


Choice Under Risk In IT-Environments 
According To Cumulative Prospect Theory 

Agata Sawicka 
Jose J Gonzalez 

Faculty of Engineering and Science 
Dept. of Information & Communication Technology 

Agder University College 
NO-4876 Grimstad, Norway 

Phone: +47 37 25 33 58  
Fax: +47 37 25 30 01 

Email: agata.sawicka@hia.no 
 
 
How do people choose between action options in risky environments and why do they so often 
opt for not following prescribed security measures? In our research we focus on human factors 
in modern work environments that rely on information technology (IT). To effectively 
counteract noncompliance, a good understanding of its origins is indispensable. In this 
paper, we analyze what contributions cumulative prospect theory (CPT) – one of the 
currently most prominent theories of choice under risk – can make to our understanding of 
human behavior in IT-security systems. We present a system dynamics model of laboratory 
experiment to collect data on IT-security observance. Subject’s actions are modeled in 
accordance with CPT. Using the model, we discuss the behavior patterns implied by CPT, 
providing some tentative policy recommendations and outlining ways in which the basic 
model may be extended to provide a viable tool for IT-security policy design. 
 

Introduction 
There is a growing consensus among IT-security experts and researchers that while security 
technology is dependable, people are not (Schneier 2000, Economist.com 2002, Anderson 
2001). Knowledge on how to deal with the “people problem” is at large implicit and resides 
with experienced IT-security practitioners. Parts of the knowledge and expertise are shared as 
reports on practices successfully increasing people’s observance of security measures 
(Callene 2000, Smith 2001, Tuesday 2001, Voss 2001). But comprehensive guidelines on 
how to elicit and sustain desired behavior patterns are still missing. To develop such 
guidelines a good understanding of why undesired behavior patterns occur is indispensable. 
In this paper, we analyze what contributions cumulative prospect theory (Tversky and 
Kahneman 2000, see also Kahneman and Tversky 2000) – one of the currently most 
prominent theories of choice under risk – can make to our understanding of human behavior 
in IT-security systems.  

 



In Figure 1 we sketch a typical behavior observed in risky environments. 
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Figure 1 Behavior pattern typically observed in risky environments. 

Usually, two factors are indicated as the main causes of dynamic changes in security 
observance: (1) increasing attention to throughput goals at the expense of security objectives 
and (2) fading estimates of risk exposure. Sole identification of these problematic trends 
seems insufficient to develop policies that would effectively counteract the security 
observance erosion. For this, a good understanding of why the shifts in attention and risk 
estimates occur is indispensable. To gain such insight it is necessary to turn to relevant socio-
psychological theories. 

Various theories about people’s perception of probabilities and risks have been cited to 
explain the troublesome patterns in variety of risky environments (see e.g. Kahneman and 
Tversky 2000, Hogarth 1987, Dörner 1996, Reason 1990, Gonzalez 1995, Hastie and Dawes 
2001). Despite the urgency of the problem, analysis of security observance in IT-work 
environments has been however limited. With our research we want to foster the current 
understanding of human behavior in these environments as well as contribute to the general 
knowledge about mechanisms likely to drive human behavior in risky environments. System 
dynamics is our main research method: Drawing on psychological theories, we develop system 
dynamics models of human behavior in IT-based environments. Using the models we explore 
what behavioral patterns are implied by the various theories. Simulation results are compared 
with data gathered through various field studies as well as laboratory experiments we conduct. 
Coupling formal modeling and experimental methods enhances our ability to explore research 
hypotheses and to evaluate descriptive adequacy and coherence of theories under 
investigation.1 

In a parallel paper, we outline several theories cited as possible explanations for the 
phenomenon of security observance erosion. Pointing out limitations of these theories, we 
discuss how instrumental conditioning may plausibly account for the phenomenon (Gonzalez 
and Sawicka 2003b). In this paper, we narrow our focus to examine how people choose 
between action options in risky environments. From the plethora of theories on the subject 
matter, we decided to analyze in detail cumulative prospect theory, developed by Kahneman 

 

                                                 
1 On application of formal modeling to socio-psychological theories see Simon 1982. On different use of 
simulation in the study of complex decision making see Brehmer, Laplat et al. 1991. 



and Tversky (Tversky and Kahneman 2000, see also Kahneman and Tversky 2000). This 
theory has been widely acknowledged as most robust and comprehensive among the current 
descriptive theories of choice under risk. Using system dynamics we explore which 
contributions cumulative prospect theory can make to the explanation of the behavioral 
dynamics in IT-based work environments.  

A system dynamics model simulating subject’s behavior in laboratory environment that 
resembles a typical IT-based work environment is presented. The simulated subject is 
assumed to act in accordance with cumulative prospect theory (CPT). We begin our 
discussion with a brief presentation of CPT – its origins and main postulates. After describing 
our laboratory environment, we outline the system dynamics model and discuss the behavior 
of the simulated subject. Next, some tentative policy recommendations are drawn. As it turns 
out, CPT2 is likely to deliver quite robust description of choices in a short run, but it is not 
likely to account accurately for behavior patterns observed over longer time periods. At the 
end, we indicate how the model could be revised to improve its descriptive adequacy. In 
particular, our understanding of mechanisms governing the security observance may benefit 
from embedding the basic choice model in the more general model of people’s behavior in 
IT-work environment that we developed based on instrumental conditioning theory (see 
Gonzalez 2002, Gonzalez and Sawicka 2002, and also Gonzalez and Sawicka 2003b). In that 
way, results of the current investigation further not only our search for mechanisms 
governing security observance in IT-work environments, but also deliver insights into how 
CPT2 could be augmented to provide a robust description of choice under risk also in 
dynamic settings. 

Normative and descriptive theory of choice under risk 
Decisions in risky environments may be described in terms of two attributes: the likely outcomes 
and the probability of their occurrence. According to the expected utility theory (EUT), each 
agent has a unique utility function u(xi) which assigns utility values to all possible outcomes xi for 
i = 1, 2, …, j. The sum of utilities of all decision’s outcomes, weighted by their respective 
probabilities pi for i = 1, 2, …, j, returns the decision’s expected utility. When choosing among a 
number of decisions, a rational agent follows by definition the principle of maximum expected 
utility and chooses the option of the highest expected utility. (von Neumann and Morgenstern 
1944) 

Many studies have, however, shown that people do not make their choices according to EUT2 

(see e.g. Kahneman and Tversky 2000, Camerer and Ho 1994, Wu and Gonzalez 1996, 
Bleichrodt and Pinto 2000). Several “nonexpected utility theories” were developed. The 
majority of these theories claim that individuals not only transform outcomes xi, but also the 
associated probabilities pi. CPT (Tversky and Kahneman 2000, see also Kahneman and 
Tversky 2000) is maybe the best tested among the alternative theories. CPT differs from 
EUT2 in three ways: 

1. First, it assumes that people do not evaluate possible outcomes as such, but rather “code” 
them as gains and losses relative to some reference point. It is these relative gains and 
losses that are transformed. To distinguish the transformation function from the utility 
function used in EUT, Tversky and Kahneman call the function that transforms gains and 
losses “value function”. 

2. Second, individuals are assumed to be loss averse. This means that losses loom larger 
than gains of corresponding absolute magnitude. Thus, the outcome transformation 
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function is no longer as smooth and concave as in EUT. Rather, it is supposed to have a 
kink at the reference point, being concave for gains and convex (and relatively steeper 
due to the loss aversion) for losses.3 

3. Third, individuals are assumed to use the so-called capacities instead of objective probabilities 
in their evaluation of risky prospects. The objective probability values are internally 
transformed using some ω(p) function. As a result, small probabilities are overestimated, while 
moderate and high probabilities are underestimated.4 The capacities are used to determine 
decision weights assigned to each outcome in the prospect valuation formula. 

Under CPT, a prospect , where possible 
outcomes are sorted so that , is evaluated as follows 
(Tversky and Kahneman 2000, p. 47): 
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Although Tversky and Kahneman stress that CPT is a descriptive theory and most insight is 
delivered from qualitative analysis of data, they do propose some parametric forms for the 
transformation functions (Tversky and Kahneman 2000, cf. p. 59). For the value function, 
v(x), they suggest a two-part power function defined as (Tversky and Kahneman 2000, p. 
57): 
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A distinct feature of the value function suggested in equation (3) is, of course, that it is 
defined separately for gains and losses. A power form is used both for gains and losses. The 
exponents α and β indicate to which degree the individual is risk-averse and risk-seeking for 
gains and losses respectively. The λ parameter accounts for the individual’s loss aversion: As 
the exponents α and β have been shown to be approximately equal, it is the λ parameter that 
accounts for the fact that losses loom larger than gains equivalent in absolute terms.  

Decision weights πi are defined using cumulative functionals of transformed probabilities 
(Tversky and Kahneman 2000, p.48): 
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3 See Figure 3.1 in Appendix 2: . Transformation of outcomes: Value function
4 See Figure 3.2 in Appendix 2: . Transformation of probabilities: Decision weight function



Tversky and Kahneman (2000, p. 58) suggest the following formula for the probability 
transformation function ω(p) function: 
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The parametrical form given in equations (6) and (7) for the transformation of probabilities 
ω(p) produces an inverse S-shape function. The convex and concave regions of the function 
describe well with the empirical findings indicating that people under- and overestimate 
probabilities. The rationale behind the decision weights for gains π+ is that each gain outcome 
is weighted by a difference between the capacity of obtaining at least this outcome and the 
capacity of obtaining a strictly better outcome. Similarly, each loss outcome is weighted by  
π -: a difference between the capacity of obtaining this outcome or worse and the capacity of 
obtaining a strictly worse outcome (Tversky and Kahneman 2000, cf. p. 48).  

As with the expected utility model, the cumulative prospect model has been mainly tested in 
the economical domain. Fitting the parametric forms into experimental data, Tversky and 
Kahneman (2000) obtain the following estimates for parameters: α=β=0.88, λ=2.25, γ=0.61, 
δ=0.69. Many researchers confirmed that human preferences are in agreement with the CPT’s 
postulates (Camerer and Ho 1994,Wu and Gonzalez 1996, Prelec 2000) and that similar 
parameter estimates are derived from various data sets. Recently, the model has also been shown 
to hold in the context of health decision-making (Bleichrodt and Pinto 2000, Abdellaoui 2000).  

The growing body of evidence increases confidence that the cumulative prospect model 
indeed provides an appropriate description of how people choose among risky prospects. It 
should, however, be noted that thus far the model has been tested predominantly for static 
settings. Subjects were asked to indicate their preferences for a number of explicitly stated 
risky prospects. The choices made typically did not impact each other in any particular way. 
This type of problems imitates well discrete decision making such as one-time purchase of 
insurance policy, but fails to approximate continuous and implicit choices under risk such as 
applying security measures in everyday work. Indeed, the bulk of risky choices is recurrent 
and often not implicit. For CPT to be accepted as truly general descriptive model of human 
choice under risk, the theory needs to be also tested in such settings. Before analyzing the 
behavior patterns that CPT implies in dynamic settings, we first describe briefly the assumed 
IT-based work environment and outline the model structure. 

 



Testing cumulative prospect theory in a dynamic environment 
As indicated in the introductory section, our approach couples a formal modeling method of 
system dynamics with experimental methods (see Introduction). By developing simulation 
models of laboratory environment and modeling subject’s actions according to specific 
psychological theories we are able to examine what behavior patterns the theories imply. Our 
focus in this paper is on CPT and what security observance patterns this theory implies in 
context of simple IT-based work environments. 

Experimental study of security observance in IT-based work environment 

To investigate security observance patterns in the IT-work environments we deploy a simple 
application resembling a typical IT-database system. During experimental sessions subjects 
use the mock-up application to enter data into the database. The stipulated goal is to enter as 
much records as possible. To distract subjects’ attention from security issues we state that our 
goal is to assess overall productivity of the database application. A performance-based 
gratification system is implemented to enhance the production focus. Simultaneously, 
subjects are informed about the risk of data loss due to possible system crash or IT-attack 
during the experimental session. A backup mechanism that transfers entered data into a 100% 
secure location is available at the subjects’ discretion. Although, the backup protects 
completely all work against loss, it also limits potential gains: During data backup, the system 
is disabled and the subjects are not able to enter new records. The ultimate profit depends on 
how securely subjects work: The more frequently data are backed up, the less data will be 
entered, but also the smaller potential losses. And vice-versa: The less frequently subjects 
back up their work, the more data they are able to enter, but also the greater their risk 
exposure. 

Our mock-up environment, stores not only data the subjects enter, but also all their actions. 
The logs indicate when subjects prefer particular action alternative. When data backup is 
performed a subject prefers a safer option. Choice of data entry indicates preference of the 
riskier prospect. Structure of the choice problem is similar to choice questions typically used 
in elicitation of preferences between risky prospects (see, for example, references to 
experimental research on CPT given in the Normative and descriptive theory of choice under 
risk section). As it was presented in the literature, each choice situation may be framed in a 
number of ways (see, for example, Kahneman and Tversky 2000 or Hastie and Dawes 2001). 
There are many ways in which the choice may be framed in the case of our experimental 
tasks. Analysis of all possibilities is beyond the scope of this paper. Here, we assume that 
subjects frame the action alternatives in terms of losses as follows:  

Frame 1:  Assuming, p probability of data loss event occurring in the next time unit, 
which do you prefer: 

(a) Certain time loss to back up currently unprotected data 
(b) p chance of time loss to reenter currently unprotected data 

Most of the subjects participating in recently conducted experiments perceived the problem in 
this way.5 Assuming that average subject follows CPT and frames the problem according to 
Frame 1, what sort of compliance pattern we would expect to observe? To explore the 

                                                 
5 Initial experiments have been carried out in October-November 2002 and March 2003 at Agder University 
College, Norway. Analyses of gathered data are currently under way; preliminary results were presented at the 
5th International Conference on Cognitive Modeling (Sawicka 2003a). 

 



question we develop a system dynamics model of a subject acting in the described IT-work 
environment in accordance with CPT.  

System dynamics model of CPT-subject in IT-environment 

Figure 2 contains a conceptual outline of the system dynamics model of a CPT-subject 
working in an assigned IT-environment. What is important to keep in mind is that in the 
model we deal with two types of variables: independent and dependent variables. 
Independent variables are properties that characterize the IT-environment used in 
experiments. Backup initialization time, record backup time, risk estimates, test session 
duration and data loss event (number and time of occurrence) are independent variables in 
our case. These variables are controlled by the experimenter. Various configurations may be 
defined to test hypotheses about impact the independent variables may have on human 
behavior.6 

System Dynamics Model of an Experiment

Experiment duration

Perceiving the 
environment & 

Planning the work 
according to CPT

Subject works at his 
individual pace IT-system’s properties:

-Backup initialization time
-Time to backup 1 record
-Probability of data loss event

Events generated automatically
by the experimental environment:
-Test session start
-Data loss event <optional>
-Test session end

Dependent variables

Independent variables

System Dynamics Model of an Experiment

Experiment duration

Perceiving the 
environment & 

Planning the work 
according to CPT

Subject works at his 
individual pace IT-system’s properties:

-Backup initialization time
-Time to backup 1 record
-Probability of data loss event

Events generated automatically
by the experimental environment:
-Test session start
-Data loss event <optional>
-Test session end

Dependent variables

Independent variables

Figure 2  Simulating subject actions during experimental sessions: A conceptual outline of the system 
dynamics model 

Dependent variables are beyond experimenter’s control. They represent subject-specific 
parameters, defining subject’s abilities, perceptions and decision rules. Here, we assume that 
the simulated subject acts in accordance with CPT (see the Normative and descriptive theory 
of choice under risk section).  

When presenting the system dynamics model we will indicate and discuss all the independent 
and dependent variables. In our model snapshots, we will mark in blue all the dependent 

 

                                                 
6 See the Subject’s behavior according to cumulative prospect theory section. 



variables, and in red all the independent variables. All other variables will be marked in 
black. 

We begin review of the system dynamics model7 by outlining the structure responsible for 
simulating the basic course of events during experimental session. The experimental task 
structure is presented in Figure 3: Entered records are accumulated in Working database. All 
data stored in this database may be lost in case of a data loss event. Secure database contains 
backed up, protected data. At the outset, both levels contain 0 records. Three rates – Record 
Entry Rate, Backup Rate and Data Loss Rate – define all possible data flows. Data are 
entered at constant Record Entry Rate: 

Record entry rate = IF (Data loss event DLE = 0, IF (Run backup, 0, Normal entry rate),0) 

Records are entered at rate Normal Entry Rate equal to 1 record per time step. When the 
subject decides to back up data, the Run Backup switch activates Backup Rate and disables 
Record Entry Rate (no data can be entered during backup). In such case, data stored in 
Working Database are transferred into a completely protected Secure Database: 

Backup rate = IF (Data loss event DLE=0, IF (Run backup, Working database, 0), 0) 

In case of data loss event, Data Loss Event switch disables both Record entry rate and 
Backup rate (see the rates equations above) and activates Data Loss Rate, which deletes all 
data currently stored in Working Database: 

Data loss rate = IF (Data loss event DLE=0,0,Working database/TIMESTEP) 

Figure 3 Structure of the simple IT-based work environment 

Task structure Data_loss_event_DLE

Normal_entry_rate

Run_backup

Secure_databaseWorking_database Backup_rate

Record_entry_rate

Data_loss_rate

As shown in Figure 3, no independent or dependent variables are directly part of the basic 
task structure. In that way, we obtain a laboratory environment that can facilitate various 
experimental setups (defined by a set of dependent variables) and remains similar for 
different subjects (characterized by independent variables). Although the basic task structure 
is independent of particular experimental setup or individual, of course, both independent and 
dependent variables impact the way the task is performed. 

 

                                                 
7 In supplemental materials, the reader will find a complete listing of model equations as well as the fully 
documented simulation model. 



Figure 4 presents the first group of independent and dependent variables. To describe how the 
variables impact the stream of events, we examine their impact on Data loss rate and Backup 
rate (see Figure 3). 

Figure 4 Basic parameters defining the experimental situation. 

Basic parameters of the experimental situation

Record_backup_time

Backup_init_time

Test_session_duration

Avg_no_of_time_units_per_test_session

Actual_backup_init_time

Actual_record_backup_time

Session_durationNo_of_sessions

DLE_time
Data_loss_event_DLE

Actual_record_entry_time

Data loss rate is triggered only if Data loss event (DLE) switch is set to TRUE. This happens 
when the simulation time equals DLE time – time of data loss event occurrence specified by 
the experimenter (see Figure 4): 

Data loss event DLE = IF (TIME=DLE time,1,0) 

Formulation of the data loss trigger as a simple IF condition is sufficient for our current 
purpose: Here, we consider only experiments with one data loss event. The model may be 
easily extended to account for a more general case of n number of data loss events during the 
experimental session, for example, by implementing the Data loss event DLE parameter as an 
array. 

Now, let’s inspect Backup rate (see Figure 3): Backup duration depends not only on how 
many records are transferred to Secure database, but also on how long it takes to backup one 
record and what is the backup initialization time.8 The record and initialization backup times 
used in the actual experiment are given by Actual record backup time and Actual backup init 
time as fractions of minute (see Figure 4). Remember that Normal entry rate is assumed to be 
always 1 record per simulation time unit. Thus, the only case in which we could use directly 
the actual values of the backup parameters is when Actual record entry rate per minute would 
equal 1 record per minute. This would severely limit range of work patterns we could 
investigate with the model: Indeed, we could only investigate behavior of subjects who work 
at the specific pace, i.e. 1 record per minute. To ensure that the model gives us a desired 
degree of flexibility, the actual backup parameters need to be converted into fractions of the 
simulation time unit (Actual record entry time, in our case). This is done as follows:  

Record backup time = Actual record backup time / Actual record entry time 
Backup init time = Actual backup init time / Actual record entry time 

 

                                                 
8 See the Experimental study of security observance in IT-based work environment section. 



Because of the assumption that 1 record is entered during 1 time unit, we also need to derive 
for each simulation run the simulation duration that would correspond to the duration of the 
actual experiment. Two independent variables, No. of sessions and Session duration, define 
actual duration of the experiment (Figure 4): 

Test session duration = No of sessions*Session duration 

In the current paper we consider a 100-minute long experiment composed of four 25-minutes 
long work sessions. The approximate duration of the simulation is given by: 

Avg. no. of time units per test session = Test session duration / Actual record entry time 

In that way we allow for customization of the simulation to various data entry rates. One 
additional control mechanism is necessary to ensure that the model indeed simulates the 100-
minute long experimental session: The simulation duration needs to be adjusted by the time 
lost or gained as a result of backup or data loss event. Both Backup rate and Data loss rate 
empty the Working database stock (see Figure 3) during one simulation time step, equal to 
one time unit in our case. As discussed above, the actual backup time, however, varies. The 
actual data loss event time, on the other hand, is negligibly small. In Figure 5, we present the 
control mechanism which adjusts the simulation duration so it corresponds to the 100-minute 
long experiment.  

Simulation duration control

NOTE: In the model, both backup and data loss always take one time step. However, actual duration of data loss event is
negligible, and duration of backup vary. Here, we adjust the simulation duration to ensure that it corresponds to the assumed
experiment 

Backup_init_time

Avg_no_of_time_units_per_test_session

Working_database
Record_backup_time

Backup_delay

Run_backup

Data_loss_event_DLE

Accumulating_backup_time_under_or_over_time_unit Stop_condition

Simulation_duration
Time_units_from_backup_or_DLE

Adjusting_simulation_duration

Figure 5 Mechanism controlling duration of simulation runs 

At the outset the Time units from backup or DLE stock is empty and Simulation duration 
corresponds to Avg no of time units per test session. Time units gained or lost due to backups 
or data loss events are accumulated at rate Accumulating backup time under or over time unit: 

Accumulating backup time under or over time unit = IF (Run backup, 1-Backup delay, 0) 
AND IF (Data loss event DLE, -1,0) 

When the Time units from backup or DLE stock exceeds 1 (or –1) time unit, Simulation 
duration is increased (or reduced) appropriately through the Adjusting simulation duration 
rate: 

 



Adjusting simulation duration = IF (Time units from backup>=1, 1,  
IF (Time units from backup<=-1, -1, 0)) 

The control variable Stop condition ensures that the simulation is stopped when the current 
simulation time reaches Simulation duration. When the two equal, the simulation is 
terminated: 

Stop condition = STOPIF (TIME>=Simulation duration) 

Figure 6 presents a mechanism generating the actual probability that a data loss event occurs 
at a specific point in time. Subjects participating in the experiments are given risk estimates 
as average number of data loss events occurring during one test session (Avg no of DLEs per 
test session). According to the continuous probability theory (see, for example, Snell 1989), 
Probability of immediate loss is described by an exponential decay function of Time elapsed 
since the last Data loss event or Run backup and the average number of data loss events per 
time under consideration (in our case, Avg no. of DLEs per time unit): 

Probability of immediate loss =exp(-Avg. no. of DLEs per time unit*(Time elapsed)) 

Data loss probability estimation
Avg_no_of_time_units_per_test_session

Run_backup

Time_elapsed
Time_counter_rate

Data_loss_event_DLE

Probability_of_immediate_loss

Avg_no_of_DLEs_per_time_unitAvg_no_of_DLEs_per_test_session

Figure 6 Structure of the decision-making mechanism. 

 



Probability of immediate loss enters the decision-making mechanism as Perceived probability 
of immediate loss. In Figure 7 we present how the probability perception is formulated.  

Figure 7 Perceiving data loss probability. 

Data loss probability perception

Probability_of_immediate_loss

Perceived_probability_of_immediate_loss

Probability_perception_parameter_PPP

Following CPT, we assume that probabilities are misperceived and small probabilities are 
overestimated, while moderate and high probabilities are underestimated. The probability 
transformation function we model after Prelec (2000, p. 81): 9 

( ){ }ηωω ppp ln(exp)()( −−== −+  (8)

Tversky and Kahneman stress that CPT is intended to provide a descriptive model of choice 
under risk (2000, cf. p. 59). The parametrical forms for the transformation functions they 
suggest should be treated as possible approximations, rather than ultimate formulas. We use 
Prelec's probability transformation function, since it has a simpler form and captures all main 
qualitative features of probability transformation postulated by CPT.10 We set η – 
corresponding to Probability Perception Parameter in our model11 – at 0.65, a value matching 
the estimate obtained by Prelec (2000) and express the perceived probability as follows:12 

Perceived probability of immediate loss =  
EXP (- (-LN (Probability of  imidiate loss)^Probability perception parameter PPP ) ) 

The backup batch size is estimated through a repeated comparison of values of data entry or 
data backup actions in the context of nearest future – the time necessary to entry one record in 
our case. The decision-making structure is presented in Figure 8. 

                                                 
9 In his paper Prelec uses “α” to indicate the parameter (see Prelec 2000). Yet, it is common in the literature to 
reserve “α” for exponents of utility (or value) functions. To avoid possible confusions, we use “η” to indicate 
the probability transformation parameter. 
10 We refer the reader to the original paper (Prelec 2000) for a detailed argument and discussion of this issue. 
11 Throughout the analysis of the basic model behavior the Probability Transformation Parameter is assumed to be 
constant. We model it however as a level - reasons for this will be outlined in the final sections of the paper. 
12 In Appendix 2 we demonstrate how the formulas suggested by Prelec (2000) and Tversky and Kahneman 
(2000) for ω(p) transform probabilities. 

 



Backup rule

Working_database

Run_backup

Perceived_probability_of_immediate_loss

Normal_entry_rate

Backup_delay

Backup_batch_size

Data_loss_event_DLE

Backup_batch_increase_rate

Backup_appeal

Backup_value

Entry_value

Figure 8 Arriving at desired backup batch size. 

The way data entry and backup actions are evaluated and the decision rule for backing up data 
may differ among subjects. Thus, Entry value, Backup value, and Backup appeal are all marked 
as dependent variables. Here, we assume that subjects follow CPT both when evaluating the 
actions and when choosing between them. Accordingly, as long as the expected value of data 
entry action exceeds the estimated value of backup action, the subject will enter data. Once the 
values are equal, or the backup value exceed data entry value, the subject will back up data. 

Backup appeal = IF (Backup value>=Entry value AND Entry value<>0,1,0) 

Backup appeal triggers the Run backup switch. The structure suggests that the subject makes 
decision after each record input. However, its outcome, i.e. the approximate size of backup 
batch, should be viewed as an estimate made by the subject a priori.13  

                                                 
13 This interpretation seems not only intuitively more plausible, but has also been confirmed by data gathered 
during the conducted experiments (see footnote 6). Most subjects reported that they defined their intended 
backup batch size at the outset (Sawicka 2003b).  

 



Assuming Frame 1 (see Experimental study of security observance in IT-based work 
environment), we need only to define the value function over losses. Note, that under Frame 1 
the subject considers only the content of Working database; the number of records stored in 
Secure database does not impact decision about data backup. Thus, the outcome ranges  the 
subject considers are rather narrow, accumulating over time only until backup is performed or 
data loss event occurs. As existing empirical work indicates that utility (or value) functions are 
approximately linear over narrow outcome ranges (see Wakker and Deneffe 1996), we assume a 
linear value function. Additionally, since both prospects under comparison are losses, the loss 
aversion coefficient λ from equation (4) becomes redundant. Thus, in our model we assume the 
following simple value function: 

x)x(v =  

Table 1 outlines the decision rule assumed to govern action choices of the simulated subject: 

 

Table 1 Evaluation of action alternatives and choice rules 

ACTION OPTIONS: LOSSES: 

Data Entry - ω(p)*(R + IR*bDel) 

Data Backup - R*bDel 
Where 
ω(p) corresponds to Perceived probability of immediate loss, 
R to Working database,  
IR to Normal entry rate 
bDel to Backup delay  
in our model (see Figure 3, Figure 5, Figure 7) 

Decision rule triggering Run Backup (see Figure 8):  
IF -ω(1-p)*(R + IR*bDel)< -R*bDel 

THEN Data Entry 
ELSE Data Backup 

NOTE: Since the value of both prospects is expressed solely in terms of losses, 
the constant loss aversion coefficient λ becomes superfluous. 

 



Subject’s behavior according to cumulative prospect theory 

In this section we review basic behavior patterns implied by cumulative prospect theory. 
Constant simulation parameters are presented in Table 2.  
Table 2 Parameters of the basic experimental setup 
 Corresponding model variable14 
IT-system properties 
Backup Initialization Time 42 sec. Actual backup init time 
Record backup time 3 sec. Actual record backup time 
IT-system environment 
Experiment duration 100 min. Simulation duration 
Less risky 1 DLE per test session Avg. no. of DLEs per test session  
More risky 0,5 DLE per test session Avg. no. of DLEs per test session  
Subject�s working pace 
Normal working pace 1 record/min. Actual record entry time 
Slower working pace 0,5 record/min. Actual record entry time 

Under CPT, two attributes – the value of potential outcomes and their weights derived from 
internal transformation of objective probabilities – impact valuation of a risky prospect (see the 
Normative and descriptive theory of choice under risk section). Thus, an average subject 
transforming the objective probabilities according to the assumed decision weighting function, 
should backup data more (less) frequently in a more (less) risky environment.  

Similarly, we would expect that two subjects each working at a different pace in the same 
environment would back up data with various frequencies. Subjects working at a slower pace 
should back up data more frequently. Recall that the subject in our model values the prospects 
of data entry and data backup taking into account the probability of data loss in the “nearest 
future”, i.e. the time the subject needs to input 1 record (see Table 1). Assume two subjects 
who work under same external risk: The subject working at slower pace would face a higher 
risk of data loss during each data entry and would therefore perceive the data backup action 
as attractive “earlier” than the subject working at substantially quicker pace. 

The two basic hypotheses about backup frequency outlined above may be formulated as 
follows: 

H 1.1: As the external risk increases, subjects working at the same pace will backup data 
more frequently. 

H 1.2: Working under the same external risks, subjects who work slower will backup data in 
smaller batches. 

In Figure 9 we present simulation runs for a subject working at normal pace in a more and less 
secure environment (see Table 2), without any data loss events.15 We can clearly see that data 
backups are more frequent under the higher data loss condition (Figure 9a). This is in 
agreement with our H 1.1. 

                                                 
14 For details, see the System dynamics model of CPT-subject in IT-environment section. 
15 The supplemental simulation model contains a set of GUI controls that allow for running the various 
simulation runs discussed throughout the paper. 
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Figure 9 Working under higher (a) and lower (b) probability of data loss (no data loss event occurs) 

 



Turning to our second hypothesis, we test how the backup routine would change if we assumed a 
subject who needs twice as much time to enter each record. The work pattern of this subject 
working under the low data loss condition is presented in Figure 10. Comparing the simulation 
results with the results presented in Figure 9b, where there was the same, low probability of data 
loss but records were entered at a normal rate (see Table 2), we can see that H 1.2 holds: A 
subject who works at the normal working pace backs up data in 9-record batches (Figure 9b); a 
subject working at slower working pace (see Table 2) not only enters less data during the test 
session, but also backs data in smaller batches of approximately 4 records (Figure 10).16 
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Figure 10 Working at a slower pace under low probability of data loss 

As we indicated in the introductory part, field studies indicate that security observance is likely 
to be impacted by mishaps. We now turn to testing the following hypothesis: 

H 2: Data loss event will impact the backup frequency. 

 

                                                 
16 The reason why the simulation in Figure 8 is terminated at around the 55th time step is that the subject works at the slower 
pace (see Table 2) and in this case each time unit corresponds to 2 minutes, not to 1 as in case of the subject working at the 
normal pace. (see also discussion of the simulation duration control, pp. 9-10) 

 



We assume a subject working at the normal pace in the low probability condition (see Figure 
9b), but now we define that a data loss event occurs at 55th time unit during the simulation. As 

Figure 11 Reaction to a data loss event 

illustrated in Figure 11, the simulation results contradict our other hypothesis, H 2. 

out 5 records. After the event, the subject continues to back 
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Data loss event results in loss of ab
up data in the same batches as before. Reviewing the decision rules the subject follows (see 
Table 1), we see that for the backup frequency to change, either the subject’s valuation of records 
and the time it takes to reenter them, or the subject’s perception of risk should be altered as a 
result of the data loss event. Without such feedback relationship, the subject would always 
follow the initially defined backup policy. These findings are obviously in sharp contrast with 
observations and field studies’ findings regarding human behavior over extended periods of time 
in risky environments. Before we discuss how the model could be modified to account also for 
these patterns, we want to point to some implications for security policy that may be drawn from 
the analysis hitherto. 

 



 

Design of IT-security policy 
Intriguingly, CPT brings rather optimistic news for security policy designers: As probabilities of 
mishaps are usually small, under CPT people would overestimate them. Consequently, they are 
rather likely to act more rather than less secure. Obviously, field observations do not support such 
claims and reports of insufficient security observance are frequent. Experience also shows, that 
contrary to what the CPT-based analysis implies, people are not likely to maintain a steady security 
regime over time. The employed security routines are likely to evolve, being especially sensitive to 
occurrence, as well as absence, of mishaps.  

Assuming that both an organization and an individual maintain relatively accurate estimates of 
mishaps’ probabilities, the problematic behavior could be explained by a mismatch between their 
respective valuation of losses and gains. Indeed, it is not unlikely that the organization perceives 
some loss as much larger than an individual would do. This may be, for example, due to the fact 
that events such as (even minor) data loss may bring along other losses for the organization such as 
bad publicity. Thus, to the organization it may seem desirable and rational to employ a much higher 
protection level than it would seem appropriate to the individual. This situation corresponds to the 
organizational and personal goal mismatch described by Reason (1997). A number of policies may 
be designed to diminish the discrepancy; here, we outline only a couple.  

First, the organization could introduce a system that would provide additional enforcement for a 
higher security observance. To illustrate this policy option, we implemented a system under which 
for each record lost the individual will have to “pay back” the equivalent of 2 records. First, recall 
the behavior presented in Figure 9b. In Figure 12 we present the behavior of the “same” subject 
who still works in the less risky environment, but under the imposed security-enforcement system. 
Indeed, the backup frequency increases.17 

                                                 
17 Supplemented simulation model contains a set of GUI controls that allow for running the various simulation runs 
discussed throughout the paper. 
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Figure 12 Working under an enforcement system 

Alternatively to increase security observance, the organization could improve the efficiency of 
security mechanisms. In Figure 13a we present how the behavior of the subject working in the less 
risky environment at the normal pace (see Figure 9b) changes when backup initialization time is 
reduced by 50% (see Table 2). This illustrates how important the efficiency of security measures 
may be for the overall effectiveness of a security system. In Figure 13b we present the behavior of 
the same subject working in a system where it takes 50% more time to initialize backup. As we can 
see, backups are performed less frequently. 
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Figure 13 Impact of efficiency of security mechanisms on security observance � shorter (a) and longer (b) backup initialization time (see Figure 9b) 

 



Developing appropriate motivational system supporting the actual IT-security system seems to be 
of key importance to elicit a sustained, more secure behavior. Indeed, cases in which eroded 
security observance is attributed at least in some part to an unbalanced motivational system are not 
rare. The Westray mine case is a good example of such situation: In his thorough analysis Cooke 
shows using system dynamics how the unbalanced motivational system favoring throughput and 
undermining security goals was instrumental in decreasing the overall security observance and 
creating a fertile ground for the ultimate disaster (Cooke 2003b). A similar situation occurred in 
case of the Omega management who were oblivious to security issues by the prevailing, 
omnipotent pressure to grow (see the parallel paper Melara, Sarriegi, Gonzalez, Sawicka & Cooke 
2003). Both cases illustrate also the human inability to perceive accurately and promptly the 
deterioration of their risk exposure until it is revealed by some explicit events, like a mine accident 
in the Westray mine case or an attack on the company’s IT-system in the Omega case.  

Volatility of risk perception has been pointed out by many as one of the key factors underlying 
the gradual erosion of compliance (see e.g. Weick 1987, Wilde 1994, Gonzalez 1995, Gonzalez 
2002). The erosion has been explained in various ways (for specific references see Gonzalez and 
Sawicka 2003b). In our other papers we explore how instrumental conditioning theory may 
explain the phenomenon (see, for example, Gonzalez and Sawicka 2003a, b). Regardless of 
origins, it seems indisputable however that people’s perception of how risky their environment is 
will be significantly influenced by their past experiences. 

As we indicated previously, CPT was developed using data gathered through static, one-time 
decisions (see Normative and descriptive theory of choice under risk). Thus it should not be 
surprising that behavior of an individual following CPT is strikingly regular over time. Indeed, 
once all the probability and value transformation functions’ parameters are known, the pattern may 
be easily and accurately estimated. It is characterized by a single threshold – the size of backup-
batch that we can derive from the decision rules presented in Table 1. Given that the backup is run 
only when (see also Figure 8): 
-ω(p)*(R + bDel*IR) < -R*bDel 

where 
ω(p) corresponds to Perceived probability of immediate loss, 
R to Working database,  
IR to Normal entry rate 
bDel to Backup delay  
in our model (see Figure 3, Figure 5, Figure 7 and also Figure 8) 

and 
bDel=R*bR + bInit 

where  
bR corresponds to Record backup time,  
bInit to Backup Init Time 
in our model (see Figure 5) 

the threshold number of records is given by:  
bInit*(1-ω(p)) 

R = 
ω(p)*(1+bR) � bR 

(9)



The formula not only enables us to estimate the backup frequency. It also indicates some 
interesting relationships between factors likely to impact the backup threshold. We can clearly see 
that the greater the backup initialization time (bInit), the higher will be the threshold. Also, for any 
risky environment there exists some maximum record backup time (bR) above which backup 
becomes unattractive. Lastly, equation (9) indicates that the higher the perceived risk of loss the 
lower the threshold.  

These relationships may help us understand why it is so difficult to control human factors in 
modern IT-systems. In most cases, protection mechanisms are highly automated and reduce 
substantially the end-users’ risk exposure. Note that according to equation (9), as the risk 
exposure diminishes, or, more accurately, as the perceived risk diminishes, the higher the 
threshold, i.e. the less frequently the backup will be taken. To preserve the same security 
observance level, the reduction in risk exposure should be compensated by an appropriate 
increase in effectiveness of employed security mechanisms. Simulation results presented in 
Figure 13 illustrate how the efficiency of security mechanisms influences the backup frequency.  

Counterintuitive results 
The regularity of the CPT individual’s behavior pattern implies that it would be possible to 
design a security system in which secure behavior is sustained over time. This implication is 
clearly at odds with the behavior patterns commonly observed in risky environments (see Figure 
1 and the accompanying discussion).  

To identify possible origins of the erosion of security observance, let’s assume a stable level of 
external threats and a constant valuation of outcomes by individuals. We need to consider two 
cases: First, a situation where the desired degree of security observance is elicited only under some 
additional enforcement system; here, it could be that security observance deteriorates due to 
gradual weakening of the enforcement. Second, a situation where there is no additional 
enforcement system (or the system does not deteriorate); in this case the gradual erosion of security 
observance over-time may only be explained by a decline in the individual’s perception of the 
probability of mishaps (see also discussion at the end of the Design of IT-security policy section). 

In both cases, the working mechanism is basically instrumental conditioning. The potential 
importance of conditioning mechanisms for governing the human behavior in risky environments 
was pointed out by Gonzalez (2002; see also Gonzalez and Sawicka 2003a, b). Both the 
deterioration of an enforcement system and the erosion of the perception of the probability of 
mishap may be interpreted as a withdrawal of enforcer in a conditioning process. The two cases 
differ only in the enforcer’s origins: In the first case the enforcer is external to the individual, while 
in the second case it is internal.  

In the mishaps’ aftermath, it is common to try to identify those who bear responsibility. 
Sometimes the investigations stop short of identifying the real root causes, simply assigning the 
blame to actors who neglected some security measures. Yet such conclusion seems questionable 
if the enforcement system was malfunctioning. Assigning blame only to actors directly involved 
in an incident may also be questioned in cases when the enforcement system functioned 
properly. This is because an extensive research does show that people are poor judges of risks 
(Estes 1976, Kahneman and Tversky 2000, Hogarth 1987, Tversky and Kahneman 2000, Zeitlin 
1994): Typically, beliefs about probabilities of events are derived from experience. Events’ 
frequencies provide main cues for the estimates. The longer one acts in an environment and does 

 



not observe (or hear about) an event, the more likely the event’s probability will be 
underestimated. If human nature is so, security systems should be designed in a way that would 
help to maintain appropriate risk perception. If they fail to do so, at least part of the 
responsibility for occurring mishaps should be assigned to the security systems’ designers. This 
view coincides with the “engineering view” of origins of human error (cf. Reason 1997, pp. 224-
225, see also discussion in Gonzalez and Sawicka 2003). The need to take into account human 
ability to perceive risk in security or safety system designs has been recently receiving more and 
more attention. A number of IT-security professionals point to an ongoing security training as 
indispensable tool for maintaining accurate security awareness (see e.g. Smith 2001, Tuesday 
2001, Voss 2001). In a parallel conference paper, Cooke proposes an incident learning system to 
facilitate maintenance of accurate risk perception in organizations operating in risky 
environments (Cooke 2003a). 

Psychological research has shown that the probability of events that occur frequently is likely to 
be overestimated. Such dynamic perception of probabilities could explain increases in security 
adherence just after occurrence of mishaps or release of news about such events. The 
overestimation of risks would then be the likely cause for an increased observance of security 
measures. As the reader may recall, our model failed to demonstrate such effect. According to 
the model, data loss has no impact on employed security routines (see Figure 11 and 
accompanying discussion). This counterintuitive outcome however is entirely consistent with 
CPT: The theory does not account for any dynamic changes in perception of probabilities or for 
possible changes in value functions. This narrows its applicability to situations where people 
choose between risky prospects in domains that they have relatively little prior experience in, 
and where in their choices they are forced to rely primarily on external information. 

Acknowledging limitations of CPT, a number of researchers have proposed alternative theories. 
Prior information and experience within a problem domain and presentation of the choice 
problem have been often stressed as important variables impacting choices. Recently, also a 
number of theories providing an explicit description of choice in dynamic settings have been 
proposed. The applicability of these theories to our context is currently under investigation. One 
of the main advantages of CPT is that the theory has been extensively tested. It is therefore well 
known and indeed is gaining an increasing acceptance outside the psychological field. 
Simultaneously, our initial analyses of the competing theories indicate that many of them either 
fail again to account for risky choice dynamics (e.g. Einhorn and Hogarth 1985, Lopes and Oden 
1999) or do not provide a fully formalized model (e.g. Slovic 2000; Slovic, Fischoff et al. 2000). 
Among the reviewed theories of dynamic choice under risk, we found that some deal only with 
particular features of dynamic choice under risk, like e.g. explanation of deliberation process in 
the case of decision field theory (see e.g. Townsend and Busemeyer 1995), or provide a limited 
explanation of psychological mechanisms underlying the choice dynamics as it is in case of 
token theory (Regenwetter, Falmagne et al. 1999). In the following section we suggest how CPT 
could be extended to account for the dynamics commonly observed in cases of repeated choice 
under risk, such as the case we consider here – i.e. security observance in IT-based work 
environments. 

Toward a dynamic prospect theory 
Imagine two agents who value outcomes in a similar way and act in a risky environment where 
probability of loss is low. A CPT agent would act in a more cautious way than a rational agent 

 



who acts according to EUT. This is due to the CPT agent’s overestimation of potential losses and 
simultaneous underestimation of potential gains. The CPT and the EUT agents have different 
focus of attention. While a CPT agent overweighs probabilities related to losses, an EUT agent 
assesses probabilities in a more balanced and “objective” way. As a result, the CPT agent 
effectuates choices that would be considered inferior under EUT. Following the attention clue, 
we could envisage an agent who contradicts EUT by focusing substantially more on issues 
related to gains. Such agent in risky environments would be likely to overestimate high and 
moderate probabilities of gains while underestimating low probability of losses. As a result, the 
agent would manifest a much less secure behavior than either the CPT or the EUT agent. 

Recall the ω(p) function suggested for the probability transformation: Setting the η parameter to 1 
yields ω(p)=p. This makes CPT equivalent to EUT. Elicitation of an opposite pattern of probability 
misperception would require η>1. Implementing a dynamically adjustable parameter η would then 
yield a model in which the whole range of probability misperceptions are feasible. The η parameter 
may be conceptualized as a relative attention given to small vs. moderate and high probability 
events. 

In Figure 14 we present simulation results where the accuracy of individual’s risk perception is 
assumed to gradually fade away, which process is modeled as an overtime increase of the 
probability perception parameter η.18  

A dynamic definition of the probability perception parameter η seems appropriate: Experience 
shows that people new in a risky environment are likely to focus at least as much, if not more, on 
potential losses as on potential gains (η<=1). Moreover, as the time passes by, throughput-oriented 
activities gain more and more attention. The attention given to possible losses – events that “never 
occur” – fades (η>1). The high level η would be drastically reduced only by an event that brings 
losses into the attention of people again. The degree of η reduction is likely to depend on the 
degree to which the event draws our attention to losses, i.e. the more severe the event, the greater 
reduction in η.  

Collecting data on the phenomenon of erosion in security observance is a difficult task. It would 
require observations over an extended period of time, as people do not adjust instantly their 
perceptions. Performing experiments that would test the erosion hypothesis is rather challenging. 
What can however be observed in the laboratory is the impact bad news or mishaps have on 
security observance. Based on such data, the hypotheses about dynamic adjustment of the 
probability perceptions could be tested at least qualitatively. Drawing on this type of experimental 
results, we intend to implement more carefully a mechanism for dynamic adjustment of the η 
parameter in our model. In this way, we hope to contribute to the development of a more general, 
descriptive theory of human behavior in risky environments. We believe the improved system 
dynamics models resulting from our investigations will become useful tools facilitating 
development of robust IT-security policies. 

 

 

 

                                                 
18 The supplemental simulation model contains a set of GUI controls that allow for running the various simulation 
runs discussed throughout the paper. 
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Figure 14 Impact of change in Probability Perception Parameter 
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Appendix 1 
Acronyms used in the paper: 
CPT - cumulative prospect theory 
EUT - expected utility theory 
IT - information technology 
 

Appendix 2 
 

Transformation of outcomes: Value function 
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Figure 3.1 The concave value function for gains accounts

domain of gains; the convex and steeper value
seeking attitudes observed in the loss domain.
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Transformation of probabilities: Decision weight function 
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Figure 3.2 Patterns of various decision weight functions: 
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