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Abstract: System Dynamics and Decision Analysis have much in common, but usually address 
different problem situations. Nonetheless, there appears to be scope for some cross-fertilization of 
ideas. After briefly considering what the two fields have in common, we then address their 
differences. Firstly, the two fields emphasise different aspects of a problem situation, leading to 
models with a different focus. Secondly, the representation of time is quite different. The meaning 
and representation of causality and dependence are key to both fields, suggesting that there should 
be areas of mutual interest which could be explored further in a cooperative vein. Uncertainty, on the 
other hand, has traditionally been of more concern in Decision Analysis than in System Dynamics. It 
is suggested that there are occasions when a more thorough treatment of parameter uncertainty 
within SD modelling would be beneficial, and a simple example is provided for discussion.  
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WHAT DO SYSTEM DYNAMICS AND DECISION ANALYSIS HAVE IN COMMON? 
 
Both fields are concerned with providing practical approaches to support decision makers across a 
wide spectrum of application areas and at all levels, but particularly at higher managerial levels. 
 
Both employ quantitative and qualitative models to address a wide variety of problem situations from 
the well-structured (hard) to the messy (soft). 
 
Both maintain a unique identity but are embraced by the common umbrella of Operational Research 
/ Management Science.  
 
 
WHERE DO THEY DIFFER? 
 



1. Emphasis  
 
The emphasis of SD is on understanding the behaviour of systems in terms of their structure. A 
model of the system is developed and used to identify potential system improvements, often in a 
fairly ad hoc fashion, reminiscent of the stereotypical engineer. 
 
The emphasis of Decision Analysis (DA) is on identifying and evaluating potential alternatives 
available to a decision maker. Often, a model describing the problem is developed which is then 
used to identify solutions which are in some sense optimal. By its nature, DA encompasses a wider 
range of  techniques and models than SD.  Decision trees and multi-criteria approaches such as 
multi-attribute value theory (MAVT), and the Analytic Hierarchy Process (AHP), are the kind of 
models which are likely to be most familiar to the SD community, since these have long been the 
most widely taught DA subjects in OR/MS courses and in other quantitative methods courses. In 
recent years, however, approaches such as Markov decision processes, Bayesian belief networks 
and influence diagrams have emerged to stake a claim for inclusion and, of these, the latter has been 
the most successful in this regard. The decision theoretic influence diagram, popularised by the 
Stanford school of decision analysis, particularly Howard and Matheson (1984) and Shachter 
(1986), addresses the same kind of sequential decision problems as decision trees, but offers an 
alternative representation which avoids the ‘bushy mess’ of  medium to large scale decision trees.  
 
By virtue of having so much in common, it is perhaps not surprising that both the System Dynamics 
and the Decision Analysis communities separately coined the same term, ‘influence diagram’, to 
describe one of their graphical models. The common name has undoubtedly caused a degree of 
confusion, particularly in the minds of some students! While both use nodes to represent variables of 
interest and directed arcs to represent the main influences between variables, the two constructs are 
quite different. The most obvious visual difference is that the decision theoretic influence diagrams 
(from now on abbreviated to DTIDs) are acyclic, i.e. they do not permit loops, unlike the influence 
diagrams of SD (from now on referred to as Causal Loop Diagrams (CLDs).  The relationships 
represented by the influences or arcs are also of a different form, to be described later. 
 
2. The representation of time  
 
Sometimes, decision analytic models are  criticised for not handling time adequately. However, while 
time may not be represented as explicitly as in SD models, it is certainly not always ignored. 
Decision trees, for example, display a very clear chronology from left to right across the diagram. 
Time is not measured in clock time, but by the state of a decision maker's knowledge. As time 
passes, potentially more information becomes available to the decision maker. Important quantities 
which were previously uncertain (as far as the decision maker is concerned) become certain as 
events take place and questions are resolved.  
 
DTIDs do not immediately display such a clear chronology as they emphasise dependencies 
between variables, but a DTID does take account of time. Furthermore, a DTID can be converted 
to an equivalent decision tree - the conversion is achieved by changing the focus to time 
dependence. Arcs going into a decision node always denote time precedence, although other arcs 
denote probabilistic dependencies as well as deterministic relationships (particularly payoffs). Those 



that enter decision nodes display which decisions were taken before that one, and which 
uncertainties, represented by chance variables, have been resolved at the time the decision is taken.  
 
Although DTIDs are closely related to Bayesian belief networks (BBNs), one of the chief 
distinctions is that BBNs are essentially static models. The greater flexibility of DTIDs follows from 
the fact that they permit additional types of nodes (decision nodes and value nodes) and, as alluded 
to above,  the meaning of an arc depends on the node types it connects. Nevertheless, an arc 
between two chance nodes has the same meaning in both - probabilistic dependence. 
 
A BBN provides an efficient representation of a joint probability distribution across some domain of 
interest. Evidence and observations on the variables in the network can be entered and their effect 
on the probability distributions of other variables in the network are then calculated. Although the 
type of systems represented by BBNs are usually stationary, system evolution and time-lagged 
cycles can be represented, and lead to dynamic Bayesian networks. 
 
The kind of situation where time plays no part is where a single decision is to be made and there is 
no uncertainty to be resolved - then the model will be static. Multi-criteria approaches such as 
MAVT, MAUT and AHP usually fit this description. Clearly, so do many of the classic OR 
approaches such as linear programming, but these fall outside the conventional remit of decision 
analysis, so will not be considered here. 
 
 
3. The representation of causality and dependence 
 
Both SD and Decision Analysis employ graphical representations of causality and dependence. 
While SD thrives on feedback loops, such cycles are not permitted in DTIDs or in Bayesian belief 
networks - logically, they are not required.  
 
As stated previously, Bayesian belief networks are closely related to DTIDs. An arc between two 
chance nodes has the same meaning in both. It denotes probabilistic dependence, or relevance. It 
can represent causality, but the relationships do not have to be causal. (See Pearl 1988 for a 
discussion of causality, relevance and dependence.) These dependencies are usually displayed in the 
direction of causality, if that direction is clear, or otherwise in the direction that leads to the most 
natural conditional probability assessment. In the solution of the model, however, the structure of the 
DTID can be manipulated, providing some basic rules are observed (see Shachter 1986). Some 
arcs can be removed or reversed. An arc from variable X to variable Y means that Y is conditioned 
on X, so reversing such an arc leads to X being conditioned on Y, and the required conditional 
probability distribution is calculated using Bayes’ theorem. 
 
By contrast, in SD, the focus is more on how the system under consideration changes through time. 
The causal relationships between the variables and parameters are captured through a set of 
equations that define the model. The equation for a particular variable, X, will be a function of all the 
variables and parameters which have arcs that enter X.  
 
4. The representation of uncertainty  
 



Within the standard tools of decision analysis, such as decision trees, DTIDs and Bayesian belief 
networks, uncertainty is represented by chance nodes. Each chance node is an uncertain variable 
with an associated probability distribution. 
 
Uncertainty is usually unrepresented in SD models, which are traditionally deterministic. When it is 
discussed, it is usually in the context of random sampling within an equation (e.g in a production and 
inventory control model, daily demand might be sampled from a probability distribution) in which 
case the number of sampled values is the number of times the variable is updated during a run. 
Actually, the vector of sampled values equates to only a single realization, however, as the system is 
in a different state every time a new value is sampled. This kind of sampling represents random 
variability within a run. 
 
A second type of uncertainty relates to parameter uncertainty and is often handled by 'sensitivity 
analysis' (facilitated by the most popular SD software packages). This is epistemic uncertainty and is 
potentially more serious for the conclusions drawn from a study. A single SD model run requires the 
assumption that every parameter takes a particular known value at time zero. For some parameters, 
however, there may be a considerable degree of uncertainty about what their true value is. 
Furthermore, some of these parameters might be unconnected in our model but actually be 
dependent in a probabilistic sense (i.e. their true values are correlated).   
 
There appears to be little in the SD literature regarding the handling of this uncertainty, but there 
does not appear to be any problem in principle with directly applying the methods of uncertainty and 
risk analysis to the parameters of SD models. 
 
 
 
DOES DECISION ANALYSIS HAVE ANYTHING TO OFFER  
SYSTEM DYNAMICS? 
 
1. Integration of multi-criteria approaches with SD model output 
 
There does appear to be considerable scope for the use of multi-criteria approaches in SD. While 
the formulation of an objective function is sometimes frowned upon in SD circles, and for good 
reason, it nonetheless provides a mechanism to summarize what is often complex, multivariate output 
from a model. Such a mechanism can only be enhanced by taking on-board best-practice guidelines 
from the field of MCDA. For example, the use of nonlinear value functions and swing weights in the 
formulation of objective functions would seem to be a step in the right direction. As yet, there are 
few examples to inform SD practice, a notable exception being provided by Santos, Belton and 
Howick (2001). They consider the integration of SD and MAVT in the context of performance 
measurement systems.  
 
A possible explanation for the relative paucity of successful examples of the integration of these 
methods is provided by Andersen and Rohrbaugh. Among other things, they highlight the difficulty of 
longitudinal trade-offs. While the nature of some systems might make it sensible to trade off only the 
final values which occur at some meaningful point in time, more often than not, there will be no such 
endpoint of interest. Then, some kind of averaging or integrating or discounting equation will be 



needed for each measure of interest. Even then, some people will prefer a steady improvement in 
performance to mild decline followed by steeper improvement or steeper improvement followed by 
mild decline. They may also prefer lower frequency and lower amplitude oscillations in performance, 
regardless of any calculated numerical advantage of a more volatile pattern. The issue of long-term 
versus short-term improvement is another interesting trade-off which they highlight, having obvious 
implications for political decision-makers who are often more concerned with short-term objectives. 
 
Coyle (2002) integrates SD with an MCDA aproach in an entirely different way. He suggests the 
use of the Analytic Hierarchy Process (AHP) to help the modeller decide whether a qualitative 
model should be further developed ino a quantitative model. 
 
2. The notion of conditional independence 
 
Conditional Independence is a notion which is usefully employed in probabilistic graphical models, 
such as Bayesian belief networks and DTIDs. Put simply, if A, B and C are uncertain events, then if 
P(A | B, C) = P(A | C), we say that A and B are conditionally independent given C. In other words, 
provided we are certain about C, additional information about B does not affect our belief about A. 
Such a relationship would be represented graphically in a BBN as shown in Figure 1. 
 
Nadkarni and Shenoy (2001) recently suggested that this concept could be useful in causal mapping. 
It would appear that it could also prove to be a useful concept when discussing and formulating 
CLDs. Discussions of causality and dependence are often fraught with misunderstandings. So too 
are the notions of direct and indirect influences. We have probably all struggled with clients or 
students who are tempted to put too many direct influences onto a CLD, leading to clutter, 
confusion and misrepresentation of the underlying system. For example, if while considering part of a 
system, a client produces a graph such as that in Figure 1, but with an additional arc from B to A, 
they could be asked whether the value of A would change when C was fixed, but B could take 
different values. If the reply is negative, then the extra arc is superfluous and B’s influence on A is 
indirect, mediated by C.   
 
Thinking about the function or equation you would use to represent the variable in a quantitative SD 
model helps to clarify whether an influence is direct or indirect. So too does the notion of conditional 
independence, but in a way that does not require equation formulation. Hence, it may prove to be a 
useful tool during model elicitation with a domain expert who is not familiar with quantitative SD or 
comfortable with equation building.  
 
 
3. Accounting for parametric dependencies and uncertainty 
 
As Ford and Sterman (1998) have noted, 'The literature is comparatively silent, however, regarding 
methods to elicit the information required to estimate the parameters, initial conditions, and 
behaviour relationships that must be specified precisely in formal modeling.' This is particularly true 
when it comes to considering possible correlations / dependencies between parameter values. It is 
almost as if parameters / constants are not considered worthy of further thought since their values 
cannot change during a model run, and different values can always be tried out later, perhaps as part 
of a sensitivity analysis. However, that ignores their obvious importance in defining the scenario. A 



sensitivity analysis in which several parameters are each allowed to take a range of different values is 
effectively assuming that each parameter value is independent of all the others. Unless this is very 
carefully thought out, it may result in a large number of inappropriate scenario configurations, which 
are all valued equally. Consider the following simple example of a recruitment model. 
 
In this simplified model of the recruitment process, we only consider a single component level, 
workforce size, as shown in Figure 2. This is sufficient to demonstrate the essence of the approach 
being advocated. The SD model in Figure 2, then, contains this single level, together with an inflow - 
recruitment rate, and an outflow - leaving rate. The leaving rate is the product of staff turnover 
(defined as the proportion of the staff leaving each month) and workforce size. Recruitment rate is 
governed by proportional control - the discrepancy between the actual workforce size and a target 
workforce size is divided by average recruitment time. Consequently, there are three parameters in 
the model - staff turnover, average recruitment time and target workforce size.  
 
If we now consider possible dependencies between these parameters, in particular between staff 
turnover and average recruitment time, further evocative, background parameters become relevant - 
in particular, the attractiveness of the company to employees and the level of unemployment. For 
example, when unemployment is high and company attractiveness is high, you would not expect high 
staff turnover or long average recruitment times. It may be, however, that the model only includes 
turnover rate and recruitment time as explicit parameters. The background effects of unemployment 
and company attractiveness might be considered implicitly and so play an evocative role in the 
assignment of explicit parameter values (see Howard 1989 for a discussion of evocative variables in 
the context of decision theoretic influence diagrams). On the other hand, they might not be 
considered at all, possibly resulting in highly implausible combinations of parameter values depending 
on what the actual background conditions are.  
 
The joint probability distribution for the two explicit model parameters and the two background 
parameters can be elicited most naturally by concentrating on the causal structure of the domain. 
This is displayed in the form of a BBN in Figure 3. In order to fully specify the BBN, prior marginal 
distributions are required for the two parentless nodes, company attractiveness and unemployment, 
while for each node with parents, a conditional distribution is required for each possible combination 
of parent states. In this example, it has been assumed that each parameter can be in one of three 
states, corresponding to high, medium and low values. The prior marginal distributions and the two 
conditional distributions used for this example are given in Tables 1 to 4. This leads to the joint 
probability distribution shown in Figure 4 (the values on the belief bars are percentages).  
 

Table 1. Prior distribution for Unemployment. 
Unemployment: low medium high 
Probability: 0.25 0.5 0.25 

 
 
 

Table 2. Prior distribution for Company Attractiveness. 
Company 
Attractiveness 

low medium high 

Probability 0.2 0.6 0.2 



 
 

Table 3. Conditional distribution for Recruitment Time (R.T.) given Company Attractiveness  
and Unemployment. 

Company 
Attractiveness 

Unemployment P(R.T. = low) P(R.T. = med)  P(R.T. = high) 

high high 0.9 0.09 0.01 
high medium 0.75 0.23 0.02 
high low 0.5 0.4 0.1 
medium high 0.7 0.28 0.02 
medium medium 0.25 0.5 0.25 
medium low 0.2 0.4 0.4 
low high 0.2 0.6 0.2 
low medium 0.1 0.4 0.5 
low low 0.01 0.19 0.8 

 
 
Table 4. Conditional distribution for Staff Turnover (S.T.) given Company Attractiveness and Unemployment 
Company 
Attractiveness 

Unemployment P(S.T. = low) P(S.T. = med) P(S.T. = high) 

high high 0.9 0.09 0.01 
high medium 0.8 0.18 0.02 
high low 0.6 0.3 0.1 
medium high 0.7 0.25 0.05 
medium medium 0.25 0.5 0.25 
medium low 0.2 0.5 0.3 
low high 0.2 0.6 0.2 
low medium 0.02 0.28 0.7 
low low 0.01 0.09 0.9 

 
 
If we are interested in a scenario where unemployment is high and company attractiveness is high, 
then these parameters can be assumed to be at these levels with certainty. The resulting joint 
probability distribution is shown in Figure 5. Alternatively, if unemployment is low and company 
attractiveness is low, the joint distribution shown in Figure 6 is obtained. The joint distributions of the 
included model parameters can then be used to identify the most likely combination of parameter 
states given the assumed background conditions. They could also be used to attach probabilistic 
weights to the model outputs resulting from the various possible parameter combinations. For 
example, staff turnover and average recruitment time are conditionally independent given 
unemployment and company attractiveness. Hence, once these background parameters have been 
fixed, the joint probability distribution of staff turnover and average recruitment time is obtained 
simply by taking the product of the two marginal distributions. This is displayed in Table 5 for the 
situation corresponding to Figure 6. 
 
 



Table 5. Joint distribution of Staff Turnover and Recruitment Time given Unemployment = low and Company 
Attractiveness = low. 
 Rec.Time = low Rec.Time = medium Rec.Time = high 
S.T. = low 0.0001 0.0019 0.008 
S.T. = medium 0.0009 0.0171 0.072 
S.T. = high 0.009 0.171 0.72 

 
Another possibility is that a background variable, such as company attractiveness, is considered 
important, but is also unknown and difficult to observe or measure, i.e. it can be considered a latent 
variable, unlike unemployment, for example. In such a case, the quantitative modeller might be 
tempted to leave it out for fear of having to concoct dubious equations or tables to describe its 
effects. An alternative approach in this case, however, would be to directly model the dependence 
relationships between the unobservable and observable variables, by eliciting the appropriate 
conditional probability distributions from the system experts. Then, fixing the observable parameters 
at levels which reflect the scenario to be modelled allows the appropriate joint distribution of explicit 
model parameters to be calculated and subsequently used in attaching likelihoods to the various 
scenarios. This is in contrast to allowing unobserved parameters to take virtually any combination of 
values from their permitted ranges, and then treating the resulting assortment of model runs as though 
they are all equally likely when in fact many are highly unlikely, given the observable parameters. For 
example, if in the situation we are interested in, unemployment is known to be high and staff turnover 
is known to be medium, but we have no information on average recruitment time or company 
attractiveness, we enter the information that we have got, as in Figure 7, and then obtain the 
probability distribution of the unobserved parameters given the observed ones. 
 
The approach outlined here is illustrated in Figure 8. The graph is an amalgam of a CLD and a 
BBN, with the arcs of the BBN shown as dashed. This approach requires the modeller and the 
system expert(s) to think deeply about possible dependencies not just between included model 
parameters, but also between evocative background variables and model parameters, and adds 
another dimension to the elicitation process. As Eden (1992) has previously pointed out, however, 
'The elicitation process is designed to be a cathartic experience which provides "added value" 
because it changes thinking...'  
 
CONCLUSION 
 
System Dynamics and Decision Analysis both have significant track records of success in providing 
support to high-level decision makers. As ever-more complex problem situations are exposed to 
analysis, ways of extending and enhancing these successful tools must be sought. In this paper, some 
such extensions have been suggested. Further work is required to test these ideas and explore their 
consequences. 
 
 
 
 
 



 
 
 
 
 

Figure 1. A and B are conditionally 
independent given C. 

 
 
 
 

Figure 2. CLD for the simple recruitment process. 
 
 
 
 

 
Figure 3. BBN displaying the dependencies between the background and explicit model parameters. 

 
 
 

 
Figure 4. Initial BBN with no parameters observed. 
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Figure 5. Resultant distribution with Unemployment and Company Attractiveness both high. 

 
 
 
 
 

 
Figure 6. Resultant distribution with Unemployment and Company Attractiveness both low. 

 
 
 
 
 

 
Figure 7. Resultant distribution with Unemployment high and Staff Turnover medium. 

 
 



 
 
 
 
 

Figure 8. Combined CLD and BBN for the recruitment process. 
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