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Abdract: System Dynamics and Decison Andyss have much in common, but usudly address
different problem situations. Nonetheless, there appears to be scope for some cross fertilization of
idess. After briefly conddering what the two fields have in common, we then address ther
differences. Firgly, the two fields emphasise different aspects of a problem dtuation, leading to
modds with a different focus. Secondly, the representation of time is quite different. The meaning
and representation of causality and dependence are key to both fields, suggesting that there should
be areas of mutud interest which could be explored further in a cooperdive vein. Uncertainty, on the
other hand, has traditionaly been of more concern in Decison Analyss than in Sysem Dynamics It
is suggested that there are occasions when a more thorough trestment of parameter uncertainty
within SD moddling would be beneficid, and asmpleexample is provided for discusson.
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WHAT DO SYSTEM DYNAMICS AND DECISION ANALYSISHAVE IN COMMON?

Both fields are concerned with providing practical approaches to support decision makers across a
wide spectrum of application areas and a dl levels, but particularly at higher managerid levels.

Both employ quantitative and qualitative models to address awide variety of problem stuations from
the wdl-structured (hard) to the messy (soft).

Both maintain a unique identity but are embraced by the common umbrella of Operational Research
/ Management Science.

WHERE DO THEY DIFFER?



1. Emphass

The emphasis of SD is on understanding the behaviour of systems in terms d their Structure. A
modd of the sysem is developed and used to identify potentiad system improvements, often in a
fairly ad hoc fashion, reminiscent of the stereotypica engineer.

The emphads of Decison Andyss (DA) is on identifying and evauating potentid dternatives
available to a decison maker. Often, a model describing the problem is developed which is then
used to identify solutions which are in some sense optimdl. By its nature, DA encompasses a wider
range of techniques and modes than SD. Decision trees and multi-criteria approaches such as
muiti-attribute value theory (MAVT), and the Anaytic Hierarchy Process (AHP), are the kind of
modes which are likely to be most familiar to the SD community, since these have long been the
most widely taught DA subjects in OR/MS courses and in other quantitative methods courses. In
recent years, however, approaches such as Markov decision processes, Bayesian belief networks
and influence diagrams have emerged to stake a claim for inclusion and, of these, the latter has been
the most successful in this regard. The decison theoretic influence diagram, popularised by the
Sanford school of decision andyss, particulaly Howard and Matheson (1984) and Shachter
(1986), addresses the same kind of sequentid decison problems as decison trees, but offers an
dternative representation which avoids the ‘bushy mess of medium to large scale decision trees.

By virtue of having so much in common, it is perhgps not surprising thet both the System Dynamics
and the Decison Andyss communities separately coined the same term, ‘influence diagran, to
describe one of ther graphicd models. The common name has undoubtedly caused a degree of

confusion, particularly in the minds of some students! While both use nodes to represent variables of
interest and directed arcs to represent the main influences between variables, the two congtructs are
quite different. The most obvious visud difference is that the decison theoretic influence diagrams
(from now on abbreviated to DTIDs) are acydlic, i.e. they do not permit loops, unlike the influence
diagrams of SD (from now on referred to as Causal Loop Diagrams (CLDs). The relaionships
represented by the influences or arcs are also of a different form, to be described later.

2. The representation of time

Sometimes, decison andytic modds are criticised for not handling time adequately. However, while
time may not be represented as explicitly as in SD modds, it is certainly not dways ignored.
Decison trees, for example, display a very clear chronology from left to right across the diagram.
Time is not measured in clock time, but by the sate of a decison maker's knowledge. As time
passes, potentidly more information becomes available to the decison maker. Important quantities
which were previoudy uncertain (as far as the decison maker is concerned) become certain as
events take place and questions are resolved.

DTIDs do not immediady display such a cler chronology as they emphasise dependencies
between variddes, but a DTID does take account of time. Furthermore, a DTID can be converted
to an equivdent decisdon tree - the converson is achieved by changing the focus to time
dependence. Arcs going into a decision node always denote time precedence, athough other arcs
denote probabilistic dependencies as well as deterministic relationships (particularly payoffs). Those



that enter decison nodes display which decisons were taken before that one, and which
uncertainties, represented by chance variables, have been resolved at the time the decision is taken.

Although DTIDs are closdy related to Bayesan belief networks (BBNSs), one of the chief
diginctions is that BBNs are essantidly static models. The greater flexibility of DTIDs follows from
the fact that they permit additiona types of nodes (decision nodes and value nodes) and, as dluded
to above, the meaning of an arc depends on the node types it connects. Nevertheless, an arc
between two chance nodes has the same meaning in both - probabilistic dependence.

A BBN provides an efficient representation of ajoint probability distribution across some domain of
interest. Evidence and observations on the variables in the network can be entered and their effect
on the probakility digtributions of other variables in the network are then calculated. Although the
type of systems represented by BBNs are usudly dationary, system evolution and time-lagged
cycles can be represented, and lead to dynamic Bayesian networks.

The kind of situation where time plays no part is where a single decison isto be made and there is
no uncertainty to be resolved - then the modd will be gatic. Multi-criteria approaches such as
MAVT, MAUT and AHP usudly fit this description. Clearly, so do many of the classc OR
approaches such as linear programming, but these fal outside the conventiona remit of decison
andysis, so will not be consdered here.

3. The representation of causality and dependence

Both SD and Decison Andysis employ graphica representations of causdity and dgpendence.
While SD thrives on feedback loops, such cycles are not permitted in DTIDs or in Bayesan belief
networks - logicaly, they are not required.

As stated previoudy, Bayesian belief networks are closdy related to DTIDs. An arc between two
chance nodes has the same meaning in both. It denotes probabilistic dependence, or relevance. It
can represent causdlity, but the relationships do not have to be causa. (See Pearl 1988 for a
discussion of causdity, relevance and dependence.) These dependenciesare usudly displayed in the
direction of causdity, if that direction is clear, or otherwise in the direction that leads to the most
natural conditiona probability assessment. In the solution of the modd, however, the structure of the
DTID can be manipulated, providing some basic rules are observed (see Shachter 1986). Some
arcs can be removed or reversed. An arc from variable X to variable Y meansthat Y is conditioned
on X, so reversing such an arc leads to X being conditioned on Y, and the required conditiond
probakility distribution is calculated using Bayes' theorem.

By contragt, in SD, the focus is more on how the system under consideration changes through time.
The causa rdationships between the variables and parameters are captured through a set of
equations that define the modd. The equation for a particular variable, X, will be afunction of dl the
variables and parameters which have arcsthat enter X.

4. Therepresentation of uncertainty



Within the standard tools of decison andysis, such as decison trees, DTIDs and Bayesan belief
networks, uncertainty is represented by chance nodes. Each chance node is an uncertain variable
with an associated probability distribution.

Uncertainty is usualy unrepresented in SD models, which are traditiondly deterministic. When it is
discussd, it is usudly in the context of random sampling within an equation (eg in a production and
inventory control mode, daily demand might be sampled from a probability distribution) in which
case the number of sampled vaues is the number of times the varidble is updated during a run.
Actudly, the vector of sampled vaues equates to only a single redization, however, as the sysem is
in a different date every time a new vaue is sampled. This kind of sampling represents random
vaidhility within arun.

A second type of uncertainty relates to parameter uncertainty and is often handled by 'sengtivity

anaysis (facilitated by the most popular SD software packages). Thisis epistemic uncertainty and is
potentialy more serious for the conclusions drawn from astudy. A single SD mode run requires the
assumption that every parameter takes a particular known vaue at time zero. For some parameters,

however, there may be a consderable degree of uncertainty about what ther true vaue is
Furthermore, some of these parameters might be unconnected in our modd but actualy be
dependent in a probabilistic sense (i.e. their true values are correlated).

There gppears to be little in the SD literature regarding the tandling of this uncertainty, but there
does not gppear to be any problem in principle with directly applying the methods of uncertainty and
risk analysisto the parameters of SD models.

DOES DECISION ANALYSISHAVE ANYTHING TO OFFER
SYSTEM DYNAMICS?

1. Integration of multi-criteria approacheswith SD mode output

There does appear to be considerable scope for the use of multi-criteria approaches in SD. While
the formulation of an objective function is sometimes frowned upon in SD circles, and for good
reason, it nonetheless provides a mechanism to summarize what is often complex, multivariate output
from amodd. Such a mechanism can only be enhanced by taking onboard best- practice guideines
from the field of MCDA.. For example, the use of nonlinear vaue functions and swing weightsin the
formulation of objective functions would seem to be a step in the right direction. As yet, there are
few examples to inform SD practice, a notable exception being provided by Santos, Belton and
Howick (2001). They consder the integration of SD and MAVT in the context of performance
measurement systems.

A possible explanation for the relative paucity of successful examples of the integration of these
methods is provided by Andersen and Rohrbaugh. Among other things, they highlight the difficulty of
longitudind trade- offs. While the nature of some systems might make it sengible to trade off only the
fina vaues which occur a some meaningful point in time, more often than nat, there will be no such
endpoint of interest. Then, some kind of averaging or integrating or discounting equation will be



needed for each measure of interest. Even then, some people will prefer a steady improvement in
performance to mild decline followed by steeper improvement or steeper improvement followed by
mild decline. They may dso prefer lower frequency and lower amplitude oscillations in performance,
regardiess of any caculated numerica advantage of a more volatile pattern. The issue of long-term
versus short-term improvement is another interesting trade- off which they highlight, having obvious
implications for political decisor makers who are often more concerned with short-term objectives.

Coyle (2002) integrates SD with an MCDA aproach in an entirely different way. He suggests the
use of the Andytic Hierarchy Process (AHP) to help the moddler decide whether a quditative
modd should be further developed ino a quantitative model.

2. Thenotion of conditional independence

Conditiona Independence is a notion which is usefully employed in probabilistic graphical models,
such as Bayesan bdief networks and DTIDs. Put smply, if A, B and C are uncertain events, then if
PA | B, C) =P(A | C), wesay that A and B are conditionaly independent given C. In other words,
provided we are catain about C, additiond information about B does not affect our belief about A.
Such ardationship would be represented graphicaly in aBBN as shown in Figure 1.

Nadkarni and Shenoy (2001) recently suggested that this concept could be useful in causal mapping.
It would appear that it could aso prove to be a useful concept when discussing and formulating
CLDs. Discussions of causdlity and dependence are often fraught with misunderstandings. So too
are the notions of direct and indirect influences. We have probably al struggled with clients or
sudents who are tempted to put too many direct influences onto a CLD, leading to clutter,
confuson and misrepresentation of the underlying system. For example, if while consdering part of a
system, a client praduces a graph such as that in Figure 1, but with an additiond arc from B to A,
they could be asked whether the value of A would change when C was fixed, but B could take
different vaues. If the reply is negetive, then the extra arc is superfluous and B'’s influence on A is
indirect, mediated by C.

Thinking about the function or equation you would use to represent the varigble in a quantitative SD
model helpsto darify whether an influence is direct or indirect. So too does the notion of conditiona

independence, but in away that does not require equation formulation. Hence, it may prove to be a
useful tool during modd dicitation with a domain expert who is not familiar with quantitative SD or
comfortable with equation building.

3. Accounting for parametric dependencies and uncertainty

As Ford and Sterman (1998) have noted, 'The literature is comparatively slent, however, regarding
methods to dicit the information required to edimate the parameters, initid conditions, and
behaviour rdationships that must be specified precisdy in forma modeing.’ This is particularly true
when it comes to considering possible correlations / dependencies between parameter values. It is
amogt as if parameters / congtants are not considered worthy of further thought since their values
cannot change during a modd run, and different values can aways be tried out later, perhaps as part
of a sendtivity andyss. However, that ignores their obvious importance in defining the scenario. A



sengtivity andyss in which severa parameters are each dlowed to take arange of different valuesis
effectively assuming that each parameter vaue is independent of dl the others. Unless this is very
carefully thought out, it may result in a large number of ingppropriate scenaio configurations, which
are dl vaued equdly. Congder the following smple example of arecruitment modd.

In this smplified mode of the recruitment process, we only consder a sngle component leve,
workforce size, as shown in Figure 2. This is sufficient to demongtrate the essence of the gpproach
being advocated. The SD modd in Figure 2, then, contains this single level, together with an inflow -
recruitment rate, and an outflow - leaving rate. The leaving rate is the product of saff turnover
(defined as the proportion of the staff leaving each month) and workforce sze. Recruitment rate is
governed by proportiond control - the discrepancy between the actual workforce size and a target
workforce size is divided by average recruitment time. Consequently, there are three parametersin
themodd - gtaff turnover, average recruitment time and target workforce size.

If we now consder possible dependencies between these parameters, in particular between staff

turnover and average recruitment time, further evocative, background parameters become relevant -
in particular, the atractiveness of the company to employees and the level of unemployment. For
example, when unemployment is high and company dtractivenessis high, you would not expect high
staff turnover or long average recruitment times. It may be, however, that the modd only includes
turnover rate and recruitment time as explicit parameters. The background effects of unemployment
and company attractiveness might be considered implicitly and ® play an evocative role in the
assignment of explicit parameter vaues (see Howard 1989 for a discussion of evocative varigblesin
the context of decison theoretic influence diagrams). On the other hand, they might not be
considered at al, possibly resuting in highly implausible combinations of parameter va ues depending
on what the actua background conditions are.

The joint probability digtribution for the two explicit model parameters and the two background
parameters can be dicited most naturdly by concentrating on the causa structure of the domain.
Thisis digolayed in the form of aBBN in Figure 3. In order to fully specify the BBN, prior margina
digtributions are required for the two parentless nodes, company attractiveness and unemployment,
while for each node with parents, a conditiona distribution is required for each possible combination
of parent sates. In this example, it has been assumed that each parameter can be in one of three
dates, corresponding to high, medium and low vaues. The prior margind digtributions and the two
conditiona digtributions used for this example are given in Tables 1 to 4. This leads to the joint
probability distribution shown in Figure 4 (the vaues on the belief bars are percentages).

Table 1. Prior distribution for Unemployment.

Unemployment: low medium high

Probability: 0.25 05 0.25

Table 2. Prior distribution for Company Attractiveness.
Company low medium high
Attractiveness
Probability 0.2 0.6 0.2




Table 3. Conditiond distribution for Recruitment Time (R.T.) given Company Attractiveness

and Unemployment.

Company Unemployment | P(R.T. =low) P(R.T. = med) P(R.T. =high)
Attractiveness

high high 0.9 0.09 0.01
high medium 0.75 0.23 0.02
high low 0.5 04 0.1
medium high 0.7 0.28 0.02
medium medium 0.25 0.5 0.25
medium low 0.2 04 04
low high 0.2 0.6 0.2
low medium 0.1 04 05
low low 0.01 0.19 0.8

Table 4. Conditional distribution for Staff Turnover (S.T.) given Company Attractiveness and Unemployment

If we are interested in a scenario where unemployment is high and company dtractiveness is high,
then these parameters can be assumed to be a these levels with certainty. The resulting joint
probability digribution is shown in Figure 5. Alternatively, if unemployment is low and company
atractivenessis low, the joint distribution shown in Figure 6 is obtained. The joint distributions of the
included model parameters can then be used to identify the most likely combination of parameter
dates given the assumed background conditions. They could aso be used to attach probabilistic
weights to the modd outputs resulting from the various possble parameter combinations. For
example, daff turnover and average recruitment time are conditiondly independent given
unemployment and company attractiveness. Hence, once these background parameters have been
fixed, the joint probability digtribution of staff turnover and average recruitment time is obtained
samply by taking the product of the two margind digtributions. This is displayed in Table 5 for the

Stuation corresponding to Figure 6.

Company Unemployment P(S.T.=low) P(S.T.=med) P(ST.=high)
Attractiveness

high high 0.9 0.09 0.01
high medium 0.8 0.18 0.02
high low 0.6 0.3 0.1
medium high 0.7 0.25 0.05
medium medium 0.25 0.5 0.25
medium low 0.2 05 0.3
low high 0.2 0.6 0.2
low medium 0.02 0.28 0.7
low low 0.01 0.09 0.9




Table 5. Joint digtribution of Staff Turnover and Recruitment Time given Unemployment = low and Company
Attractiveness = low.

Rec.Time=low Rec.Time=medium | Rec.Time=high
ST.=low 0.0001 0.0019 0.008
ST.=medium 0.0009 0.0171 0.072
ST.=high 0.009 0.171 0.72

Anocther possibility is that a background variable, such as company attractiveness, is considered
important, but is aso unknown and difficult to observe or measure, i.e. it can be considered a latent
vaiable, unlike unemployment, for example. In such a case, the quantitative modeler might be
tempted to leave it out for fear of having to concoct dubious equations or tables to describe its
effects. An dternative approach in this case, however, would be to directly modd the dependence
relationships between the unobservable and observable variables, by diciting the appropriate
conditiond probability distributions from the system experts. Then, fixing the observable parameters
at levels which reflect the scenario to be modelled adlows the appropriate joint distribution of explicit
model parameters to be caculated and subsequently used in attaching likelihoods to the various
scenarios. This isin contrast to alowing unobserved parameters to take virtualy any combination of
vaues from their permitted ranges, and then treeting the resulting assortment of mode! runs as though
they are dl equdly likey when in fact many are highly unlikdly, given the observable parameters. For
example, if in the Stuation we are interested in, unemployment is known to be high and staff turnover
is known to be medium, but we have no information on average recruitment time or company
atractiveness, we enter the information that we have got, as in Figure 7, and then obtain the
probability distribution of the unobserved parameters given the observed ones.

The gpproach outlined here is illustrated in Figure 8. The graph is an amdgam of a CLD and a
BBN, with the arcs of the BBN shown as dashed. This approach requires the moddler and the
system expert(s) to think deeply about possible dependencies not just between included model
parameters, but aso between evocative background variables and mode parameters, and adds
another dimension to the dicitation process. As Eden (1992) has previoudy pointed out, however,
"The dicitation process is designed to be a cathartic experience which provides "added vaue'
because it changes thinking..."

CONCLUSON

System Dynamics and Decison Andysis both have significant track records of success in providing
support to high-level decison makers. As ever-more complex problem stuations are exposed to
andyss, ways of extending and enhancing these successful tools must be sought. In this paper, some
such extensions have been suggested. Further work is required to test these ideas and explore their
conseguences.
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