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Abstract 
 
This paper briefly defines and describes the Pathway Participation Metric (PPM), a 
mathematical calculation that can help to identify the linkages between the structure and 
behavior of a dynamic system.  PPM has been implemented in an experimental piece of 
software called Digest, which we then present.  Digest is not a simulation language, but 
rather a companion to any commercial system dynamics package, which accepts a text 
version of a simulation model and performs post formulation analysis of the model.  
Digest detects and displays which feedback loops are most influential in explaining a 
selected pattern of behavior in a model.  Output from a sample Digest run is presented 
and described.   
 
 

System Stories: Understanding How and Why Patterns of System Behavior 
Arise from Most Influential System Structure 
An important purpose of most system dynamics modeling efforts is to help managers 
better understand the systems which they manage and in which they live.  One key task in 
this search for insightful, system level understanding is the telling of “system stories” --
coherent, dynamically correct explanations of how influential pieces of system structure 
give rise to important patterns of system behavior1. 
 

A key task in creating system stories is accurately detecting exactly what part of the 
system structure gives rise to (or contributes most importantly to) some pattern of 
behavior identified in one or more simulation runs.  Richardson (1996) has identified this 
task as one of the key research problems presently facing the field of system dynamics.  
Over the years, this problem has been examined using a range of approaches (Graham, 

                                                                 
1 Of course, other valid purposes for client-based systems work exist.  For example Senge (1990) and many 
others advocate the use of Systems Thinking approaches that do not rely on formal simulation.  However, 
these approaches may suffer from other conceptual limitations starting with something as simple as proper 
interpretation of causal-loop diagrams (Richardson, 1986). 
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1977; Forrester, 1982; Eberlein, 1984; Kampmann, 1996; Davidsen, 1991; Ford, 1999; 
and Salleh, 2002. 
 
Despite the importance of understanding the linkages between the structure and dynamic 
behavior in simulation models, tools to accomplish this task are lacking.  Most skilled 
practitioners approach the challenge of identifying the most influential structure with 
some combination of intuition and analysis coupled to a program of repeated simulations, 
testing hypotheses about what structure controls what behavior in a controlled way with 
some of experimental logic.2  Years of experience with system dynamics models is 
needed for launching artful hypotheses and testing them via repeated simulation, and no 
satisfying accounts exist in the published literature prescribing a precise set of steps for 
completing this key task.  Even experienced modelers experience difficulty in testing 
their hunches about the connection between structure and behavior. 
 
For linear dynamic systems, some mathematical tools exist to make this trial-and-error 
process more tractable.  Indeed, modes of overall system behavior have a clearly defined 
meaning for linear systems.  System behavior is understood to arise from a linear 
combination of the dynamics associated with the eigenvalues of the linear matrix of 
system structure.  Hence, the calculation of a system’s eigenvalues can go a long way 
toward describing overall behavior modes of a linear system (Eberlein, 1989). 
 
Closely coupled to eigenvalue analysis of dominant modes of system behavior is the 
notion of “dominant loops.”  Usually thought of intuitively as the feedback structure 
“most important” in determining some portion of the dynamics of a system, dominant 
loops can be seen as a reduced set of closed feedback paths that contribute most to the 
overall behavior mode of a model.  Indeed, for linear systems, one can work out 
mathematical relationships between a set of such dominant loops and the system’s 
eigenvalues (Forrester, 1983; Kampann, 1996).  Nonlinear systems, however, have the 
capability to shift loop dominance and therefore require more than what eignevalue 
analysis can provide (Mosekilde, 1996; Forrester, 1987). 
 
The work presented in this paper continues in the line of eigenvalue and dominant loop 
analysis in that it continues the search for formal analytic approaches to support the 
detection of which pieces of system structure contribute most to selected patterns of 
system behavior.  However, in contrast to previous attempts to solve this problem, our 
approach does not focus on eigenvalues or on dominant loops as the key building blocks 
of influential system structure3.  Rather pathways, links of causal structure between two 

                                                                 
2 For example standard texts in the field such as Richardson and Pugh (1981)describe an 
approach to model analysis that relies on repeated simulations, as does Goodman (1974) 
and Sterman (2000). 
 
3 Indeed, the PPM method can be related to eigenvalue analysis.  Appendix B 
demonstrates that for a second order linear system, the PPM method produces values that 
are mathematically related to the two eigenvalues of the system.  The same result can be 
shown to hold for higher order linear systems. 
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system stocks, are envisioned as the primary building blocks of influential structure.4  Of 
course, one or more pathways can define closed feedback loops.  Under this new 
approach, some combinations of pathways (some of which form closed feedback loops) 
define the most influential system structure.  This most influential system structure, 
explicitly linked to a pattern of behavior identified by the modeler, forms the basis for 
creating insightful system stories.   
 
This paper briefly reviews the conceptual underpinnings of this new pathway-determined 
approach and then presents an experimental piece of software, Digest, that can be used to 
implement this approach. 
 
 
Pathway Participation Metrics (PPM): A Mathematical Algorithm for Detecting 
Most Influential Structure  
Mojtahedzadeh (1996, 1997) has proposed the Pathway Participation Metrics (PPM) as a 
mathematical tool that could help support modeler intuition in dealing with the task of 
unraveling relationships between system structure and system behavior. The basic 
behavioral building block of the PPM is a single phase of behavior for a single variable.  
A single phase of behavior for a selected variable is a time slice of the simulation where 
the selected variable maintains the same slope and curvature (first and second time 
derivatives).  Hence, there are seven patterns of behavior that may exist within a single 
phase:  (1) reinforcing growth, (2) linear growth, (3) balancing growth, (4) reinforcing 
decline, (5) linear decline, (6) balancing decline and finally, (7) equilibrium.  Figure 1 
depicts these seven patterns of behavior.     
 

 
Figure 1: Seven patterns of over time behavior 

 

                                                                 
4 Actually, while most pathways are from one system state variable to another, some 
pathways can connect a state variable to an ordinary auxiliary variable found in the 
system “between” two or more state variables.  See Mojtahedzadeh (1996) for a more 
formal definition of a pathway. 
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The PPM approach begins when the modeler analyst selects a variable of interest.  The 
PPM approach will detect what structure of the model is most influential in determining 
the behavior of this selected variable.  Figure 2 below shows a typical S-shaped growth 
for some variable X selected to be studied in a hypothetical system.  The Digest software 
slices the time path for X into discrete patterns representing the seven patterns of 
overtime behavior.  For the example shown in Figure 2, the trajectory of X consists of 
only two time slices—an initial time slice of reinforcing growth followed by a second 
time slice of balancing growth.  Once the time trajectory for the selected variable has 
been decomposed into separate patterns, the PPM approaches answers the question, 
"What structure is most influential in explaining one pattern of over time behavior for the 
selected variable?"  For the example shown in figure 2, these questions reduce to "What 
structure in the model most influences the initial phase of reinforcing growth in this 
system?” and then sequentially, “What structure in the model most influences the 
balancing growth phase of the simulation?” 
 

 
Figure 2:  Digest "slices" the hypothetical time trajectory for X into separate patterns of 

over time behavior according to its slope (X& ) and curvature (X&& ) 
 
The mathematics of the PPM sets out to determine which pathway from a system state to 
the variable of interest contributes most to the current behavior pattern of that variable.  
This apparently simple question requires some mathematics to be answered.   
 
The PPM calculates how much the net-flow (X& or dtdX ) could change given a small 

change in the state variable under consideration, ( dXXd & ); this is called Total Pathway 

Participation Metrics.  Since dXXd & can be transformed into dtXd & divided by dtdX , the 
Total Participation Metric contains information about both slope and curvature of the 
variable of interest and is thus an appropriate tool for analyzing behavior5.  This measure 
of the Total Participation Metric for state variable X is then partitioned among pathways 
coming into the net-flow6.  The most influential pathway is defined as the one whose 
participation is the largest in magnitude and has the same sign as the total changes in the 
net-flow x-dot when it is disturbed by a infinitesimal change in the state variable at the 
                                                                 
5 Mohamed Saleh, 2002, also use slope (X& ) and curvature (X&& ) and calls it BPI 
(Behavioral Pattern Index) to characterize behavioral patterns. 
 
6 Richardson (1995) proposed that the net time derivative of a state variable with respect 
to the state variable itself ( dXXd & ) can be an important measure of when a loop shifts 

dominance.  The PPM approach calls dXXd & the Total Pathway Participation Measure. 
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tail of the pathway.  For a more complete description of pathway participation metrics see 
Appendix A). 
 
A simple example might help to clarify what is going on here.  Figure 3 shows a 
hypothetical fourth order system showing only 4 of what might be a much larger number 
of pathways.  Two pathways, P1 and P2, lead from state X2 to change X1.  Only one 
pathway, P3, connects the state variable X3 with X1.  And finally pathway P4 represents 
the linkage between X4 and X1.  If X1 is the selected variable and is showing reinforcing 
growth as indicated in Figure 2, the PPM approach asks the specific question, "Which of 
these four pathways dominates the initial reinforcing growth of X1 (contributes the most 
to dXXd & )?".  The PPM approach answers this question by calculating the partial 

contribution of each of the four pathways to the total pathway measure, dXXd & , and then 

selecting that pathway that has the same sign and greatest magnitude as dXXd & .  Let us 
assume that all these calculations identify P2 as the most influential of the four pathways 
shown in Figure 3.  We now know that X2 has the strongest influence on X2 and 
furthermore that influence is exerted through the pathway P2.  But what structure now 
influences X2 the most?  The process of analysis continues. 
 

 

 
Figure 3:  The PPM approach selects pathway P2 as most influential in the behavior of X1 

 
Figure 4 gives a more complete look at the structure of our hypothetical system indicating 
10 pathways and numerous closed loops.  The second iteration of the PPM approaches 
now seeks to identify which pathway (P5 or P6?) contributes most to the behavior of X2.  
The calculations are the same as in the first iteration.  The PPM approach computes 
dX2dot/dX2 and the relative contributions of pathways P5 and P6 to that total.  Let us 
assume that pathway P6 is selected as the most influential at this stage.  We now know 
that X1 is most strongly influenced by X2 through the pathway P2 and that X2 is most 
strongly influenced by X3 through the pathway P6.  The next iteration of the PPM 
approach would ask "Which pathway, P8 or P10, most strongly influences X3.  If the 
answer in our hypothetical example were to be P8, then we have identified a closed loop 
that begins with and ends with X1.   
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Figure 4:  Schema of major and minor loops in hypothetical fourth order system 

 
That closed loop is isolated and displayed in Figure 5.  The interpretation of this figure, 
similar to figures generated by the Digest software, is that the reinforcing feedback loop 
involving X1, P8, X3, P6, X2, and finally P2 is the loop most influential in determining the 
initial reinforcing growth of X1.  Figure 4 contains a large number of major as well as 
minor loops that could have contributed to the initial reinforcing growth in the selected 
variable X1.  What the PPM has done is to select three pathways that are connected into a 
single loop and has identified that loop as the most influential of all other possible loops 
in determining the initial growth in the system.  The PPM approach does not always 
identify a single major loop.  Sometimes the most influential structure may be a minor 
loop or in some cases the system's dynamics may be mainly influenced by an exogenous 
time series.  Frequently a pathway will lead from the selected variable of interest to 
another minor or major loop located far from it in the overall causal structure of the 
model.  However, it can be shown that repeated application of the PPM mathematics at 
each step does converge on a unique piece of structure identified as most influential for a 
given behavior pattern of the variable of interest. 
 
The PPM approach concludes by moving on to the next time slice that differs from the 
previous one in slope or curvature.  The analysis for each time slice is similar.  Note that 
the most influential structure identified for each slice of time may vary. 
 

 
Figure 5:  Schema depicting dominant major loop from hypothetical fourth order system 

shown in Figure 4. 



 7

 
This very brief explanation of how the PPM approach works skips over all of the 
interesting mathematical details of how the contributions of each pathway are actually 
computed.  An overview of the mathematics underpinning the PPM calculations is 
provided in Appendix A and full details are provided in Mojtahedzadeh 1996.  An 
example using a model characterized by system overshoot is presented below. 
 
One problem with PPM as an algorithm is that it is cumbersome and difficult to compute 
and no existing commercial simulation software packages support these calculations.  
Digest is a piece of experimental software that automatically computes the PPM and then 
uses information from the PPM to automatically detect and display influential pathways 
and feedback loops.   
 
Digest is not a simulation package such as iThink, Stella, Vensim, or Powersim.  Digest 
cannot support most of the simulation functions that these languages can.  Digest is 
designed to be used after the model has been constructed to detect and display influential 
structure.  Of course, at some point in the future, the relevant and most useful features of 
Digest could be integrated into any of the commercial simulation packages. 
 
Digest accepts model equations from any commercial simulation package in text form.  
In its present version, some hand editing of the text equations may be necessary if the 
model uses macros or functions that are not yet parsed by the Digest equation translator.  
Once a text version of the model equations has been edited and accepted by Digest, the 
software leads the modeler through a series of step-by-step procedures that uses the PPM 
calculation to first detect and then display model structure7. 
 

Using Digest to Analyze a Simple Overshoot Model: 
This section analyzes the behavior of one variable in a simple overshoot model using 
Digest.  In doing that we need the equations of a “simulatable” model saved in a text file 
format.  The model used as an example is a classic structure that illustrates how Industrial 
Structures in a particular region grow over time until all the resources needed to support 
the growth of Industrial Structures are depleted.  Figure 6 depicts the structure of the 
model. (A list of the equations of the model is provided in Appendix C). 
   

                                                                 
7 Digest is currently available in a Beta test version.  Readers interested in experimenting 
their own with this Beta version are encouraged to contact the authors for a copy of 
Digest. 
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Figure 6: A simple model for the growth of Industrial Structures 

 
The model captures three real-world processes:  
 

1. Industrial Structures grow with new industries through a reinforcing loop 
and demolish by a balancing loop;  

2. Industrial Structures consume water, which decreases water reserves; 
3. Water shortage (defined as the ratio of water consumption to water 

demand) affects new industries indirectly; 
4. Water availability (defined as the ratio of water reserves to water demand) 

controls water consumption. 
 
For an appropriate set of parameters and initial values, the model generates an overshoot 
in the behavior of Industrial Structures, while Water Reserves follows an S-shape decline.  
In explaining the behavior of the model the question is what feedback loops are more 
influential in generating the behavior of any variable of interest.  For example, what is 
making Water Reserves to decline rapidly and what controls it?  What is driving 
Industrial Structures to grow rapidly in the first few years?  What part of the structure is 
responsible for the decline of Industrial Structures followed by its growth?  For modelers 
who have worked with this sort of model, it is not difficult to explain the growth phase 
and the declining phase of the behavior of this simple structure.  However, it may not be 
as easy to distinguish what part of the structure contributes most to the behavior of 
Industrial Structures in the transition from reinforcing growth to a balancing decline.  
Using Digest one can identify the most influential structure as the behavior of the model 
unfolds. 
 

The outputs of Digest: 
Once a model is loaded in Digest environment, using the information embedded in the 
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equations for the model, it could produce four different outputs.  These outputs are: 
 
1. A list of variables of the model by which the user could select the variable of interest. 

 
2. Digest automatically identifies pathways associated with the user-selected variable of 
interest  
Once the variable of interest is chosen, the causal route associated with the behavior of 
interest will appear in the second window.  This diagram reveals how the variable of 
interest is determined by other variables in the model.  For the Industrial Structure as the 
variable of interest, Figure 7 shows the causal route diagram that is associated with 
Industrial Structures.   Arrows with a plus sign indicate a direct (positive) impact of the 
variable at the tail of the arrow at the dependent variable and an arrow with a negative 
sign refers to an indirect impact of the cause on the effect (a negative or indirect 
relationship).   
 

 
Figure 7: Causal route diagram for Industrial Structures 

 
3. Digest identifies distinct phases in the behavior pattern of user-selected variable of 
interest  
Digest produces the overtime behavior of the variable of interest and identifies the shifts 
in the pattern of behavior. Figure 8 shows the behavior phases of the variable of interest, 
Industrial Structures.   

 

 
 

Figure 8: The behavior of Industrial Structures and its four phases 
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The first phase of Industrial Structures is a reinforcing growth.  The reinforcing growth 
lasts for 24 years.  During the first 24 years of simulation time, both slope (first time 
derivative) and curvature8 (second time derivative) of the variable of interest, Industrial 
Structures, remain positive.  The next distinct phase in the behavior of Industrial 
Structures, identified by Digest, is balancing growth.  In this phase the slope and 
curvature of the variable of interest have opposite signs.  The third distinct behavior 
phase in Industrial Structure is reinforcing decline.  And finally, in its fourth phase, the 
variable of interest experiences a balancing decline in its over time behavior.    

4. Digest detects and displays most influential structure contributing to behavior pattern 
in each phase 
Corresponding to the first phase of the behavior of Industrial structures, there is a 
reinforcing feedback loop that, according to Digest, is the most influential feedback loop 
in generating the reinforcing growth in Industrial Structures.  The reinforcing feedback 
loop is shown in Figure 9.  Based on this feedback loop a higher level of Industrial 
Structures attracts more new industries, which in turn increases Industrial Structures.   By 
inspecting the structure of the models in Figure 6, one could identify about 6 feedback 
loops.  Using pathway participation metrics, Digest automatically selects the reinforcing 
feedback among all the other loops in the model without intervention by the model 
builder or analyst.   
 

 
 

Figure 9: The most influential structure in creating the first phase of the 
behavior of Industrial Structures 

 
The most influential structure in creating the second phase of the behavior of the variable 
of interest shifts from the reinforcing feedback loop to a balancing feedback loop 
associated with Water Reserves.  Figure 10 depicts the balancing loop that controls water 
consumption as Water Reserve continues to fall, along with a pathway that carries the 
effect of the balancing feedback loop to the variable of interest, Industrial Structures.  

                                                                 
8 Actually Digest calculates neither the first nor second time derivative of the variable of 
interest; it merely determines dXXd & at any time.  This derivative is related to first and 
second time derivatives of the variable of interest.  A positive sign of the derivative 
indicates that both slope and the curvature of the variable of interest have the same signs.  
(See Mojtahedzadeh 1996 for details). 
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This structure remains most influential in the third phase of the behavior of the variable 
of interest.       
 

 
 

Figure 10: The most influential structure in the second and third phases of 
the behavior of Industrial Structures 

 
It may not be difficult for the modelers to see the role of the balancing feedback loop that 
controls water consumption, when striving to explain why Industrial Structures is 
generating a balancing growth in its second phase.  Water availability is dropping and, 
therefore, new industries are restricted.  The subtlety in explaining the behavior of the 
variable of interest is the subsequent reinforcing decline in the behavior of Industrial 
Structures in phase four.  Some novices may even look for a reinforcing feedback loop to 
explain the reinforcing decline.  Digest reveals that what forces Industrial Structures to 
fall faster and faster is exactly the same process that controls it.  The balancing loop that 
controls water consumption continuously lowers new industries and once new industries 
falls behind industrial demolition, the Industrial Structures generates a reinforcing 
decline. 
 
The last phase of the behavior of the variable of interest, Industrial Structures, is 
influenced the most by the balancing feedback loop associated with demolition, as shown 
in Figure 11. 
 

 
 

Figure 11: The most influential structure in the fourth phases of the 
behavior of Industrial Structures 

 
Digest could redraw distinct phases in the behavior pattern of user-selected variable of 
interest based on shifts in the most influential structure, as shown in Figure 12. 
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Figure 12: The essential structure for explaining Industrial 
Structures growth model 

 
 
Conclusion 

Model analysis, the process of understanding and then describing how the structure of a 
complex dynamic system gives rise to over time behavior, is still in its relative infancy.  
Well developed mathematical techniques exist for linear systems as well as for some 
regimes of complex non-linear dynamics such as deterministic chaos (Andersen, 1982; 
Mosekilde, 1996).  However, in common practice with client-based modeling, skilled 
modelers create dynamic insights using carefully crafted simulation experiments to 
formulate explanations about what pieces of model structure drive the overall system 
behavior.  But this intuition is difficult to codify and develops slowly over a career of 
practice.  Modern software promises to help.  For example, the latest release of Vensim 
allows for real time visualizations of structural sensitivities using brute force computing 
power and speed to create these visualizations. 

This paper explores a promising additional approach.  The Pathway Participation Metric, 
described in overview form in this paper, relies on the analysis of individual linkages or 
pathways between nodes of a model as the basic building blocks of structure.  The 
approach leads to dominant feedback structure, if that’s appropriate, but does not begin 
with the feedback loop as the basic building block. Using a recursive heuristic systematic 
analysis, the PPM calculations always yield a reduced structure of a key feedback loop 
plus one or more pathways that contribute most to a given mode of behavior for a 
selected model variable. 

Important questions remain about this approach.  Do the automatically identified “most 
influential structures” yield important insights for clients working on real world 
problems?  Do clients and modelers alike have a strong enough intuition about the PPM 
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to “trust” the structure that it identifies?9  How can a set of loops, each of which is 
connected to a single phase of behavior, be combined into a fuller explanation of the 
complete dynamic trajectory of a single variable?  How can analyses for two or more 
variables be merged into a coherent story of the system taken as a whole? 

Digest is an experimental piece of software that can help us begin to answer these 
questions.  Because Digest automatically and quickly analyzes and displays the results 
from the PPM calculations, we now have a tool that will allow us to experiment with yet 
another approach to the critical question of how to quickly and reliable relate system 
structure to system behavior. 

In the near future, all system dynamics simulation software packages will contain new 
functions that support automatic model analysis10.  We view Digest as an early 
experimental tool to move the field toward this future.  We hope to encourage a vigorous 
experimental program to move questions and results in this critical area of inquiry 
forward.

                                                                 
9 Mojtahedzadeh (1996) has begun an investigation of these last two questions by working with a number 
of models, such as the simplified Urban Dynamics model presented by Alfeld and Graham (1976).  
However, this work needs to be extended and deepened. 
 
10 Automation of model analysis functions within standard software packages is essential for their uptake in 
practice.  For example, the “Reality Check” feature advocated by Peterson and Eberlein (1994) was made 
possible as a practical tool by being integrated into Vensim. 
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Appendix A: A Mathematical Definition of Pathway Participation Metrics 
 

This appendix introduces the mathematics of pathway participation metrics (PPM).  

Consider the following n-order non-linear system:   

 
);( pxfx =&         [1] 

 

Where x is the vector of state variable x&  is the vector of derivative of x with respect to 

time, and p is the vector of the parameters of the system.  The equation of the kth state 

variable as the variable of interest may look like: 
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Taking the derivative of the net changes in the state variable of interest, kx& , with respect 
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Or simply, 
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Each term in equation [4] represents all minor feedback loops and pathways leaving ith 
state variable and coming into the variable of interest, xk.  We can decompose the effect of 
each minor feedback and pathway coming into the state variable xk.    
 

∑∑
= = ∂

∂=
n

i

im

j k

i

i

j
k

k

k

x
x

x
f

dx
xd

1

)(

1 &

&&
       [5] 

    
Where m(i) is number of minor loops and pathways that leave a ith state variable and 
come into the kth state variable, and i

j
k xf ∂∂ is the polarity of the pathway or minor 

feedback loop.  The ratio ki xx && represents the net changes in the ith state variable and the 
net changes in kth state variable.  The total effect infinitesimal change in xk of the net rate 
of xk is the not only driven by the polarity of the feedback loops and pathways but also 
the ratio of net changes in the two state variables. 
 
The effect of each pathway can be normalized in such a way that it varies between –1 and 
1.  Thus for each pathway coming into variable of interest we could have a metric that 
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measure the impact of that pathway (or minor feedback loop) in creating the behavior of 
the variable of interest.  This metric is called pathway participation metrics (PPM).     
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The most influential pathway (or minor feedback loop) is defined as the one whose 
participation metrics (PPM) is the largest and has the same sign as kk xxd & .  For ki ≠  
the same calculation is done until there is a feedback loop. 
 
If the variable of interest is a non-state variable, we need to determine the net changes the 
variable of interest and the follow the same procedure.  Suppose a presents the vector of 
non-state variables and it is related to state variables through g and a vector of parameters 
q.  Thus we have, 
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If the ak is the variable of interest, that is a non state variable, the net changes in ak over 
the period of dt will be, 
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Taking the derivative of the net changes in the variable of interest, ka& , with respect to the 
state variable of interest, ak, yields: 
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Which can be rearranged as: 
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The pathway participation metrics can be determined after decomposing the impact of 
each pathway leaving a particular state variable and coming into the variable of interest. 
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Appendix B:  Pathway Participation Metrics and Eigenvalues 
 
In linear systems there is a close relationship between the pathway participation metrics 
and eigenvalue of the system.  In fact we show that 
 

• In the steady state condition, the total participation metric is equal to the largest 
eigenvalue of the system. 

   
In doing so, we use a second order linear system and derive pathway participation metrics 
for a state variable.  Then, we show that the sum of the pathway participation metrics, or 
total participations metrics, for any state variable equal the largest eigenvalue of the 
system. 
 
Consider the following second order system: 
   

byaxx +=&         [1] 
dycxy +=&         [2] 

 
The pathway participation metrics for state variable x is: 
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There are two pathways coming to the state variable x whose participation metrics are: 
 
Participation metrics for Pathway 1:  a 

Participation metrics for Pathway 2: 
x
y

b
&

&
 

 
The pattern of behavior of x is determined by the total participation metrics, which is the 
sum of participation metrics for these two pathways.  If total participation metrics is 
positive the state variable x experiences a reinforcing growth and if it is negative, x shows 
a balancing behavior.  The most influential pathway then is the one whose participation 
metrics is the largest in magnitude and has the same sign as the total participation 
metrics.  
 
Now we calculate xy && / through the response of state variables x and y.  We can rewrite 
the second order linear system presented in [1] and [2] as: 
 

















=








y

x

dc

ba

y

x

&

&
       [4] 

 
The above system has two eigenvalues, 1λ and 2λ .  For each eigenvalue we have: 
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121 iiii rbrar λ=+        [5] 

221 iiii rdrcr λ=+        [6] 
 
Where 1ir  and 2ir are the elements of the right eigenvector associated with iλ .  The time 
response of the state variables is: 
 









=









0

0)(
y

x
t

y

x

t

t ϕ          [7] 

 
Where 0x and 0y  are the initial values of the state variables and )(tϕ with the dimension 
of 2*2 is the transition matrix of the system which can be calculated as: 
 

[ ]∑
=









=

2

1
21

2

1)(
i

ii
i

it ff
r

r
et

iλϕ       [8] 

 
Where 1if  and 2if are the elements of the left eigenvector associated with iλ .  
Substituting [8] in [7] and expanding it yields: 
 

















+
















=









0

0

22222122

22212121

0

0

12121112

12111111 21

y

x

frfr

frfr
e

y

x

frfr

frfr
e

y

x tt

t

t λλ   [9] 

 
The value of x and y at any time is: 
 

21 )()( 02221021210121101111
λλ tt

t eyfrxfreyfrxfrx +++=    [10] 
21 )()( 02222021220121201112

λλ tt
t eyfrxfreyfrxfry +++=    [11] 

 
We can calculate x&  and y&  by taking derivatives of [10] and [11] with respect to time. 
 

21 )()( 0222102121201211011111
λλ λλ tt eyfrxfreyfrxfrx +++=&   [12] 

21 )()( 0222202122201212011121
λλ λλ tt eyfrxfreyfrxfry +++=&   [13] 

 
Using [12] and [13], we calculate the ratio of xy && / . 

 

21

21

)()(
)()(

0222102121201211011111

0222202122201212011121
λλ

λλ

λλ
λλ

tt

tt

eyfrxfreyfrxfr
eyfrxfreyfrxfr

x
y

+++
+++=

&

&
  [14] 

Or, 

)()(

)()(

02221021212
)(

01211011111

02222021222
)(

01212011121

21

21

yfrxfreyfrxfr

yfrxfreyfrxfr

x
y

t

t

+++
+++

=
−

−

λλ
λλ

λλ

λλ

&

&
  [15] 
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Assuming 2λ is the largest eigenvalue, when time approach infinity terms 
)(

01212011121
21)( λλλ −+ teyfrxfr  and )(

01211011111
21)( λλλ −+ teyfrxfr  in [15] approaches zero.  

Thus, for xy && /  we have 
 

)(
)(

02221021212

02222021222

yfrxfr
yfrxfr

x
y

+
+=

λ
λ

&

&
      [16] 

 
The above equation can be rewritten as: 
 

21

22

r
r

x
y =
&

&
        [17] 

 
Now we can substitute [17] in [3], 
  

21

22

r
r

ba
dx
xd +=&         [18] 

 
Equation [18] according to [5] is equal to 2λ . 
 

2λ=
dx
xd&

        [19] 

 
It can be easily shown that the above proposition is true for an n-order system. 
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Appendix C: A list of the equations of the Industrial Structures Growth 
Model (iThink version) 
 
Industrial_Structures(t) = Industrial_Structures(t - dt) + (new_industries - demolition) * 
dt 
INIT Industrial_Structures = 10 
new_industries = Industrial_Structures*effect_of_water_shortage*normal_growth 
demolition = Industrial_Structures*dem_frc 
Water_Reserves(t) = Water_Reserves(t - dt) + (- water_consumption) * dt 
INIT Water_Reserves = 10000 
water_consumption = effect_of_water_availability*water_demand 
dem_frc = .05 
normal_growth = .12  
water_demand = Industrial_Structures*water_demand_per_industry 
water_demand_per_industry = 10 
effect_of_water_availability = GRAPH(0.1*Water_Reserves/water_demand) 
(0.00, 0.00), (0.1, 0.06), (0.2, 0.14), (0.3, 0.255), (0.4, 0.395), (0.5, 0.535), (0.6, 0.685), 
(0.7, 0.825), (0.8, 0.92), (0.9, 0.975), (1, 1.00) 
effect_of_water_shortage = GRAPH(water_consumption/water_demand) 
(0.00, 0.00), (0.1, 0.06), (0.2, 0.14), (0.3, 0.255), (0.4, 0.395), (0.5, 0.535), (0.6, 0.685), 
(0.7, 0.825), (0.8, 0.92), (0.9, 0.975), (1, 1.00) 
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