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Abstract
The modelling of many real life phenomena for which either the parameter esti-

mation is difficult, or which are subject to random noisy perturbation, is often car-
ried out by using stochastic ordinary differential equations(SODEs). In this paper,
a class of high strong order implicit Runge-Kutta methods for SODEs is introduced.
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1. Introduction

Consider the autonomous ordinary differential equation (ODE)

y′(t) = f(y(t)), y(t0) = y0, y ∈ Rm· (1)

The autonomous Itô stochastic version of (1) can be written in differential form as

dy = f(y)dt + g(y)dW, y(t0) = y0, y ∈ Rm· (2)

Here f is an m-vector-valued function, g is an m×p matrix - valued function and W (t)
is a p-dimensional process having independent scalar Wiener process components
(t ≥ 0) , and the solution y(t) is an m-vector process. The integral formulation of
(2) can be written as

y(t) = y0 +
∫ t

t0
f(y(s))ds +

∫ t

t0
g(y(s))dW (s) , (3)

where the second integral in (3) is an Itô stochastic integral (see[8,9]) with respect
to the Wiener process W (t). If the autonomous version of an Itô stochastic ordinary
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differential equation (SODE) given by (2) then the related Stratonovich SODE is
given by

dy = f̄(y)dt + g(y)odW, y(t0) = y0, y ∈ Rm, (4)

where

f̄(y) = f(y)− 1

2
g′(y)g(y).

In other words two differential equations (2) and (4) , under different rules of calcu-
lus, have the same solution. There are many different methods to solve these kinds
of differential equations (see, for example [9,10,11,12]).

An outline of this paper is as follows: In section 2 a discussion on Runge-Kutta
methods, especially implicit and semi-implicit Runge-Kutta methods for SODEs

based on rooted trees theory is introduced(see [6,7]). In section 3 a new class of
semi-implicit Runge-Kutta methods for SODEs is constructed. Numerical results
are reported in section 4.

2. Runge-Kutta Methods for SODEs

A s-stage Runge-Kutta method for calculating a numerical approximation to the
solution of an autonomous ODE (1) is given by the recursive formula

Yi = yn + h
s∑

j=1

aijf(Yj) i = 1, 2, . . . , s

yn+1 = yn + h
s∑

j=1

bjf(Yj) (5)

which can be represented in tableau form:

a11 a12 . . . a1s

a21 a22 . . . a2s
...

as1 as2 . . . ass

b1 b2 . . . bs

(6)

In tableau (6) if we do not require that the numbers aij for all i, j with j ≥ i, are

zero, then the assaciated methods of this general type will be called implicit Runge-
Kutte methods, however if aij = 0 for j ≥ i the corresponding method known as an
explicit Runge-Kutta method and if aij = 0 for j > i, the corresponding method is
known as a semi-implicit or semi-explicit Runge-Kutta method(see[7]).

For an autonomous Stratonovich SODE (4) we obtain by a straight forward
generalization of (5) the class of methods

Yi = yn + h
s∑

j=1

aijf(Yj) + J1

s∑

j=1

bijg(Yj) i = 1, 2, . . . , s

yn+1 = yn + h
s∑

j=1

αjf(Yj) + J1

s∑

j=1

γjg(Yj), (7)
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where J1 =
∫ tn+1
tn

odW is the increment of the Wiener process from tn to tn+1. which
can be represented in the tableau form:

a11 a12 . . . a1s b11 b12 . . . b1s

a21 a22 . . . a2s b21 b22 . . . b2s
...

...
...

...
as1 as2 . . . ass bs1 bs2 . . . bss

α1 α2 . . . αs γ1 γ2 . . . γs

(8)

Theorem 1:A stochastic Runge-Kutta method of the form (7) has maximum strong

order 1.5, for any number of stages s. The methods with optimal principal error
coefficients is of strong order 1.5,if:

αT (e, b) = (1, 1
2
),

γT (e, c, b, b2, Bb) = (1, 1
2
, 1

2
, 1

3
, 1

6
).

Here eT = (1, . . . , 1), c = Ae, b = Be.

Proof: see[4].

To break this order barrier, the class of methods (7) has to be modified in some
way so as to include further multiple stochastic integrals (see[4]) of the stochastic
Taylor formula apart from just J1. This has been done by K. Burrage and P.M.
Burrage (see[2]).They proposed the following class of methods:

Yi = yn + h
s∑

j=1

aijf(Yj) +
s∑

j=1

(b
(1)
ij J1 + b

(2)
ij

J10

h
)g(Yj) i = 1, 2, . . . , s

yn+1 = yn + h
s∑

j=1

αjf(Yj) +
s∑

j=1

(γ
(1)
j J1 + γ

(2)
j

J10

h
)g(Yj), (9)

where J1 =
∫ tn+1
tn

odW and J10 =
∫ tn+1
tn

∫ s2
tn

odWs1ds2. which can be represented in
tableau form:

a11 a12 . . . a1s b
(1)
11 b

(1)
12 . . . b

(1)
1s b

(2)
11 b

(2)
12 . . . b

(2)
1s

a21 a22 . . . a2s b
(1)
21 b

(1)
22 . . . b

(1)
2s b

(2)
21 b

(2)
22 . . . b

(2)
2s

...
...

...
...

...
...

as1 as2 . . . ass b
(1)
s1 b

(1)
s2 . . . b(1)

ss b
(2)
s1 b

(2)
s2 . . . b(2)

ss

α1 α2 . . . αs γ
(1)
1 γ

(1)
2 . . . γ(1)

s γ
(2)
1 γ

(2)
2 . . . γ(2)

s

(10)

The rest of this section is concerned with the problem of determining the strong

order of convergence of stochastic Runge-Kutta methods (9). In the case of Runge-
Kutta methods for deterministic problems the order of accuracy is found by com-
paring the Taylor series expansion of the approximate solution to the Taylor series
expansion of the exact solution over one step assuming exact initial values.In 1963
Butcher introduced the theory of rooted trees in order to compare these two Taylor
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series expansion in a systematic way (see[7]).K. Burrage and P.M. Burrage have
extended this idea of using rooted trees to the stochastic setting. They used the set
of bi-coloured rooted trees, i.e., the set of rooted trees with • (τ for deterministic)
and o (σ for stochastic) nodes to derive a Stratonovich Taylor series expansion of
the exact solution and a Stratonovich Taylor series expansion of the approximation
defined by the numerical method (9). By comparing these two expantion, they could
prove the following theorem:

Theorem 2: The stochastic Runge-Kutta method (9) is of stronge order 2,if:
αT (d, b) = (1, 0),
γ(1)T (c, b2, B(1)b, d2, B(2)d) = (1, 1

3
, 1

6
,−2γ(2)T bd,−γ(2)T (B(2)b + B(1)d)),

γ(2)T (c, b2, B(1)b, d2, B(2)d) = (−1,−2γ(1)T bd,−γ(1)T (B(2)b + B(1)d), 0, 0).
Here eT = (1, . . . , 1), c = Ae, b = B(1)e,d = B(2)e.

Proof: see[4].

3. Implicit and Semi-Implicit Runge-Kutta Methods for
SODEs

In 2000 the author and Prof.M. Mohseni generalized the explicit methods satisfy-
ing (7) were derivation by K.Burrage and P.M. Burrage (see[2]) to semi-implicit
and implicit methods (see[1]). More precisely we used theorem 1 and introduced
the semi-implicit and implicit methods of strong order 1.5 with minimum principal
error.Semi-implicit 2-stage stochastic Runge-Kutta methods are shown in tableaux
(11-a) and (11-b), and were referred to ”SIM” class:

(3 +
√

3)/6 0 (3 +
√

3)/6 0

−√3/3 (3 +
√

3)/6 −√3/3 (3 +
√

3)/6
1
2

1
2

1
2

1
2

(a) (11)

or
(3 +

√
3)/6 0 (3−√3)6 0

−√3/3 (3 +
√

3)/6
√

3/3 (3−√3)/6
1
2

1
2

1
2

1
2

(b)

Implicit 2-stage stochastic Runge-Kutta methods are shown in tableaux (12-a) and

(12-b), and were referred to ”IM” class:

1
4

(3− 2
√

3)/12 1
4

(3− 2
√

3)/12

(3 + 2
√

3)/12 1
4

(3 + 2
√

3)/12 1
4

1
2

1
2

1
2

1
2

(a) (12)

or

1
4

(3− 2
√

3)/12 1
4

(3 + 2
√

3)/12

(3 + 2
√

3)/12 1
4

(3− 2
√

3)/12 1
4

1
2

1
2

1
2

1
2

(b)
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In this section a semi-implicit stochastic Runge-Kutta method with strong order
2 will be constructed based on (9) and theorem 2 with s=3. Of course it is now
necessary to construct a family of methods satisfying in theorem 2. Some simple
analysis shows that this is not possible with s=2. In the semi-implicit case with
s=3 and throrem 2 we has 27 free parameters and there are 18 equations to be
solved. This system is solved using MAPLE and hence we conclude the following
semi-implicit stochastic Runge-Kutta method with strong order 2 which are shown
in tableau (13), and are referred to ”SIM3” class:

1
2

0 1
0 1

2
−4

3
0 5

3
−2

3
55
18

0 1 0 4
9

8
9

0 5
6

1
6

1
3

1
3

1
3
− 3

16
− 3

32
9
32

9
16

− 9
32

− 9
32

(13)

Certainly, it is possible to satisfy theorem 2 in the implicit case with s=3 or in the

semi-implicit and implicit case with s=4. But the large number of free parameters
makes solving the similar systems difficult.

4. Numerical Results

In this section,numerical results from the implementation of 5 methods are pre-
sented. These methods are ”PL”, ”R2”, ”SIM”, ”IM” and ”SIM3”. The first 4
methods taken from [1] and hence if g1 ∼ N(0, 1) and g2 ∼ N(0, 1), then for stepsize

h, J1 =
√

hg1 and J10/h =
√

h
2

(g1 + g2√
3
). The above methods will be implemented

with constant stepsize on two problems taken from [9], for which the exact solution
terms of a Wiener process is known. In order to improve the results of employing
the ”SIM”, ”IM” and ”SIM3” methods at each step, we use an iteration scheme [1]
with starting values come from the ”PL” or ”R2” methods.

For both problems and all methods, 500 trajectories are computed at each step-
size. The implementation determines the average error for each stepsize at the end
of the interval of integration for each method.

Test problem 1. ([8, equation 4.4.31])

dy = −a2y(1− y2)dt + a(1− y2)dW, y(0) = y0, t ∈ [0, 1],

with exact solution
y(t) = tanh(aW (t) + arctanh(y0))·

In Stratonovich form, the above SODE becomes

dy = a(1− y2)odw·
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Table 1: global errors for test problem1, a = 1, ε = 0 · 001, N = 500

h PL R2 SIM IM SIM3
1/25 0 · 034189 0 · 021000 0 · 001221 0 · 000775 0 · 000505
1/50 0 · 017179 0 · 009935 0 · 000580 0 · 000324 0 · 000114
1/100 0 · 008061 0 · 004711 0 · 000297 0 · 000091 0 · 000068
1/200 0 · 003850 0 · 002343 0 · 000188 0 · 000038 0 · 000014

Table 2: global errors for test problem1, a = 0 · 5, ε = 0 · 001, N = 500

h PL R2 SIM IM SIM3
1/25 0 · 003607 0 · 001469 0 · 000058 0 · 000021 0 · 000013
1/50 0 · 001808 0 · 000712 0 · 000032 0 · 000015 0 · 000010
1/100 0 · 000861 0 · 000330 0 · 000019 0 · 000011 0 · 000007
1/200 0 · 000428 0 · 000156 0 · 000010 0 · 000008 0 · 000002

Test problem 2. ([8, equation 4.4.46])

dy = −(α + β2y)(1− y2)dt + β(1− y2)dW, y(0) = y0, t ∈ [0, 1],

with exact solution

y(t) =
(1 + y0)exp(−2αt + 2βW (t)) + y0 − 1

(1 + y0)exp(−2αt + 2βW (t)) + 1− y0

·

In Stratonovich form, the above SODE has the form

dy = −α(1− y2)dt + β(1− y2)odW ·

Table 3: global errors for test problem2, α = 1 · 0, β = 0 · 01, ε = 0 · 001, N = 500

h PL R2 SIM IM SIM3
1/25 0 · 007381 0 · 000111 0 · 000007 0 · 000003 0 · 000000
1/50 0 · 003666 0 · 000027 0 · 000001 0 · 000000 0 · 000000
1/100 0 · 001827 0 · 000007 0 · 000000 0 · 000000 0 · 000000
1/200 0 · 000912 0 · 000001 0 · 000000 0 · 000000 0 · 000000

Table 4: global errors for test problem2, α = 1 · 0, β = 2 · 0, ε = 0 · 001, N = 500

h PL R2 SIM IM SIM3
1/50 0 · 179303 0 · 143407 0 · 039636 0 · 029369 0 · 017451
1/100 0 · 083476 0 · 064094 0 · 013703 0 · 012442 0 · 009212
1/200 0 · 051587 0 · 039694 0 · 009300 0 · 007101 0 · 005013
1/400 0 · 022484 0 · 018316 0 · 003835 0 · 001939 0 · 000728
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5. Conclusions

In this paper, we have constructed an implicit Runge-Kutta method of strong order
2.

Our future work should be based on the construction of implicit Runge-Kutta
methods for SODEs with two or more Wiener processes.

References

[1] Barid Loghmani, G. and Mohseni, M. : On the Implicit and Semi-Implicit
Runge-Kutta Methods for Stochastic Ordinary Differential Equations, Italian
Jour, of Pure and Applied Maths,(to appear).

[2] Burrage, k. and Burrage, P.M. : High strong order explicit Runge-Kutta meth-
ods for stochastic ordinary differential equations, Applied Numer. Mathemat-
ics 22(1996), 81-101.

[3] Burrage, k. and Platen, E. : Runge-Kutta methods for stochastic differential
equations, Annals of Numer. Mathematics, 1(1994), 63-78.

[4] Burrage, P.M. : Runge-Kutta methods for stochastic differential equations,
Ph.D thesis, Dept. Maths., Univ. Queensland, Australia(1999).

[5] Butcher, J.C. : Coefficients for the study of Runge-Kutta integration processes,
J. Austral. Math. soc., 3(1963), 185-201.

[6] Butcher, J.C. : On Runge-Kutta processes of high order, J.Austral. Math. soc.,
4(1964), 179-194.

[7] Butcher, J.C. : The numerical analysis of ordinary differential equation, J.
Wiley, U.K(1987).

[8] Kloeden, P.E. and Platen, E. : Stratonovich and Itô Taylor expansions, Math.
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