatisfied, there is another choice in our method, which is to 

trigger the learning algorithm for neural networks. Remember that our encoding 

scheme is based on the PRN model, which is a neural network. So we can further 

fine-tune the solution with a gradient-descent learning algorithm. It is well known that 

genetic algorithms are good at large range searching but inappropriate for something 

that needs iterative fine-tuning. Another benefit of our approach is that it combines 

both of the advantages of genetic algorithms and neural networks in solving problems. 

4. Experimental Study 

We will use the model of World Dynamics to test our method, which is 

developed by Forrester [1973] in order to model the real world as a system of 

continuous flows of time-varying commodities interrelated by complex nonlinear 

feedback and coupling mechanisms. The model consists of a set of equations that 

describe the interactions among five level variables: population (P), natural resources 

(NR), pollution (POL), capital investment in agriculture fraction (CIAF) and capital 

investment (CI). Variables P, POL, and CI have both input and output follows; NR 

has only an output follow; and CIAF has only an input follow. According to the 

model’s description, policy is designed 70 years after the model starts running at the 

time of 1900. The policy goal aims at reducing NR consumption while maintaining CI, 

P and POL. Besides, an additional variable QL (Quality of Life) is defined as an 

indicator, which should be at least maintaining at the level of 1970 year. It is not a 

level variable that participates the operations and feedbacks to the system. Instead, it 

is more like an objective function to pursue. In our experiment, it corresponds to an 
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additional unit added to the PRN and generating an output behavior trajectory. There 

are five adjustable parameters, which are: BRN (Birth Rate Normal), NRUN (Natural 

Resource Usage Normal), POLN (Pollution Normal), FC (Food Coefficient), CIGN 

(Capital Investments Generation Normal). Their original parameter setting is given in 

the second column of Table 3, and Forrester’s parameter setting is listed in the third. 

4.1. Generating the Original Policy 

In order to test whether our method can really generate policies without any need 

of domain or prior knowledge, we first use the proposed policy given by Forrester for 

the model as the learning target (their parameter values are listed in the third column 

of Table 2). Then we start the execution of our algorithm as described in section 3. 

The execution stops at the 1000th Generation, and the best solution from the one 

thousand generations is selected. The whole process iterates 10 times. Each requires 

about 30 minutes on an Intel Pentium III 750 machine. The result of each iteration in 

fact is very close, and the best one is shown in the 4th and 5th column of Table 2. The 

difference between the two columns is that the 4th column uses the fitness function 

based on the original SSE without normalization while the 5th column does. 

Taking a close look at the table, one can see that the parameter values are very 

close to each other. The three policies generated are drawn in Figure 3 where only the 

one from the 4th column has a little large difference in POL variable. This is because 

variable QL, CIAF, and NR have relative large values than others and that biases the 

fitness function to favor the solutions that have close trajectories with three variables 

but ignore others. This is evidence that weighting a different variable can affect the 

final policy the algorithm generates. The unbiased version given in the 5th column 

shows that the policy generated by our algorithm does match the one by Forrester. 

Except variable P, all other variables have almost coincident trajectories with 
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Forrester’s ones. 

Table 2 comparison of parameter settings 
Parameters Original Forrester Evolve from 

Forrester’s 
Trajectories 
(SSE) 

Evolve from 
Forrester’s 
Trajectories 
(Normalized 
SSE) 

BRN 0.04 0.04*0.7=0.028 0.02815 0.02754 
NRUN 1 1*0.25=0.25 0.24676 0.24775 
POLN 1 1*0.5=0.5 1.11789 0.51352 
FC 1 1*0.8=0.8 0.84451 0.84095 
CIGN 0.05 0.05*0.6=0.03 0.02992 0.02981 
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Figure 3 Comparison of model behaviors 

4.2. Exploring Policy Limitation 

Generating a good policy is important. But it is sometimes equally important to 

know the limitations of policy that can be taken. So we want to further explore the 

potential of our algorithm. Our question is simple. Can we obtain an even better 

policy if using a higher expectation trajectory for QL as the target? We start another 

two experiments and the results are compared with those by Burns and Malone [1974], 

who use Powell method to generate the policy. 

Burn and Malone conduct two experiments. The “Burns and Malone 1” uses the 

original model of World Dynamics as the starting point of their optimization process 

while the “Burns and Malone 2” uses Forrester’s policy as the starting point. The 

results of their experiment results are listed in 2rd and 3th column in Table 3. Burns 

and Malone’s objective function consists of three terms: Max QL, Min P’s fluctuation, 

and Min the changes in parameter values. Its equation is following: 

∫∫∫ −+×−⋅+−= −
ft

ff

t

t

t

t

t
dtudtPdtQLIMin

000

229162 1)10767.3(10 w  

We also conduct two experiments. “OURS 1” is trained with the exemplar data 

that increases QL’s level up to 30% but maintains the same trajectory; “OURS 2” 
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changes the QL trajectory to continuing increasing. Except that, all other variables’ 

trajectories are untouched. The results of the experiments are listed in the 4th and the 

5th column in Table 3. 

Table 3 comparison of parameter settings 
Parameters Burns and 

Malone 1 
Burns and 
Malone 2 

OURS 
1  

OURS 
2  

BRN 0.04*0.6=0.024 0.04*0.64=0.0246 0.02240 0.00988 
NRUN 1*0.52=0.52 1*0.44=0.44 0.22891 0.20061 
POLN 1*1.16=1.16 1*1.02=1.02 0.42672 0.44410 
FC 1*0.89=0.89 1*.0.84=0.84 0.76039 0.45825 
CIGN 0.05*0.71=0.0355 0.05*0.64=0.032 0.03177 0.02786 

Model behaviors defined by these different parameter settings are drawn in Fig. 

4. As shown in the figure, the QL trajectory of OURS1 does reappear the behavior 

extracted from the training data and generate a stable trajectory (i.e., does not drop) 

which is higher than all previous approaches including Burns and Malone’s. The QL 

trajectory of OURS2 is even more interesting; it follows the trainer’s expectation and 

keeps growing as is shown in the training trajectory. This result outperforms all 

known policies and is much better than Burns and Malone’s one. 

Based on the result of the experimental study, we can safely state that the PRN 

representation indeed is beneficial to the applications of system dynamics. The two 

experiments show that the structure of the new representational form can be adapted 

according to the will of a policy designer, simply by assigning appropriate exemplar 

training data. The method requires neither mathematical background (as required by 

some optimization methods) nor any insight about the target domain (as required by a 

manual approach) in order to generate a policy, but its performance in the experiments 

is much better than that by an optimization algorithm (e.g., Burns and Malone’s) or by 

a human expert (e.g., Forrester’s). 
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Figure 4 Comparison of Model Behaviors Induced by Different Parameter 

Settings 
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5. Conclusion 

This paper has presented a policy design method which is based on partial 

recurrent networks and fitting desired behavior patterns. First, the model in which a 

policy to be designed is transformed into a partial recurrent network and then GA is 

applied to learn a better parameter setting. The model of World Dynamics is used to 

test our method. The results described in section 4 show that our method indeed 

design customized parameter settings based on expectation trajectories given by 

policy designers. In the same concept, the method may apply in model construction, 

too. Since the combination of PRN and GA can find the parameter setting based on 

expectation trajectories, it may find the parameter setting based on real-world 

trajectories. However, the real-world data contain many noises and the structure of 

model is not sure in model construction stage. Further research will be conducted in 

this direction. 
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