
 
 
 
 
 
 
 
 
 
 
 

Stock and Flow, and Unified Modeling Language Relationships 
 

Prepared for: 
 

The 21st International System Dynamics Conference 2003 
 

New York 
 
 
 
 
 

February 22, 2003 



Background 
 
A newcomer to System Dynamics (SD) announced via the SD Listserve that he was 
struggling to find some way to apply SD to a commercial project relative to Humanex, 
Inc., Korea, (Kwak 2002). Mr. Kwak volunteered that the project in question is an agent-
based simulation effort and that his personal background is strongest in the domain of 
database and mobile programming.  At first, he tried to use the Unified Modeling 
Language (UML), based on his software background, to facilitate effective 
communication with the project members. 
 
After realizing that UML did not fit his problem, and that it threatened effective 
communications between his customer and programmers, he experimented with SD 
modeling after discovering Business Dynamics (Sterman, 2000).  Alas, Mr. Kwak (2002) 
declared that it was not that easy to model his customer's extremely complex business 
logic with SD.  Hence he posed the following questions to the SD Listserve: 

1.  Is there a comprehensive list of Pros and Cons regarding using SD in business 
modeling? 
2.  What are the limitations of SD regarding cases where it should not be used? 

 
Responses to these questions addressed modeling with UML and the efficacy of SD.  
Forest (2002) clarified that UML produces static, detailed, non-runnable flowchart-like 
models, e.g., Visio-like.  To Forest (2002), UML looks like flow charting and is a 
language for listing the steps in a process that can be use as a blueprint to write software. 
 
In contrast, SD produces dynamic, general, runnable simulation models in time series.  
Forest (2002) discussed, based on his experience developing custom software, that UML 
and SD complement each other.  Regarding UML, he quotes from Grady Booch’s UML 
User Guide:” [It] is a graphical language for visualizing, specifying, constructing, and 
documenting the artifacts of a software-intensive system”.  The UML gives you a 
standard means of writing the system's blueprints, covering conceptual items such as the 
business processes and system functions as well as concrete items such as classes written 
in a specific programming language, database schemas, and reusable software 
components. 
 
As a process, Forest (2002) said that he uses UML after he has scoped a problem with a 
SD model to identify the critical process(es) that need improved implementations.  The 
SD model is the basis of the reference mode of problematic behavior that needs 
exploration: 

• Clarifies priorities and what the critical processes are for improvement 
• Identifies different policy implementations and explores their effects on the 

system as a whole, and 
• Builds a shared consensus between people about any or all of these things. 

 
According to Forest (2002), he uses SD to help decide what is the critical process(es) for 
improvement and what the new policies and procedures in that process will be. To him, 
UML is useful to clarify what software objects will be needed:   



• What properties/methods/events they should have, and  
• How they should be organized to maximize software performance, flexibility and 

maintainability. 
 
Hypercube (2002) advised strongly against trying to learn and apply SD at the same time 
as applying it.  Similar to Joseph (2002), Hypercube (2002) recommended that Kwak 
(2002) either get some help or spend some spare time on the project learning and trying 
to use SD to generate insights for himself, not his client. 
 
Regarding UML, Hypercube (2002) stated that it can be useful to pick bits and pieces out 
of that method, e.g., to generate generic use cases which map on to the flows from one 
stock to another.  Otherwise, Hypercube (2002) does not advocate using UML, based on 
his experience, in any way for business strategy/planning work. 
 
Hypercube (2002) acknowledged that using SD in a management situation is not 
necessarily straightforward, but a method by which to explore a "perceived reality" and 
generate some agreement on key aspects of the situation.  It appears that what is useful 
are the concepts of stocks and flows and how they are affected by a variety of factors and 
the consequences of delays in feedback.  This focuses on the important aspects of the 
situation and builds understanding of the dynamics of the situation. 
 
A third responder on the listserve, Joseph (2002) posits that SD methods are suitable in 
general to the Kwak (2002) situation.  However, he cautions against changing paths (e.g., 
UML to SD) in the middle of a project suggesting that might be more catastrophic than 
the current situation (Joseph, 2002). 
 
Joseph (2002) believes that communication difficulties in UML have two typical sources: 

• The facilitator doesn't know UML that well, and  
• The participants don't really know the domain field in which they are expected to 

be experienced. 
 
To Joseph (2002), the circumstances of Kwak’s (2002) problem warrant considering 
canceling the project and cutting short the client's losses, or bringing in a facilitator for 
one of the two methodologies:  UML or SD. 
 
Introduction 
 
Finding synergism between UML and SD is a win-win situation for the systems 
development and system dynamics communities.  Organizations that are familiar with 
UML will have an opportunity to “see” the relationship of systems defined in static UML 
artifacts being described in SD stock and flow models that lead to dynamic simulation 
models.  Likewise, dynamic simulations that focus on critical system capabilities as 
stocks and flows will be describable in UML artifacts that support the development of 
new system capabilities, whether as a new product or information system process. 
 



Without a bridge to communicate between the information system development and 
dynamic modeling communities, significant strategies or policies may not be 
implemented in information systems.  And, as information systems are built without a 
focus on critical capabilities that implement key strategies or policies, they will have little 
business impact and a poor return on investment. 
 
Bridging 
 
To facilitate an understanding of the hypothesis that synergism between UML and SD 
will benefit information system developers and strategist as well, the following will be 
discussed: 

• The UML Activity Diagram (AD) 
• The SD Stock and Flow Diagram, and 
• The Activity Diagram and Stock and Flow (S&F) synergism. 

 
Key parts of the AD and S&F diagrams will be presented graphically, labeled and 
discussed.  An example of a bridge between an AD and an S&F diagram will be given as 
evidence of the feasibility of performing bridging.  Carrying the S&F model through to a 
simulation model is left for another time. 
 

UML Activity Diagram 
 

Fowler (1997) says that ADs are useful for understanding workflow and describing the 
behavior that has parallel processing.  The core of the AD is the “activity” whose 
interpretation depends on the perspective or intent of the drawer of the diagram.  
According to Fowler (1997) the conceptual perspective shows a task that needs to be 
done whether by a human or an information system.  From a system specification 
perspective, the activity is a software implementation method. 
 
To many readers, an AD will appear like a flowchart as one activity is followed by 
another activity.  What makes an AD unique from a flowchart is the ability to describe 
parallel activities using “synchronization bars”.  Activities that occur between 
synchronization bars happen in parallel and have to complete before the next activity may 
start. 
 
Fowler (1997, p 131) says that ADs are important to business modeling because:  “A 
technique like this that encourages parallel behavior is valuable in these situations 
because it encourages people to move away from unnecessary sequences in their behavior 
and to spot opportunities to do things in parallel.  This can improve the efficiency and 
responsiveness of business processes.” 
 
Rational’s (Rational-1, 2003) definition of ADs encompasses the ordering of tasks, to 
accomplish business goals, to include satisfying commitments between external and 
internal actors.  The ADs help with the following (Rational-1, 2003): 

• Providing a rationale for introducing information systems into business 



• Establishing information system objectives to implement business 
transformation initiatives, and 

• Justifying investments in information systems based on detailed business 
process metrics. 

 
An example of an AD is presented in Figure 1 below.  The figure shows the following 
(Rational-2, 2003): 

• Activity states – the performance of an activity or steps in the flow of 
events. 

• Transitions – the activity states that follow one another. 
• Decisions – the guard conditions that control which transition follows a 

completed activity. 
• Synchronization bars – the parallel subflows or concurrent threads in the 

flow of events. 
 
 

 
 

Figure 1  Annotated Activity Diagram © Rational Unified Process 2002.05.00.25 

 

Verify access 
code 

Handle incorrect  
access code 

Ask for 
amount 

Finish transaction  
& print receipt 

Dispense 
cash 

Prepare to 
print receipt 

Activity state 
Alternative threads  

[incorrect] 

[correct] 

[resolved] 

[not resolved] 

[amount not available] [amount available] 

Concurrent threads  

Transition 

Guard condition 

Synchronization bar (fork) 

Synchronization bar (join) 

Decision (merge)

Decision (branch) 



Stock and Flow Diagram 
 

Like UML, SD has a diagramming notation.  SD uses the diagramming notation 
described below and illustrated in Figure 2.  The primary elements of the SD 
diagramming notation are as follows (Sterman, 2000, p. 192): 

• Stocks, a container or accumulator of some thing, appear as rectangles. 
• Inflows, adding to the stock, appear as a pipe with an arrow head pointing into 

the stock. 
• Outflows, subtracting from the stock, appear as a pipe with an arrow head 

pointing out of the stock. 
• Valves control the flows. 
• Clouds, defining the boundaries of the model, represent the sources and sinks 

for flows. 
 
The structure of all SD models consists of stock and flow elements, see Figure 2. 
 
 

 
 

Figure 2  SD diagramming notation, (Sterman, 2000, p. 193) 

 
Bridged Activity, and Stock and Flow Diagrams 
 

For a recent assignment, a team prepared ADs to define business activities in order to 
identify business flows for an information system development project.  As part of the 
project, identification of business process that should be developed first, critical process 
with high impact leverage points, were sought. 
 
The business domain for the project is the U.S. federal government, which provides an 
information services to the public, to industry partners, and to other federal and local 
government entities.   

 

Stock 

Inflow Outflow 

Flow of material 
into stock 

Flow of material 
out of stock 

Source Sink 

Valves regulate 
amount 

flowing in or out 

Name of flow 



One of the ADs developed addressed the “request for information” process and the 
activities performed by the government to satisfy the request.  Figure 3 illustrates the 
activities performed.  Within the AD, there are divisions of the activities by vertical bars 
that separate what is performed by the requestor of information, the provider of the 
information and the receiver of information for review and adjudication before providing 
an official response to the requestor.   
 
In the parlance of ADs, the vertical separators presented on Figure 3 are called 
“swimlanes”.  An AD without swimlanes is excellent at telling the story of what happens 
in a business or system process flow, but does not readily indicate who or what is 
performing the activitiy(s) – the actor.  A swimlane is the means of indicating who or 
what is the actor (Fowler, 1997, p.138).  From an information system perspective the 
swimlanes may represent the software “class” responsible for each activity, where a class 
describes the objects in the information system and the various kinds of static 
relationships that exist among them (Fowler, 1997, p. 53). 
 

 

Figure 3  Activity Diagram with swimlanes 

 
From the AD, an example SD stock and flow model was constructed as shown in Figure 
4.  The boundary of the SD model starts with the External Requestor and ends with the 
Adjudication System actors.  The SD model focuses on the Processing System. 

Submit Eligibility  
Request, Form xxx 

Start with Need for Eligibility

Receive Eligibility Request 
Entry/ Send Acknowledge 

Analyze for Adjudication 
Entry/ Notify Adjudicator
Do/ Analyze Request 
Do/ Check Index 
Do/ Determine need to  
       Investigate 
Exit/ Record Decision 

Validate Eligibility Request 
Entry/ Validate Common 
Do/ Create Validation  Report 
Exit/ Make Validation Decision 
 

Return Request 
Exit/ Return Notification  
to Requestor 
 

No Yes

Validate Request?
Industrial?

Scope, Eval, & Investigation 
Entry/ Create leads 
Do/ Assign Investigation 
Exit/ Open Investigation 

Manage & Analyze Investigation 
Entry/ Review Investigation 
Exit/ Close Investigation 

External Requestor Processing System Adjudication System 

No

Adjudicate Interims

Investigation?

No Yes

Adjudication DoneDiscontinue Investigation?

No 

Adjudicate Intermediates

Adjudicate?
Adjudicate FinalsYes

No
Process Complete

Yes

Request Returned

Yes



 
The SD model equates the AD activities to SD flows.  The results of the AD activity/SD 
flow processes are the SD stocks representing accumulations:   
 

 
 

Figure 4  SD Stock and Flow Model based on UML Activity Diagram 

 
Once the fundamental SD Stock and Flow model is established based on the AD, the 
remainder of the SD model needs to be developed in order to provide a capability to 
perform a simulation and analysis of the Processing System.  From the SD perspective, 
the feedback loops, if any, and auxiliary variables, if appropriate, that help govern the 
flow in and out of the Stocks need to be established both graphically and algorithmically; 
this exercise is outside the scope of this paper, which focuses on the AD to SD Stock and 
Flow model. 
 
For example, in the case of the model presented in Figure 4, the auxiliary variables that 
affect the flows in and out of Eligibility Request Received and Valid Eligibility Request 
are items such as the number of requests received from all sources, the typical delay in 
validating the requests, the rate of rejection of the requests, and the amount of staffing 
required to process the request.  Figure 5 illustrates the SD Stock and Flow model that 
adds the auxiliary variables to the Eligibility Request Received and Valid Eligibility 
Requests stocks. 
 

External 
Requestor
Interface 

Eligibility 
Requests
Received 

Valid 
Eligibility 
Requestsvalidate 

eligibility 
requests 

reject requests
return requests

receive eligibility 
requests 

Invalid  
Requests

 

Scoped, & 
evaluated 
investigations 

process requests 

Managed & 
analyzed 
investigations perform 

investigation 

process industrial requests 

forward adjudications 

Discontinued 
investigations 

discontinue 
investigation 

Completed investigations 

end investigation 

External 
Adjudication
Interface 



Eligibility
Request
Receivedreceiveeligibilityrequests

typical # all
sources

Valid
Eligibility
Requestsvalidate

eligibility
requests

validation fractionvalidation delay

baseline
validation effort

currentvalidation staff

# days delay # days per month

rejection percent  
 

Figure 5  Illustration of SD model with auxiliary variables and feedback loop. 

 
Once the SD model is developed to this point the simulation model needs to be formed to 
study the dynamics of the stocks and flows – the reference model and the algorithms.  
This exercise is not within the scope of this paper but identified as the next step once the 
SD stock and flow model is derived based on the AD. 
 
Summary 
 
Kwak (2002) announced via the SD Listserve that he was struggling to find some way to 
apply SD to a commercial project relative to Humanex, Inc., Korea, where he had begun 
modeling using UML.  Responses to his request for help were posted by Forest (2002), 
and Hypercube (2002) Joseph (2002).  Forest (2002) said that UML produces static 
models in contrast to SD that produces dynamic ones.  He further elaborated that his 
preference is to use UML after he has scoped a problem with a SD model to identify 
critical business processes.  In contrast to Forest (2002), Hypercube (2002) indicated his 
preference to pick bits and pieces out of the UML that map to the SD flows.  The third 
listserve responder, Joseph (2002) generally thought that SD was appropriate to Kwak’s 
(2002) problem but felt the best course of action under the circumstances was to not 
switch from UML to SD, but to consider canceling the effort to avoid further losses to the 
client. 
 
This paper discusses the synergism between UML and SD as a win-win situation for 
system developers and system dynamacists.  UML practitioners will have the opportunity 
to see static UML rendered into dynamic SD models.  Likewise, SD modelers of 
information systems will have the opportunity to see high payoff processes and strategies 
implemented as new information system capabilities. 
 
To facilitate an understanding that there is synergism between UML and SD, the 
following was discussed: 

• The UML Activity Diagram (AD) 
• The SD Stock and Flow Diagram, and 



• The Activity Diagram and Stock and Flow (S&F) synergism. 
 
Once the SD stock and flow model is developed from the AD, the simulation model 
needs to be formed – the reference model and the algorithms.  This exercise is not within 
the scope of this paper but identified as the next step once the SD stock and flow model is 
derived based on the AD. 
 
Conclusions 
 
This paper illustrates by example that there is synergism between UML and SD that 
presents a win-win situation for information system developers, system dynamacists and 
their clients. 
 
References 
 
Forest, T (2002).  REPLY Limitations of System dynamics? (SD3965). (October 17, 
2002, 12:07:56). Retrieved November 11, 2003 from, 
http://www.vensim.com/sdmail/archives/ 
 
Fowler, M., & Scott, K. (1997).  UML distilled:  applying the standard object modeling 
language.  Reading:  ADDISON-WESLEY. 
 
Hypercube, L (2002).  REPLY Limitations of System dynamics? (SD3979). (October 31, 
2002, 18:28:26). Retrieved November 11, 2003 from, 
http://www.vensim.com/sdmail/archives/ 
 
Joseph, R. (2002).  REPLY Limitations of System dynamics? (SD3960). (October 14, 
2002 19:31:33). Retrieved November 11, 2003 from, 
http://www.vensim.com/sdmail/archives/ 
 
Kwak, W (2002).  QUERY Limitations of System dynamics? (SD3953). (October 14, 
2002 12:30:02). Retrieved November 11, 2003 from, 
http://www.vensim.com/sdmail/archives/ 
 
Rational-1 (2003).  Guidelines:  activity diagram in the business object model.  (n.d.), 
Retrieved January 14, 2003 from 
Rational\RatioanlUnifiedProcess\process\modguide\md_bactdb. 
 
Rational-2 (2003).  Guidelines:  activity diagram in the use-case model.  (n.d.), Retrieved 
January 14, 2003 from 
Rational\RatioanlUnifiedProcess\process\modguide\md_actdb.htm 
 
Sterman, J. D.  (2000).  Business dynamics:  system thinking and modeling for a complex 
world.  Boston:  Irwin McGraw-Hill. 
 


	Abstracts: 
	Table of Contents: 
	back to the top: 


