
A Software Interface Between System Dynamics and
Agent-Based Simulations – Linking Vensim® and RePast®

Andreas Größler, Myrjam Stotz and Nadine Schieritz
Mannheim University

Industrieseminar, Schloss
D-68131 Mannheim, Germany

Tel.: +49 621 181-1583
Fax: +49 621 181-1579

E-Mail: agroe@is.bwl.uni-mannheim.de

Abstract

A software-based integration of agent-based modeling and system dynamics is
presented. More precisely, it is described how RePast and Vensim can be coupled using
standard procedure calls. In an example from supply chain management, agents
modeled with RePast in an agent-based simulation context are provided with system
dynamics models as internal schemata, which are built with Vensim. The prototypical
application shows both, the technical simplicity of combining agent-based and system
dynamics simulations when using RePast and Vensim, and the potential of a
combination of the two approaches.

Key words: system dynamics, agent-based simulation, Vensim, RePast, supply chain
management

To date mainly two approaches use computer simulation to investigate social and
economic systems that are characterized by non-linearity, delays and feedback
processes: system dynamics and agent-based simulation. Both concentrate on
understanding and qualitative prediction of systems behavior. Although the two
approaches have a large intersection regarding research topics they have been relatively
unnoticed by each other (Phelan 1999). Therefore, an integration of both approaches
concerning conceptual and technical issues seems to be a worthwhile endeavor.

Some pioneering work on the combination of system dynamics and agent-based
simulation was conducted not earlier than two years ago by Akkermans (2001) and by
Scholl (2001a, 2001b). More recently Pourdehnad, Maani and Sedehi (2002), Schieritz
(2002) and Schieritz & Milling (2003) have concentrated on principal methodological
issues when combining the two simulation approaches. In a paper by Schieritz &
Größler (2003) a prototypical implementation of a combined system dynamics and
agent-based simulation model is presented. In that paper an application from the area of
supply chain management is discussed. Technically, agents in a supply chain are

modeled in eM-Plant whereas their decision structures (Anderson 1999) are represented
by Vensim (i.e. continuous system dynamics) models.1, 2

In this paper we focus on a technically improved integration of both simulation
approaches. Therefore, the rather “clumsy” implementation of agents in eM-Plant was
dismissed and a specialized Java class library for programming agent-based simulations
is used: RePast. However, the principal conceptual approach of integrating both
simulation methods is kept: the overall simulation environment is modeled using agents
technology; the internal decision structures of the agents are modeled as system
dynamics models (using Vensim). We use a simple example from supply chain
management to demonstrate the usefulness of this software integration.

An application integrating both simulation methods consists of a “master”
program representing the overall simulation environment and the internal structures of
the agents. The master program consists of Java classes that use the specialized RePast
class libraries. Every simulation step the master program calls the behavior methods of
the agents.

In an example from supply chain management two kinds of agents can be
identified: a supplier and three manufacturers. The supplier’s behavior is modeled in
RePast whereas the manufacturers’ behavior modes are represented by a system
dynamics model built in Vensim. For each simulation step the manufacturers generate
their order rates as the output of the simulation run of the system dynamics model. This
data is passed to the supplier who delivers goods to the manufacturers as an input for
the next simulation step. The communication between the manufacturer-agents and the
Vensim model runs via Vensim DDL (see Figure 1).

Figure 1: Example application with interaction between RePast and Vensim

supplier
agent

manufacturer
agent 1

manufacturer
agent 2

manufacturer
agent 3

manufacturer`s
behavior

manufacturer`s
behavior

manufacturer`s
behavior

manufacturer`s
behavior

manufacturer`s
behavior

manufacturer`s
behavior

RePast Vensim DLL

agent-based simulation
system dynamics

simulation

In our example, the RePast master program consists of the following three parts:

1. The model class
This class manages the simulation context. Agents (manufacturers and supplier) are
built, the simulation is started, simulation steps executed and their results displayed.
Important methods in this class are buildModel(), buildSchedule(), getInitParam(),
buildDisplay() and the main() method:

 private void buildModel() {

 Manufacturer m1 = new Manufacturer(20,100,20,0,customerOrderRateM1);
 Manufacturer m2 = new Manufacturer (30,200,50,0,customerOrderRateM2);
 Manufacturer m3 = new Manufacturer (50,500,70,0,customerOrderRateM3);
 manufacturer List.add(m1);
 manufacturer List.add(m2);
 manufacturer List.add(m3);
 s = new Supplier(Manufacturer.manufacturerCount, capacity);

}
In buildModel() three manufacturers and one supplier are built. They are initialized with
the values in brackets (e.g. initInventory,) and add to a list.3

 private void buildSchedule() {

ActionGroup firstGroup = new ActionGroup(ActionGroup.SEQUENTIAL);
 BasicAction everyTickAction = new BasicAction() {
 public void execute() {
 int size = manufacturerList.size();
 s.setSuppliesReceived(manufacturerList);
 for(int i = 0; i < size; i++){
 Manufacturer m = (Manufacturer)manufacturerList.get(i);
 m.go();}
 s.getOrderRate(manufacturerList);
 graph.step();
 }
 }

firstGroup.addAction(everyTickAction);
 schedule.scheduleActionAt(1, firstGroup);
 schedule.scheduleActionBeginning(2, everyTickAction);
}

The method buildSchedule() defines what actually happens during a simulation. Every
simulation step the execute() function is called. Thus, in each simulation step the
method setSuppliesReceived() of the supplier is executed, then the go()-method for all
manufacturers and the getOrderRate() for the supplier are called. Finally the graph
displaying the results is redrawn.

 Public String[] getInitParam(){

String[] params={"capacity","customerOrderRateM1",
"customerOrderRateM2","customerOrderRateM3"};
return params;

}
In this method it is defined which initial values can be set for a simulation run. After the
start of the program a control panel is displayed in which the user can set these values.

In our example the user can set values for the capacity of the supplier (the amount of
goods he can deliver) and the order rates of the manufacturers’ customers.

 private void buildDisplay() {

graph.setYRange(95.0,130);
graph.setXRange(1,2);
graph.createSequence("Manufacturer 1", this, "getManufacturer0");
graph.createSequence("Manufacturer 2", this, "getManufacturer1");
graph.createSequence("Manufacturer 3", this, "getManufacturer2");
graph.setAxisTitles("Time", "Inventory");

}
The method buildDisplay() creates a graph to represent results of the simulation. In this
case the values of the manufacturers’ inventories are displayed.

 public static void main(String[] args) {
 SimInit init = new SimInit();
 Model model = new Model();
 init.loadModel(model, null, false);
 }
The main()-method is called first when executing the program. It builds and loads the
model, a simulation run can be launched.

2. The manufacturer class
The manufacturer class describes the behavior of the manufacturing agents. In our
example it manages the communication with Vensim, where the behavior is determined.
Important methods of this class are loadVensimModel() and go():

 public void loadVensimModel(){
 v = new Vensim();

VensimResult = v.command("SPECIAL>LOADMODEL|a:\\ Ordering.vmf");
 if (VensimResult == 1)
 {System.out.println("Vensim loaded model"); }
 }
This method loads via Vensim DLL the model Ordering.vmf. If the model is loaded
successfully, “Vensim loaded model” is written to the standard output. It is executed
each time when a new manufacturer is built (in the constructor of the manufacturer-
class).

 public void go(){

 VensimResult = v.command("GAME>GAMEINTERVAL|0.125");
 VensimResult = v.command("MENU>GAME");
 setValues();
 VensimResult = v.command("GAME>GAMEON");
 getValues();
}

Go() is a method that is called each time step of the simulation for each manufacturer.
This method is responsible for the behavior of the agents. Via the Vensim DLL the
system dynamics model Ordering.vmf built in Vensim is simulated (see Figure 2;
modeled after Sterman [2000]). In each step of the agent-based simulation, also one step

of this simulation is run: the game interval is set to 0.125, the game is started, specific
values of the manufacturer’s Vensim model can be set, one step is simulated, and finally
the results of this simulation step are returned.

In the supply chain management example the value for the goods delivered by the
supplier (Supplies Received) is set before the next simulation step and Orders Placed as
the output is returned and passed to the supplier.

Figure 2: Ordering.vmf: behavior model of manufacturing agents

3. The supplier class
In the supplier class a very simplistic behavior of a supplier agent is described. This
class receives the orders (Orders Placed) of the manufacturers (the output of the system
dynamics simulation runs), and returns the amount of delivered goods (Supplies
Received) as an input for the next simulation step. Important methods in this class are
setSuppliesReceived() and getOrderRate():

 public void setSuppliesReceived(List list){
 for(int i = 0; i <manufacturerCount; i++){
 Manufacturer m = (Manufacturer)list.get(i);
 if (m.Simtime>0)
 { if(capacity < sumOrderBacklog)

{m.suppliesReceived[0]
=(orderBacklog[m.ID]/sumOrderBacklog)*capacity;}

 else m.suppliesReceived[0] = orderBacklog[m.ID];
 orderBacklog[m.ID] = orderBacklog[m.ID] - m.suppliesReceived[0];}
 }
 }

Inventory

Acquisition Rate Shipment
Rate

Desired
Acquisition Rate

Acquisition
Adjustment from

Inventory

Desired
Inventory

Expected
Order Rate Change in

Exp Orders

Inventory
Adjustment

Time

Desired
Inventory
Coverage

Time to Average
Order Rate

Order
Fulfillment

Ratio

Table for Order
Fulfillment

Supply Line
Orders Placed

Rate

Acquisition Lag

Adjustment for
Supply Line

Desired
Supply Line

Orders Placed

Supply Line
Adjustment Time

Customer
Order Rate

B

Order
Fulfillment

B

Inventory Control

B

Supply Line Control

-
-

+

+

+

+

+
- -

+

+

-
+

+

+

-

Desired
Shipment

Rate

+

Maximum
Shipment

Rate

Minimum
Order

Processing
Time

+

+
-

-

+

Inventory
Coverage

+ -

Safety
Stock

Coverage

+

+

+

Customer
Orders

Backlog Backlog
Change Rate

+
-

+

Supplies
Received

Init Supply Line Init Inventory

Init Expected
Order Rate Init Customer

Orders Backlog

+

+

SetSuppliesReceived() stores the amount of goods that are delivered to all
manufacturers in the manufacturers’ auxiliary variables suppliesReceived. The amount
depends on how much the supplier can deliver (its capacity), how much the
manufacturers have ordered and how many orders exist in the order backlog of the
supplier. In the case that the supplier cannot deliver the full amount, its capacity is
distributed proportionally according to the orders placed by the manufacturers. Orders
that are not delivered are stored in the customer backlog of the supplier.

 public void getOrderRate(List list){
 sumOrderBacklog=0;
 for(int i = 0; i < manufacturerCount; i++){
 Manufacturer m = (Manufacturer)list.get(i);
 orderRate[m.ID]=m.orderRate[0];
 orderBacklog[m.ID] = orderBacklog[m.ID] + orderRate[m.ID];
 sumOrderBacklog = sumOrderBacklog + orderBacklog[m.ID]; }

}
This method receives the amount of orders placed by all manufacturers. In this way it
passes the output of the Vensim simulation (Orders Placed) to the supplier.

To run the simulation described in this paper, the user first has to install RePast, Java
Development Kit JDK and Vensim including Vensim DLL. Having installed the needed
runtime environment the Java class Model.class can be executed. Before a simulation is
started, the user can set initial values of the simulation in the displayed settings window
(see Figure 3). However, agents’ properties can also be altered during simulation.
Pushing the “Start” button in the window depicted in Figure 4 initiates the simulation
and the results of the simulation are represented by a graph (see Figure 5).

Figure 3: Default settings window for example application

Figure 4: Simulation control panel of RePast

Figure 5: Exemplary output of simulation run

One drawback of the software interface presented here is that basic programming
knowledge is needed to work with RePast. However, the example so far is only a
prototype which is meant to be a paradigm of the technical procedure when integrating
RePast and Vensim. From an application perspective, closer to reality problems can be
identified in which the combination of agent-based and system dynamics modeling and
simulation might be beneficial. For instance, in supply chain management dynamic
reconfigurations of a chain’s structure and its effects on the chain’s performance can be
investigated. The software solution presented in this paper provides a common technical
platform to examine this and other problems that suggest the integration of the two
simulation concepts.

References
Akkermans, HA. 2001. Emergent Supply Networks: System Dynamics Simulation of

Adaptive Supply Agents. Proceedings of the 34th Hawaiian International
Conference on Systems Science, Wailea.

Anderson, P. 1999. Complexity Theory and Organization Science. Organization
Science 10(3): 219–232.

Phelan, SE. 1999. A Note on the Correspondence between Complexity and Systems
Theory. Systemic Practice and Action Research 12(3): 237–246.

Pourdehnad, J, Maani, KE, Sedehi, H. 2002. System Dynamics and Intelligent Agent-
Based Simulation: Where is the Synergy? Proceedings of the 20th International
Conference of the System Dynamics Society, Palermo.

Schieritz, N. 2002. Integrating System Dynamics and Agent-Based Modeling.
Proceedings of the 20th International Conference of the System Dynamics Society,
Palermo.

Schieritz, N, Größler, A. 2003. Emergent Structures in Supply Chains: A Study
Integrating Agent-Based and System Dynamics Modeling. Proceedings of the 36th
Hawaiian International Conference on Systems Science, Wailea.

Schieritz, N, Milling, PM. 2003. Modeling the Forest or Modeling the Trees: A
Comparison of System Dynamics and Agent-Based Simulation. Proceedings of
the 21st International Conference of the System Dynamics Society, New York.

Scholl, HJ. 2001a. Agent-based and System Dynamics Modeling: A Call for Cross
Study and Joint Research. Proceedings of the 34th Hawaiian International
Conference on Systems Science, Wailea.

Scholl, HJ. 2001b. Looking Across the Fence: Comparing Findings From SD Modeling
Efforts With those of Other Modeling Techniques. Proceedings of the 19th
International Conference of the System Dynamics Society, Atlanta.

Sterman, JD. 2000. Business Dynamics – Systems Thinking and Modeling for a
Complex World, Boston.

Notes

1. One might consider the internal decision logic or cognitive structure of an agent

as its “schema” or “mental model”.
2. Vensim, RePast, eM-Plant and Java are registered trademarks.
3. Complete program and model listings are available by the authors on request.

	back to the top:
	Abstracts:
	Table of Contents:

