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Abstract 
While formulating and then analyzing a system dynamics model that incorporates soft, 
qualitative variables, problems are encountered. First most of the variables of this kind 
are measured using a quasi-quantitative framework.  The question of reliability and 
validity of such measurement needs to be addressed.  Second, the causal relationships 
among the variables would have to be ascertained in a way that takes into 
consideration such a measurement approach.  Further, there is the critical question of 
validating such a system dynamics model. The paper attempts to probe into the 
problems of developing system dynamics models that incorporate soft variables, and 
critically examines the model validation exercise in system dynamics in this context.  It 
argues for enriching the methodology of system dynamics by establishing an interface 
with the methodology of structural equation modelling that would help address the 
issues of reliability and validity of the measures and the formulation and subsequent 
validity of the system dynamics model.  
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INTRODUCTION 
The debate over methodological issues that concern system dynamics (SD) paradigm 
and the shortcomings of the traditional approach to system dynamics problem-solving 
has been increasingly veering towards the question of interfacing the field of system 
dynamics with various soft systems methodologies. Lane (1994) has argued that there is 
much benefit to be derived from a dialogue between the practitioners of system 
dynamics and those of soft OR (operations research).  A great deal of concern has been 
expressed because of the isolation of system dynamics from other techniques and 
because of methodological issues in system dynamics that the fields of soft OR and 
other problem-solving methodologies have already begun to address.     

 



It may be mentioned that at the time when system dynamics was being founded, there 
was a conscious separation of it from OR.  Forrester (1968a) had recognized the need 
for the practice of management to evolve from being an art.  However, he was 
unconvinced about the effectiveness of the ‘science’ of management (that is, OR) as it 
was then constituted.  This ‘science’ concept of traditional OR has also been critically 
commented upon by Ackoff (1979, 1987).  He has criticized objectivity as an 
impossible goal in a specific situation although he has admitted that it could be a 
systemic property of scientific endeavour as a whole.  He has subsequently rejected the 
concept of optimality as being impractical because of the exclusion of esthetics and the 
emphasis on the utility of ends to the exclusion of means and irrelevant because of the 
rate of change in social and organizational systems.  Advocating systems thinking and 
practice as against OR, he has recently commented (Ackoff, 2001, p. 346), ‘Systems 
thinking and practice are what OR could and should have become.  It focuses on the 
performance of wholes rather than parts…’.     
 
According to Greene (1994), the questions of the theoretical bases, or lack thereof, of 
system dynamics practice and of the relationships of system dynamics to other system 
theories have had limited acknowledgement in the literature.  Awareness of the 
strengths and weaknesses of the different systems methodologies, and of the social 
consequences of using each type, leads to the possibility of employing them in a 
pluralist or complementary manner - each used when and where it is the most 
appropriate (Jackson, 1995).  Andersen and Rohrbaugh (1992) have described a 
demonstration experiment that was designed to link a simulation model with formal 
models of judgment.  The simulation-modelling technique chosen was system 
dynamics, and the judgment-modelling approach selected was social judgment analysis.  
Models derived from social judgment analysis were attached to a system dynamics 
model to create a new objective function sector.   Framinan-Torres and Ruiz -Usano 
(1997) have attempted to model neural networks using system dynamics.  Kennedy 
(1997), and Savicic and Kennedy (1997) have tried to integrate spreadsheets into system 
dynamics models.  Forrester (1994) has emphasized that soft OR usually lacks the 
discipline of explicit model creation and simulation and so relies on subjective use of 
unreliable intuition for evaluating the complex structures that emerge from the initial 
description of the real system.  However, he has shown agreement that soft OR, with 
emphasis on elucidating information from real world participants, should contribute 
useful insights to system dynamics.  
 
Greene (1994) has further argued that there are a number of real world behaviours of 
complex living systems that classical system dynamics cannot completely explain.  He 
has argued that SD should be integrated with dissipative-structure theory, synergistics, 
catastrophe theory, field theory and chaos theory in order better to explain and to predict 
evolution, the different kinds of stability and instability, structural change and structural 
constancy, the different kinds of equilibrium situations, bifurcation, the emergence of 
collective behaviour, and the qualitative meaning of information.  Techniques like the 
balanced scorecards (Kaplan and Norton, 1996) are essentially linear, open loop 
approaches but these have their own usefulness.  Barlas (1995) has considered the 
relationships between system dynamics and the methodologies and approaches like 
chaos, simulation gaming, soft systems methodology and systems thinking and has 
commented that there are still various issues in these relationships that need to be 



clarified. Lane and Oliva (1994) have argued for a synthesis of SD and soft systems 
methodology (SSM). In their paper, Rios and Schwaninger (1996) have shown that a 
combination of system dynamics and the methodology of network thinking (MNT) 
developed at the University of St. Gallen could help overcome some of the limitations 
of both methodologies, and realize substantial synergy between them.  They have calle d 
this synthesizing methodology ‘Integrative Systems Modelling’.  Kummer and Schlange 
(1997) have presented a set of tools that contribute to the critical issue of linking the 
stages of SD and qualitative modeling approaches such as MNT and sensitivity model 
(SM).  Richardson (1996) while commenting upon the problems for the future of system 
dynamics has stated that the field is experiencing the increasing use of qualitative tools - 
systems archetypes, word-and-arrow diagrams under various labels (casual-loop 
diagrams, influence diagrams, cognitive maps), and other approaches and techniques 
that fall under the general rubric of qualitative systems thinking. 
 
All said and done, there are certain distinct advantages of using the SD methodology for 
testing social theory.  As has been pointed out by Jacobsen (1984), first, it is possible to 
handle many variables simultaneously, and study their fluctuations over time.  
Secondly, we can take account of multiple feed back loops in the system under 
investigation and study their mutual influences, again, over time. However, the 
traditional approach of system dynamics problem solving faces a roadblock when we 
attempt to model social systems that incorporate soft variables whose measurement is 
beset with the problems of systematic and random measurement errors. Further, causal 
linkages among these soft variables are not easily ascertained.  Thus, there are critical 
problems associated with such a modelling exercise both at the model formulation stage 
as well as at the model validation stage.  Even if the model is formulated on the basis of 
prior knowledge and assumptions, results of past empirical research, and statistical 
deductions, yet the model cannot be validated following the standard procedures for 
system dynamics model validation as the presumed causal linkages among the soft 
variables incorporated in it cannot be verified.  
 
It may be pointed out that in this context that causality or causal linkages are central to 
the paradigm of system dynamics.   In fact, adopting a rigorous approach to systems 
descriptions in terms of influence or causal loop diagrams has been advocated by 
Wolstenholme and Coyle (1983), Coyle (1996), Coyle and Alexander (1996) and 
Wolstenholme (1999).  Commenting on such type of works, Coyle (2000, p. 226) has 
written, ‘In none of this work was it stated or implied that dynamic behaviour can 
reliably be inferred from a complex diagram; it has simply been argued that describing a 
system is, in itself, a useful thing to do and may lead to better understanding of the 
problem in question.  It has, on the other hand, been implied that, in some cases, 
quantification might be fraught with so many uncertainties that the model’s outputs 
could be so misleading that the policy inferences drawn from them might be illusory’  
(emphasis original).  He has restated with further reasoning in a rejoinder (Coyle, 2001) 
to a response to his earlier paper by Homer and Oliva (2001) his concerns about the 
reliability of conclusions drawn from simulations when there are soft variables in the 
model.      
 



In the light of the above discussion, the primary argument of the paper is to probe into 
the problems of developing system dynamics models that incorporate soft variables, and 
to critically examine the model validation exercise in system dynamics in this context.   
 
The paper puts forward an argument for enriching the methodology of system dynamics 
by establishing an interface with the methodology of structural equation modelling that 
would not only enable it to take care of the systematic and random measurement errors 
encountered while these variables are measured in a quasi-quantitative framework, but 
would also prove helpful in ascertaining causal linkages among these soft variables.  
Causal relationships represent the mos t fundamental understanding of the process under 
study and such knowledge is relatively invariant through time and space (Duncan, 
1975).  The central theme of structural equation modeling is establishing causal 
relationships among latent or conceptual variables. Such causal linkages could then be 
appropriately incorporated into the system dynamics model and help in its formulation 
where, as argued by Homer and Oliva (2001), simulation can add value beyond 
mapping alone in most cases.  This exercise could se rve as a first step towards 
validating such a system dynamics model.   
 
 
SYSTEM DYNAMICS MODELLING WITH SOFT VARIABLES 
Modelling of inanimate systems is relatively easy.  Modelling of social systems is quite 
complicated.  Modelling of abstractions like decision network and information flows, 
and also of human competencies and motivation, is a matter of immense attractions and 
endless possibilities. System dynamics models have often been criticized with respect to 
the measurement of data and parameter estimation involved in the models.  Nordhus 
(1973) has labeled the world dynamics model as measurements without data.  Legasto 
and Maciariello (1980) have reviewed a number of criticisms on SD models.  The 
criticisms pertain to problem definition, level of aggregation, parameter estimation and 
inference of results.  Another important criticism comes from Cole (1979) who has 
argued that SD models used for analyzing social systems are not explicit about the 
social theory that is employed for analysis.  
 
Conventional methods and models are based on hard (quantitative, cardinally-measured) 
information.  The problems are different in the analysis of soft, qualitative or 
categorically measured data.  Soft modelling methodologies aim at taking into account 
the limitations caused by measuring variables on a non-metric scale, and try to avoid the 
use of non-permissible numerical operations on qualitative variables.  The importance 
of this had been recognized way back by van Gigch (1974).  He had stated, and we 
quote here, ‘The outputs of “hard” systems are for the most part tangible and “quantity-
like” as opposed to those of soft systems which may be characterized by a greater 
proportion of “quality-like” outputs.  For this reason it is expected that the outputs of 
soft systems will be measurable along weaker scales of measurement than the outputs of 
hard systems.  This is not necessarily a drawback.  It means that special methods will 
have to be devised to cope with that limitation’ (p. 169).     
 
While developing system dynamics models incorporating soft variables, researchers 
often encounter several problems.  These problems need to be resolved if the model is 
to show any meaningful result.  To begin with, there is the problem of measurement of 



these variables.  Mutec (1994) has developed SD models while investigating the 
dynamics of employee participation.  In these models, he has used concepts like 
motivation and dissatisfaction as rate variables. But nowhere he has mentioned how 
these and similar other variables have been measured.  
 
Coyle (2000) has referred to the problems involved in the quantification of soft 
variables in a system dynamics model that is often a multiplier variable with values 
ranging from 0 to an upper limit that may exceed 1 and having a non-linear relationship 
with the parent variable that it is supposed to represent.  The nature of such a non-linear 
behaviour is a cause for uncertainty.  Further, he has commented that the problems 
become more acute when several multipliers are used and the often used assumption 
that the multipliers are multiplicative in nature might be off the mark a long way. A 
study of the system dynamics model of work climate of an R&D laboratory, developed 
by the authors (Roy and Mohapatra, 1994), bears this out further.  The causal 
relationships in the particular system dynamics model were largely derived from 
correlations, regression analysis, cluster analysis and multiple classification analysis.  
The problem, however, is that in none of the methods of analysis mentioned above, 
causality can be inferred or verified. It is possible to produce a correlation model giving 
good fit but implausible causal relationships (Lane, 1995).  Mass and Senge (1978) have 
shown that regression can fail to infer from a data set the existence of a feedback link 
present in the model that generated the set.  
 
 
MODEL VALIDATION IN SYSTEM DYNAMICS: ISSUES AND 
PERSPECTIVES 
Model validation is an important aspect of any model-based methodology in general 
and system dynamics in particular.  Validity of the results of a given study is crucially 
dependent on the validity of the model.  Model validation may be defined as 
‘establishing confidence in the usefulness of a model with respect to its purpose’ 
(Barlas, 1996, p. 184).  According to Coyle (1996), a valid model means ‘well suited to 
a purpose and soundly constructed’ (p. 12).  According to Greenberger et al. (1976), no 
model could be thoroughly validated.  A model should be useful, illuminating, and 
should inspire confidence.  They have commented that these are perhaps more apt 
descriptors applying to models than its validity.  According to Forrester (1968b), it is 
pointless to discuss validation ‘without reference to the particular situation’ (p. 616). 
Coyle and Exelby (2000) have emphasized that there is no such thing as absolute 
validity, only a degree of confidence which becomes greater as more and more tests are 
performed.  They have stressed that, one, validation means ensuring that the model’s 
structure and assumptions meet the purpose for which it is intended; and second, 
verification means ensuring that its equations are technically correct. 
 
System dynamics models claim to be causal ones.  According to Lane (1995), SD 
models produce insight, not foresight.  Moreover, an SD model constitutes an assembly 
of causal hypothesis about relationships between variables supporting time-evolutionary 
behaviour. In fact, Randers (2000) has commented that one of the basic tools of system 
dynamics that have stood the test of time is a focus on the basic causal structure.  Even 
in some cases, as suggested by Coyle (1998) and Wolstenholme (1999), a model can be 
entirely qualitative, consisting only of an influence diagram.  Coyle (2001), referring to 



the value of an influence diagram or a causal loop diagram for system dynamics, has 
stated that , among other benefits, the study of a well-drawn influence diagram portrays 
complexity and shows patterns of feedback and seeing those can be helpful, even 
though dynamics cannot be predicted from it.  Moreover, it can serve as the basis for a 
simulation.  A system dynamics model is refuted if a critic can show that a model 
equation conflicts with a known causality, even if the output behaviour of the model 
matches the observed problem behaviour. In system dynamics, ‘validity’ means the 
validity of the internal structure of the model, not its output behaviour (Barlas, 1994).   

 
According to the traditional reductionist/logical empiricist philosophy, a valid model is 
an objective representation of a real system.  According to this philosophy, validity is 
seen as a matter of accuracy, rather than its usefulness.  The comparatively recent 
relativist/holistic philosophy has argue d for the model as one of the many possible ways 
of describing a real situation.  Barlas and Carpenter (1990), supporting this viewpoint, 
have suggested that model validation cannot be entirely objective, quantitative and 
formal.  Since validity means usefulness with respect to a purpose, model validation has 
to have subjective, informal and qualitative components.  Barlas (1996) has emphasized 
that the issue of validation of a system dynamics model is much more complicated than 
that of a black-box model, because judging the validity of the internal structure of a 
model is very problematic, both philosophically and technically.  According to him, it is 
philosophically difficult, because the problem is directly related to the unresolved 
philosophical issue of verifying the truth of a (scientific) statement.  And the problem is 
technically difficult because there are no established formal tests (such as statistical 
hypothesis tests) that one can use in deciding if the structure of a given model is close 
enough to the ‘real’ structure.   
 
Forester’s (1961) and Forrester and Senge’s (1980) works are still the backbone of 
today’s SD model validation discourse.  Wolstenholme (1990) and Mohapatra et al. 
(1994) have restated the Forrester and Senge tests. Other works considering validation 
in detail include those of Coyle (1977, 1996). They have given examples of direct 
structure tests as structure and parameter verification test, direct extreme-conditions test 
and dimensional consistency test.  Accordingly, structure verification test means 
comparing the structure of the model against the structure of the real system, or as  
Barlas (1994) has pointed out, this could also be carried out as a theoretical structure 
test, by comparing the model structures against knowledge available in the literature.  
Parameter verification test means evaluating the constant parameters against knowledge 
of the real system, both conceptually and numerically.  Richardson and Pugh (1981) 
have also emphasized the importance of system structure.  
 
 
Validation as an issue of research   
Validation as an issue of research and debate has largely eluded the practitioners of 
system dynamics. Barlas (1996) has pointed out that a survey has indicated that little 
effort has been devoted by the system dynamics community to model validity and 
validation.  According to his study, only three of all the papers published in System 
Dynamics Review (between 1985 and 1995) deal with model validity and validation.  
The question of validity assumes critical concern for models incorporating soft 
variables.  The primary concern in such cases is the validity of the structure of the 



model.  Barlas (1996) after an overview of the philosophical aspects of model validation 
has shown that (p. 188): 
 

1. Validity of a system dynamics model primarily means validity of its internal 
structure. 

2. The recent relativist/holistic philosophy has argued that validation of the internal 
structure cannot be made entirely objective, formal and quantitative (in the sense 
that even scientific theory confirmation has informal and subjective aspects). 

 
However, he is quick to point out that relativist/holistic philosophy does not reject the 
role of formal/quantitative tests in model validation, but that these tests provide crucial 
inputs to the larger validation process, which is gradual, semi-formal and 
conversational. 
 
Forrester and Senge (1980) have also displayed such a concern while debating upon the 
nature of validity in system dynamics models.  They have stated, and we quote here, 
‘We take the view that the ultimate objective of validation in system dynamics is 
transferred confidence in a model’s soundness and usefulness as a policy tool.  The 
notion of validity as equivalent to confidence conflicts with the view which many seem 
to hold which equates validity with absolute truth.  We believe confidence is the proper 
criterion because there can be no pr oof of the absolute correctness with which a model 
represents reality.  There is no method for proving a model to be correct…. Validity is 
also relative in the sense that it can only be properly assessed relative to a particular 
purpose’ (p. 211).   It should be noted that the notion of a model as an aid to learning 
about the behaviour of complex, non-linear management systems is a valid one; models 
cannot be devised which will provide ‘answers’ to what can be quite opaque ‘issues’ at 
the strategic level (Morecroft, 1992; deGeus, 1992).  
 
In hard systems, models are representative of the real world.  Landry et al. (1983) while 
discussing model validation in operations research have referred to the context in which 
the model would be used - by whom, for what purpose and in what mode, predictive or 
prescriptive?  Answers to these questions in the particular context would determine 
what validation techniques would be regarded as appropriate. On the other hand, in 
problem structuring methodologies like soft syste ms methodology, SSM (Checkland, 
1979; Checkland, 1981; Checkland and Scholes, 1990; Checkland et al., 1990), model 
validation is no longer a paramount issue since in SSM the concept of a model as 
surrogate for a part of reality is itself abandoned (Checkla nd, 1995). In such a situation 
where a model is treated as ‘epistemological device’, the question of validity revolves 
around the question of whether the model is relevant and whether it is competently 
built. The question of technical validation is faced by asking whether a pairing of root 
definition and model is defensible (Checkland, 1995).  Such a methodology makes no 
assumptions about the nature of the world apart from the fact that it is considered to be 
complex.  The approach which assumes the world to be systemic is hard and the one 
which assumes that the process of inquiry can be systematic is soft.  The real distinction 
between the two is marked by the shift of assumed systemicity, from the world to the 
process of enquiry into the world (Checkland, 1983). 
 



Clearly, our approach towards soft systems modelling is quite different from the 
methodological thrust of SSM and other problem structure methodologies.  As 
mentioned earlier, SD itself has moved away from the hard systems paradigm with the 
relativ ist/holistic philosophy of validation.  Secondly, in SSM the problem situation 
could be ill-structured and messy whereas the variables in the model need not be so.  
These variables in the model could be perfectly measurable and quantifiable.   
Moreover, in SSM we are not looking to develop a causal model which could then form 
the basis of a system dynamics model. SD models try to offer explanation and 
understanding, not only forecasting and control (Vazquez et al., 1996).  Lane (1995) has 
differentiated between the formulations of SD as he has defined them – ardent SD 
which aims to access the strong simulation theory of SD but cannot hope to perform too 
well on the cultural factors and so there is a reduction of process effectiveness resulting 
from low targe ts on conceptual and data validities; abridged (qualitative) SD which may 
attempt a richer social intervention but at the expense of low analytical quality, much in 
common with soft OR processes but lacking in the provision of simulation models for 
the conduct of meaningful experiments; and abridged (discursive) SD.  He has then 
argued for an extended SD to overcome these limitations.  He has emphasized that 
achieving conceptual validity requires a careful management of the social ‘mess’ of 
problem solving. The ‘real world’ here is often fuzzy and messy.  While soft OR 
compensates for one of the major flaws in hard systems thinking by accepting 
subjectivity, it does not address the others.  The insights that cybernetics, for example, 
can bring to the understanding and management of complexity are ignored (Jackson, 
1994). 
 
 
Validating models with soft relationships 
An important characteristic of system dynamics modeling is the use of soft as well as 
hard relationships. SD provides a balanced perspective to handle both hard and soft 
system-based problems. However, a closer look into the question of validation of a 
system dynamics model that incorporates soft variables brings out the criticality of the 
issues involved and of the problems encountered in adopting the standard procedures 
for validation of SD models for validating such a model.  Richardson (1996) has 
commented that the field of system dynamics needs to achieve greater consensus 
concerning what types of confidence-building and validation procedures and tests are 
more appropriate in what types of decision environments.  In his opinion, there is a need 
to accumulate wisdom about the conditions under which various types of tests and 
procedures appear to be most appropriate. 
 
As has been pointed out earlier, the latent, unobserved and conceptual soft variables 
incorporated in a system dynamics model cannot be measured directly and objectively. 
The measured values of these variables are derived from observed indicators. Such a 
measurement scheme is referred to as quasi-quantitative measurement.  Subjective 
measures are influenced by systematic and random *measurement errors.  The structure 
of relationships among these variables is often unclear and the causal linkages cannot be 
ascertained.  Hence, it is essential that the reliability and the construct validity of these 
measures of soft variables are assessed before the values of these variables are used in 
empirical studies. This would also help minimize judgmental scaling errors often 
encountered in such mode lling initiatives.  Further, the causal linkages among the soft 



variables thus measured would have to be ascertained keeping in mind the measurement 
errors inherent within. It is, therefore, clear that the validity of such a system dynamics 
model is dependent critically upon the validity and reliability of such quasi-quantitative 
measurement.  An exercise of this sort could then help formulate the system dynamics 
model based on these causal linkages and could also serve as a pre -validation exercise 
for the proposed model.   
 
 
QUASI-QUANTITATIVE MEASUREMENT: VALIDITY AND RELIABILITY  
By validity we mean the ability of a technical instrument to provide data related to what 
we assume to be real in that particular research context.   Validity is concerned with 
whether a variable measures what it is supposed to measure.  Content validity is a 
qualitative type of validity where the domain of a concept is made clear and the analyst 
judges whether the measures fully represent the domain.  Criterion validity is the de gree 
of correspondence between a measure and a criterion variable, usually measured by 
their correlation (Bollen, 1989).  Validity is an epistemological issue.  
 

Construct validity is the extent to which an observation measures the concept it purports 
to measure.  A widely accepted procedure for construct validation in social sciences is 
the method of multi-method multi-mode (MTMM) matrix (Campbell and Fiske, 1959) 
whereby the validity of a construct is inferred through the pattern and magnitude of 
covariations among the multiple measures of a construct and comparison of these 
measures of a construct with the measures of one or more other constructs.  They have 
proposed two broad criteria for construct validation: convergent validity and 
discriminate validity. 
 

Convergent validity refers to the extent to which multiple measures of a construct agree 
with one another.  If two or more measures are true indicators of a concept, then they 
should necessarily be highly correlated.  This assumption is consistent with the 
‘reflective measurement model’.  Failure to find high covariation among multiple 
measures of a construct would imply that either the measures are poor and/or the 
construct and the measures do not correspond with each other (Bagozzi and Phillips, 
1980). 
 

Discriminate validity is the degree to which measures of different constructs are distinct 
from each other.  This means that measures of different constructs should share little 
common variance (in a relative sense). 
 

Reliability refers to the ability to achieve identical or similar outputs from the work of 
different researchers and by the repeated use of the technical instruments for data 
collection.  Reliability is a methodological issue.  Reliability could be conceived as a 
property of the instrument and of the observer that uses it to observe many times the 
state of an object on a property.  It can be considered as the inverse of the variance of all 
the observations pertinent to the same state.  The higher this variance is, the less reliable 
the couple observer-instrument. 
 

Both the validity and the reliability of the statistical techniques used in data processing 
procedures constitute an important issue concerning the validity of inferences.  A 



critical analysis developed on the data processing techniques takes into account both 
their correct application and their ability to provide information from which to draw 
inferences with a testable relationship of correspondence between a piece of information 
and an inferred sentence. 
 
 
STRUCTURAL EQUATION MODELLING: THE LISREL APPROACH 
Structural equation modeling (Joreskog, 1969, 1973, 1978; Browne, 1977; Sorbom and 
Joreskog, 1978; Bollen, 1989, 1990; Fox, 1984; Long, 1981, 1983; Joreskog and 
Sorbom, 1984, 1989, 1993; Saris and Stronkhorst, 1984, Hayduk, 1987)  is a statistical 
methodology that takes a hypothesis-testing (i.e., confirmatory) approach to the 
multivariate analysis of a statistical theory bearing on some phenomenon.  Typically 
this theory represents causal processes that generate observations on multiple variables.  
The term structural equation modeling conveys two important aspects of the procedure: 
(a) that the causal processes under study are represented by a series of structural 
equations, and (b) that these structural equations can be modelled pictorially to enable a 
clearer conceptualization of the theory under study.    LISREL (Linear Structural 
Relations) is a program for estimating structural equation models. LISREL produces a 
full information maximum likelihood solution (FIML), which makes use of all 
information in the data about each parameter in generating its estimates (Joreskog, 
1969, 1978).  If a concept is directly caused or influenced by any of the other concepts, 
it is classified as endogenous.  If a concept always acts as a cause and never as effect, 
then it is exogenous, and functions in the values of these concepts are not to be 
explained by this model (though they may be used to explain fluctuations in the values 
of the endogenous concepts).  Thus, the direct causal effects that are of interest are 
located (Hayduk, 1987). 
 
Structural equation modeling is a statistical methodology that takes a hypothesis testing 
(i.e. confirmatory) approach to the multivariate analysis of a structural theory bearing on 
some phenomenon.  Typically, this theory represents ‘causal’ processes that generate 
observations on multiple variables.  The term structural equation modelling conveys 
two important aspects of the procedure: (a) that the causal processes under study are 
represented by a series of structural equations, and (b) that these structural relations can 
be modelled pictorially to enable a clearer conceptualization of the theory under study.  
The central theme of structural equation modelling is to ablish casual relationships 
among the latent va riables. 
 
LISREL 7.16 program (Joreskog and Sorbom, 1989) has been used in the study reported 
in the present paper.  Ordinary least squares impose restrictions on correlated errors, 
which the LISREL 7.16 model does not impose.  Thus, models with independent 
variables that can be fixed can be considered to directly influence the dependent 
variables (Howard and Frink, 1996).    LISREL is a computer program for estimating 
general linear structural equation models with the specific advantage of allowing for 
unmeasured hypothetical constructs or latent variables, each of which may be measured 
by several observed indicators.  The method allows for differentiation between errors in 
equations (disturbances), and errors in the observed variables (measurement errors) and 
yields estimates for both.  Thus, in LISREL, measurement concerns become integrated 
with model development, estimation, evaluation and interpretation (Bohrnstedt, 1983).  



LISREL 7.16 also allows for the examination of the fit of the model.  A test statistic (t) 
indicates significance of the specific coefficients, whereas goodness-of-fit (GFI) and 
root mean square residual (RMSR) can also be used simultaneously (La Du and Tanaka, 
1989). GFI is the preferred statistic in assessing the fit of the path model to the data, in 
that it measures the relative amount of variance and covariance accounted for by the 
model. The value of GFI ranges from 0 (poor fit) to 1 (perfect fit).  RMSR is a measure 
of the average variance unaccounted for by the model.  The basic LISREL model 
amounts to a general procedure for doing structural equation modeling (path analysis) in 
a way that preserves the distinction between concepts and indicators. 
 
 
AN EXAMPLE OF THIS APPROACH  
In a particular study, 602 research units were identified in 32 laboratories of the Council 
of Scientific and Industrial Research (CSIR), India.  A research unit (RU) is 
operationally defined as a unit that has the following characteristics: 
 

1. It has at least one project in the unit. 
2. It has a total expected life span of at least one year. 
3. It is comprised of at least three core members, among whom there is one 

scientist who is the head of the unit.  A core member is an individual researcher 
or a technician who devotes at least eight hours per week to the work of  the 
research unit and who has direct or indirect communication with the head of the 
unit at least once in a month.  

 
After a two-stage random sampling design was adopted for data collection, usable data 
were obtained from 236 research units.  In the second stage, for each sampled research 
unit, samples of core members were selected at random subject to a maximum of three 
scientists/engineers, and three technicians. The data were collected through a set of 
standardized questionnaires administered to the head of the unit, the staff scientists, 
engineers and technicians of the research unit and to the external evaluators.  There 
were in all 834 respondents; of these 236 were heads, and the rest scientists, engineers 
and technicians. 
            
The data were used to develop two structural equation models involving latent variables 
conceptualizing various dimensions of organizational climate and the measures of 
effectiveness of research units in CSIR laboratories.  
 
Internal consistency of the indices for all the  concepts were assessed using Cronbach 
alpha coefficient (Cronbach, 1951) which ranges from 0, no reliability to 1, perfect 
reliability (Lord and Novick, 1968), before the structural models were developed using 
these variables. From the initial list of the concepts, only those concepts were 
considered for further analysis whose Cronbach alpha coefficients were more than 0.5.  
The broad results of the study including the LISREL fit indices (root mean square 
residual (RMSR) and the goodness-of-fit index (GFI)), the parameter values of the 
structural coefficients, and squared multiple correlations (R2) and the coefficient of 
determination for the structural equations of the models have been presented in an 
earlier paper by Roy and Mohapatra (2000).   
 



As an illustration of the usefulness of structural equation modelling for systems 
incorporating soft variables, a causal loop diagram derived from the second structural 
equation model developed in the above -mentioned study is presented here.  The second 
structural model involves the following exogenous variables - leadership quality and 
supervisor contact effectiveness, and the following endogenous variables - innovative 
ethos, conflict, communication, research planning quality, R&D effectiveness, and 
recognition.  
 
A positive causal loop is observed among the endogenous concepts of innovative ethos, 
communication, research planning quality and R&D effectiveness.  This causal loop is 
shown in Fig. 1. This is a self-reinforcing loop where an increase in the value of a 
variable, say the levels of communication within the research unit would trigger an 
exponential rise in the values of the variables.  Conversely, a decrease in the levels of 
communication would trigger an exponential fall in the values of the variables.  
However, it may be noted that the suggested dynamic behaviour will occur if all the 
other variables remain constant.  Moreover, it may be noted that R&D effectiveness has 
not been adequately explained by the model as given by the values of the squared 
multiple correlations for the structural equation (Roy and Mohapatra, 2000) and one 
should adopt caution while explaining the loop.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSIONS 
It has been emphasized that the subjective measures of soft variables are influenced by 
systematic and random measurement errors.  Hence, it is essential that their reliability 
and construct validity should be assessed before these are used in empirical studies.  
The validity of the system dynamics models incorporating soft variables is thus 

 

Fig. 1:  R & D Effectiveness Causal Loop 
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dependent upon the construct validity and reliability of such quasi-quantitative 
measures.  Moreover, the relationships among the latent variables or concepts 
developed from the observed variables have to be ascertained in a way that takes into 
account this quasi-quantitative measurement approach.  There are, therefore, inherent 
problems that are encountered while such system dynamics models are formulated and 
later while these models are validated for arriving at any meaningful inference and 
insight.  The core methodology of system dynamics would, therefore, be greatly 
enriched by interfacing with methodologies like the structural equation modeling that 
could specifically be helpful in addressing such issues.   
 
 
REFERENCES 
Ackoff, R.L. (1979) The Future of Operational Research is Past, Journal of the 

Operational Research Society, 30(2) : 93-102. 
Ackoff, R.L. (1987) Presidents’ Symposium: OR, A Post Mortem, Operations 

Research , May-June, 35: 471-474. 
Ackoff, R.L. (2001) OR: After the Post Mortem, System Dynamics R eview , Winter, 

17(4): 341-346. 
Andersen, D.F. and Rohrbaugh, J. (1992) Some Conceptual and Technical Problems in 

Integrating Models of Judgment with Simulation Models, IEEE Transactions on 
Systems, Man and Cybernetics, 22(1): 21-34. 

Bagozzi, R.P. and  Phillips, L.W. (1980) Representing and Testing Organizational 
Theories: A Holistic Construct, Administrative Science Quarterly, 27: 459-489.  

Barlas, Y. and Carpenter, S. (1990) Philosophical Roots of Model Validation: Two 
Paradigms, System Dynamics Review , 6(2): 148-166. 

Barlas, Y. (1994) Model Validation in System Dynamics , in System Dynamics: 
Exploring the Boundaries, Vol. System Dynamics: Methodological and 
Technical Issues, Proceedings of International System Dynamics Conference, 
University of Stirling, Scotland, UK, System Dynamics Society, NY: 1-10.   

Barlas, Y. (1995) Academics of System Dynamics: Its Core Definition, Topics and 
Terminology, System Dynamics: An International Journal of Policy Modelling, 
VII(1) : 1-16. 

Barlas, Y. (1996) Formal Aspects of Model Validity and Validation in System 
Dynamics, System Dynamics Review , Fall, 12(3) :183-210. 

Bohrnstedt, G.W. (1983) Measurement, in Rossi, P., Wrightand, J &  Anderson, A. 
(eds.) Handbook of Survey Research , Academic Press, NY: 69-121. 

Bollen K.A. (1989)  Structural Equations with Latent Variables, John Wiley and Sons, 
NY. 

Bollen, K.A. (1990) Overall Fit in Covariance Structural Models: Two Types of Sample 
Size Effects, Psychological Bulletin, 107: 256-259. 

Browne, M.W. (1977) Generalized Least Squares Estimators in the Analysis of 
Covariance Structures, in Aigner, D.J., Goldberger, A.S. (eds.) Latent Variables 
in Socio-Economic Models, North-Holland, Amsterdam: 205-266. 

Campbell, D.T. and Fiske, D.W. (1959) Convergent and Discriminate Validation by the 
Multitrait-Multimethod Matrix, Psychological Bulletin , 56: 85-105. 

Checkland, P. (1979) Techniques in Soft Systems Practice, Part 2: Building Conceptual 
Models, Journal of Applied Systems Analysis, 6: 41-49. 

Checkland, P. (1981) Systems Thinking, Systems Practice, Wiley, Chichester. 



Checkland, P. (1983) OR and the Systems Movement: Mappings and Conflicts, Journal 
of the Operational Research Society , 34(8): 661-675. 

Checkland, P., Forbes, P. and Martin, S. (1990) Techniques in Soft Systems Practice, 
Part 3: Monitoring and Control in Conceptual Models and in Evaluation Studies, 
Journal of Applied Systems Analysis, 17: 29-37. 

Checkland, P. and Scholes, J. (1990) Soft Systems Methodology in Action, Wiley, 
Chichester. 
Checkland, P. (1995) Model Validation in Soft Systems Practice, Systems Research, 

12(1): 47-54. 
Cole, S. (1979) Interests, Hopes and Fears - Can We Change the Future?, in Whiston, T. 

(ed.) Uses and Abuses of Forecasting, Macmillan Press, London: 323-343.  
Coyle, R.G. (1977) Management System Dynamics, Wiley, Chichester. 
Coyle, R.G (1996) System Dynamics Modelling: A Practical Approach, Chapman and 

Hall, London.  
Coyle, R.G. (1998) The Practice of System Dynamics: Milestones, Lessons and Ideas 

from 30 Years Experience, System Dynamics Review, 14: 343-366. 
Coyle, G. (2000) Qualitative and Quantitative Modelling in System Dynamics: Some 

Research Questions, System Dynamics Review, Fall, 16(3): 225-244. 
Coyle, R.G. and Exelby, D. (2000) The Validation of Commercial System Dynamics 

Models, System Dynamics Review, Spring, 16(1) : 27-41. 
Coyle, G. (2001) Rejoinder to Homer and Oliva, System Dynamics Review , Winter, 

17(4): 357-363. 
deGeus, A.P. (1992) Modelling to Predict or to Learn?, European Journal of 

Operational Research, 59(1) : 1-5. 
Duncan, O.D. (1975) Introduction to Structural Equation Models, Academic Press, NY. 
Forrester, J.W. (1961) Industrial Dynamics, Productivity Press, Cambridge, MA. 
Forrester, J.W. (1968a) Industrial Dynamics – After the First Decade, Management 

Science, 14(7) : 398-415. 
Forrester, J.W. (1968b) Industrial Dynamics – A Response to Ansoff and Slevin, 

Management Science, 14(9): 601-618.  
Forrester, J.W. (1969) Urban Dynamics, Productivity Press, Cambridge, MA.  
Forrester, J.W. and Senge, P.M. (1980) Tests for Building Confidence in System 

Dynamics Models, in Legasto, A.A., Forrester, J.W. and Lyneis, J.M. (eds.) 
System Dynamics, North-Holland, Amsterdam. 

Forrester, J.W. (1994) System Dynamics, Systems Thinking, and Soft OR, System 
Dynamics Review, 10(2-3): 245-256.  

Fox, J. (1984) Linear Sta tistical Models and Related Methods with Applications to 
Social Research , John Wiley & Sons, NY. 

Framinan-Tores, J.M. and Ruiz-Usano, R. (1997) Modeling Neural Networks using 
System Dynamics, in Barlas, Y., Diker, V.G.and Polat, S.  (eds.) Systems 
Approach to Learning and Education into the 21 st Century: Proceedings of 15th 
International System Dynamics Conference, August 19-22, Istanbul, Turkey, 
System Dynamics Society, NY: 167-170. 

Greenberger, M., Crensen, M.A. and Crissy, B.L. (1976) Models in the Policy Process, 
Russel Sage Foundation, NY. 

Greene, K.B. (1994) Can System Dynamics be Theoretically Improved, and if so, Does 
it Matter Practically?, Systems Research, 11(3) : 3-21. 



Hayduk, L.A. (1987) Structural Equation Modeling with LISREL: Essentials and 
Advances, The John Hopkins University Press, Maryland. 

Homer, J. and Oliva, R. (2001) Maps and Models in System Dynamics: A response to 
Coyle, System Dynamics Review , Winter, 17(4): 347-355. 

Howard, J.L. and Frink, D.D. (1996) The Effects of Organizational R estructure on 
Employee Satisfaction, Group and Organization Management, 21(3) : 278-303. 

Jackson, M.C. (1994) Critical Systems Thinking: Beyond the Fragments, System 
Dynamics Review, Summer-Fall, 10(2-3): 213-229. 

Jackson, M.C. (1995) Beyond the Fads: Systems Thinking for Managers, Systems 
Research , 12(1) : 25-42. 

Jacobsen, C. (1984) Sociology and System Dynamics, Dynamica, Summer, 10(1) . 
Joreskog, K.G. (1969) A General Approach to Confirmatory Maximum-Likelihood 

Factor Analysis, Psychometrica , 34: 183-202. 
Joreskog, K.G. (1973) A General Method for Estimating a Linear Structural Equation 

System, in Goldberger, A.S., Duncan, O.D. (eds.), Structural Equation Models in 
the Social Sciences, Seminar, NY: 85-112. 

Joreskog, K.G. (1978) Structural Analysis of Covariance and Correlation Matrices, 
Psychometrica , 43(4): 443-477. 

Joreskog, K.G., Sorbom, D. (1984) LISREL VI User’s Guide, Scientific Software, 
Mooresville, IN. 

Joreskog, K. and Sorbom, D. (1989) LISREL 7.16: Analysis of Linear Structured 
Relationship by Maximum Likelihood and Least Squares Method, International 
Educational Services, Chicago.  

Joreskog, K.G. and Sorbom, D. (1993) LISREL 8: Structural Equation Modeling with 
the SIMPLIS Command Language, Scientific Software International, Chicago.  

Kaplan R.S. and Norton, D.P. (1996) The Balanced Scorecard, HBS Press, Boston. 
Kennedy, M. (1997) Transforming Spreadsheets into System Dynamics Models: some 

Empirical Findings, in Barlas, Y., Diker, V.G.and Polat, S. (eds.) Systems 
Approach to Learning and Education into the 21 st Century: Proceedings of 15th 
International System Dynamics Conference, August 19-22, Istanbul, Turkey, 
System Dynamics Society, NY:175-178. 

Kummer, S.D. and Schlange, L.E. (1997) Strengthening the Bridge between Qualitative 
and Quantitative Modelling: Contributions to the Toolbox for Analyzing 
Qualitative Models, in Barlas, Y., Diker, V.G.and Polat, S. (eds.) Systems 
Approach to Learning and Education into the 21 st Century: Proceedings of 15th 
International System Dynamics Conference, August 19-22, Istanbul, Turkey, 
System Dynamics Society, NY: 543-549. 

La Du, T.J. and Tanaka, J.S. (1989) Influence of Sample Size, Estimation Method, and 
Model Specification as Goodness-of-Fit Assessments in Structural Equation 
Models, Journal of Applied Psychology, 74: 625-635. 

Landry, M., Malouin, J. & Oral, M. (1983) Model Validation in Operations Research, 
European Journal of Operational Research, 14: 207-220. 

Lane D.C. (1994) With a Little Help from our Friends: How System Dynamics and Soft 
OR Can Learn from Eac h Other, System Dynamics Review, 10(2-3): 101-134.   

Lane, D.C. (1995) The Folding Star: A Comparative Reframing and Extension of 
Validity Concepts in System Dynamics, in Simada, T., Saeed, K. (eds.) 
Proceedings of 1995 International System Dynamics Conference, July. 30 – 
Aug. 4, Vol. 1, Lincoln, MA, System Dynamics Society, NY: 111-130.     



Lane, D.C. and Oliva, R. (1994) The Greater Hole: Towards a Synthesis of SD and 
SSM, in System Dynamics: Exploring the Boundaries, Vol. Problem-Solving 
Methodologies, Proceedings of 1994 International System Dynamics 
Conference, University of Stirling, Scotland, UK, System Dynamics Society, 
NY: 134-146. 

Legasto, Jr., A.A. and Maciariello, J. (1980) System Dynamics: A Critical Review, in 
Legasto, Jr., A.A., Forrester, J.W. & Lyneis, J.M. (eds.), System Dynamic s,  
North-Holland, Amsterdam: 125-142. 

Long, J.S. (1981) Estimation and Hypothesis Testing in Linear Models Containing 
Measurement Error: A Review of Joreskog’s  Model for the Analysis of 
Covariance Structures, in Marsden, P.V. (ed.)  Linear Models in Social 
Research , Sage, Beverly Hills, California, pp. 209-256. 

Long, J.S. (1983) Covariance Structure Models: An Introduction to LISREL, Sage, 
Beverly Hills, California. 

Mass, N.J. and P. M. Senge (1978), Alternative Tests for the Selection of Model 
Variables, IEEE Transactions on Systems, Man and Cybernetics, June (8/6): 
250-259. 

Mohapatra, P.K.J., Mandal, P. and Bora, M.C. (1994) Introduction to System Dynamics 
Modelling, Universities Press of India, Hyderabad.  

Morecroft, J.D.W. (1992) Executive Knowledge, Models and Learning, European 
Journal of Operational Research, 59(1): 70-74. 

Mutec, J.E.S. (1994) Investigating the Dynamics of Employee Participation, in System 
Dynamics: Exploring the Boundaries, Vol. System Dynamics: Methodological 
and Technical Issues, Proceedings of 1994 International System Dynamics 
Conference, University of Stirling, Scotland, UK, System Dynamics Society, 
NY: 161-172.   

Nordhus, W. (1973) World Dynamics: Measurements without Data, The Economic 
Journal, 83: 1156-1183. 

Richardson, G.P. and Pugh, A.L. (1981) Introduction to System Dynamics Modelling 
with DYNAMO, MIT Press, Cambridge, MA. 

Richardson, G.P. (1996) Problems for the Future of System Dynamics, System 
Dynamics Review, Summer, 12(2) : 141-157. 

Rios, J.P. and Schwaninger, M. (1996) Integrative Systems Modelling: Leveraging 
Complementarities of Qualitative and Quantitative Methodologies, Proceedings 
of 1996 International System Dynamics Conference, Cambridge, MA, System 
Dynamics Society, NY: 431-434. 

Roy, Santanu and Mohapatra, P.K.J. (1994) Study of Work Climate in R&D 
Organizations: A System Dynamics Approach, in System Dynamics: Exploring 
the Boundaries, Vol. Production and Operations Management, Proceedings of 
1994 International System Dynamic s Conference, University of Stirling, 
Scotland, UK, System Dynamics Society, NY: 61-70. 

Roy, Santanu  and  Mohapatra, P.K.J. (2000) Causal Linkages in Soft Systems: 
Ascertaining Causal Linkages among the Factors of Work Climate and the 
Measures of Effectiveness of Research Units in an R&D Organization, in 
Altmann, G., Lamp, J., Love, P.E.D., Mandal, P., Smith, R. and Warren, M. 
(eds.) Proceedings of the International Conference on Systems Thinking in 
Management, November 8-10, Deakin University, Geelong, Victoria, Australia, 



ISBN: 0-646-40478-4, Faculty of Business and Law, Deakin University, 
Geelong, Australia : 543-548. 

Saris, W.E. and Stronkhorst, L.H. (1984) Causal Modelling in Non -Experimental 
Research: An Introduction to the LISREL Approach , Sociometric Research 
Foundation, Amsterdam. 

Savicic, V. and Kennedy, M. (1997) The Transformation of Power Plant Investment 
Appraisal from a Spreadsheet into a System Dynamics Model, in Barlas, Y., 
Diker, V.G.and Polat, S. (eds.) Systems Approach to Learning and Education 
into the 21st Century: Proceedings of 15th International System Dynamics 
Conference, August 19-22, Istanbul, Turkey,), System Dynamics Society, pp. 
179-182. 

Sorbom, D., Joreskog, K.G. (1978) The Use of LISREL in Sociological Model 
Building, Ninth World Congress of Sociology, Uppsala, Sweden, August 14-19. 

van Gigch, J.P. (1974) Applied General Systems Theory, Harper and Row, NY. 
Vazquez, M., Liz, M. & Aracil, J. (1996) Knowledge and Reality: Some Conceptual 

Issues in System Dynamics Modelling, System Dynamics Review , Spring, 12(1) : 
21-37. 

Wolstenholme. E.F. (1990) Systems Enquiry: A System Dynamics Approach , Wiley, 
Chichester. 

Wolstenholme. E.F. (1999) Qualitative versus Quantitative Modelling: The Evolving 
Balance, Special Issue on System dynamics of the Journal of Operations 
Research Society. 


	back to the top: 
	Table of Contents: 
	Abstracts: 


