Table of Contents

Go Back

Stock and Flow, and Unified Modding Language Re ationships

Prepared for:
The 21% International System Dynamics Conference 2003

New Y ork

February 22, 2003

Background

A newcomer to System Dynamics (SD) announced viathe SD Listserve that he was
struggling to find some way to gpply SD to a commercid project reative to Humanex,
Inc., Korea, (Kwak 2002). Mr. Kwak volunteered that the project in question is an agent-
based smulation effort and that his persona background is strongest in the domain of
database and mobile programming. At firgt, he tried to use the Unified Modding
Language (UML), based on his software background, to facilitate effective
communication with the project members.

After redizing that UML did not fit his problem, and that it threatened effective
communications between his cusomer and programmers, he experimented with SD
modeling after discovering Business Dynamics (Sterman, 2000). Alas, Mr. Kwak (2002)
declared that it was not that easy to modd his customer's extremely complex business
logic with SD. Hence he posed the following questions to the SD Listserve:

1. Isthere acomprehensive list of Pros and Cons regarding usng SD in business

modding?

2. What arethelimitations of SD regarding cases where it should not be used?

Responses to these questions addressed modeling with UML and the efficacy of SD.
Forest (2002) clarified that UML produces static, detailed, non-runnable flowchart-like
models, e.g., Vido-like. To Forest (2002), UML looks like flow charting and isa
language for listing the Steps in a process that can be use as a blueprint to write software.

In contrast, SD produces dynamic, generd, runnable smulation modelsin time series.
Forest (2002) discussed, based on his experience developing custom software, that UML
and SD complement each other. Regarding UML, he quotes from Grady Booch's UML
User Guide” [It] isagragphicd language for visudizing, soecifying, congructing, and
documenting the artifacts of a software-intengve systeni’. The UML givesyou a
standard means of writing the system'’s blueprints, covering conceptua items such asthe
business processes and system functions as well as concrete items such as classes written
in agpecific programming language, database schemas, and reusable software
components.

As aprocess, Forest (2002) sad that he uses UML after he has scoped a problem with a
SD modd to identify the critical process(es) that need improved implementations. The
SD modd isthe basis of the reference mode of problematic behavior that needs
exploration:

Clarifies priorities and what the critical processes are for improvement

| dentifies different policy implementations and explores their effects on the

sysem asawhole, and

Builds a shared consensus between people about any or dl of these things.

According to Forest (2002), he uses SD to help decide what is the critica process(es) for
improvement and what the new policies and proceduresin that process will be. To him,
UML is usgful to dlarify what software objects will be needed:

What properties'methods/events they should have, and

How they should be organized to maximize software performance, flexibility and
mantainability.

Hypercube (2002) advised srongly againg trying to learn and apply SD at the sametime
asapplyingit. Similar to Joseph (2002), Hypercube (2002) recommended that Kwak
(2002) either get some help or spend some spare time on the project learning and trying
to use SD to generate ingghts for himsdf, not his dlient.

Regarding UML, Hypercube (2002) stated that it can be useful to pick bits and pieces out
of that method, e.g., to generate generic use cases which map on to the flows from one
stock to another. Otherwise, Hypercube (2002) does not advocate using UML, based on
his experience, in any way for business strategy/planning work.

Hypercube (2002) acknowledged that usng SD in amanagement Stuation is not
necessarily straightforward, but a method by which to explore a " perceived redity” and
generate some agreement on key aspects of the Stuation. 1t gppears that what is useful
are the concepts of stocks and flows and how they are affected by a variety of factors and
the consequences of delays in feedback. This focuses on the important aspects of the
gtuation and builds understanding of the dynamics of the Stuation

A third responder on the listserve, Joseph (2002) posits that SD methods are suitablein
genera to the Kwak (2002) situation. However, he cautions againgt changing paths (e.g.,
UML to SD) in the middle of a project suggesting that might be more catastrophic than
the current situation (Joseph, 2002).

Joseph (2002) believes that communication difficultiesin UML have two typicd sources:
Thefacilitator doesn't know UML that well, and
The participants don't really know the domain field in which they are expected to
be experienced.

To Joseph (2002), the circumstances of Kwak’s (2002) problem warrant considering
canceling the project and cutting short the dient's losses, or bringing in afacilitator for
one of the two methodologies: UML or SD.

I ntroduction

Finding synergism between UML and SD isawin-win Stuation for the sysems
development and system dynamics communities. Organizations thet are familiar with
UML will have an opportunity to “see’ the relationship of systems defined in static UML
artifacts being described in SD stock and flow models that lead to dynamic Smulation
models. Likewise, dynamic smulations that focus on critica system capabiilities as
stocks and flows will be describable in UML artifacts that support the development of
new system capabilities, whether as anew product or information system process.

Without a bridge to communicate between the information system devel opment and
dynamic modding communities, ggnificant strategies or policies may not be
implemented in information sysems. And, asinformation systems are built without a
focus on critica capatiilities that implement key drategies or policies, they will have little
business impact and a poor return on investment.

Bridging

To fadilitate an understanding of the hypothesis that synergism between UML and SD
will benefit information system developers and srategist as well, the following will be
discussed:

The UML Activity Diagram (AD)

The SD Stock and Flow Diagram, and

The Activity Diagram and Stock and Flow (S&F) synergism.

Key parts of the AD and S&F diagrams will be presented graphicaly, labeled and
discussed. An example of a bridge between an AD and an S& F diagram will be given as
evidence of the feasibility of performing bridging. Carrying the S&F modd through to a
smulaion moded isleft for another time.

UML Activity Diagram

Fowler (1997) says that ADs are useful for understanding workflow and describing the
behavior that has parallel processing. The core of the AD isthe “activity” whose
interpretation depends on the perspective or intent of the drawer of the diagram.
According to Fowler (1997) the conceptual perspective shows atask that needs to be
done whether by a human or an information sysem. From a system specification
perspective, the activity is a software implementation method.

To many readers, an AD will gppear like aflowchart as one activity is followed by
another activity. What makes an AD unique from aflowchart isthe ability to describe
pardle activities using “synchronization bars’. Activitiesthat occur between
synchronization bars happen in parale and have to complete before the next activity may
Sart.

Fowler (1997, p 131) saysthat ADs are important to business modeling because: “A
technique like this that encourages paradld behavior is vauable in these situations

because it encourages people to move away from unnecessary sequences in their behavior
and to spot opportunitiesto do thingsin pardld. This can improve the efficiency and
responsveness of business processes.”

Rationd’s (Rationd- 1, 2003) definition of ADs encompasses the ordering of tasks, to
accomplish business godss, to include satisfying commitments between externd and
internd actors. The ADs help with the following (Rationd- 1, 2003):

Providing arationde for introducing information sysemsinto business

Egtablishing information system objectives to implement business
trandformation initiatives, and

Judtifying investments in information systems based on detailed business
process metrics.

An example of an AD is presented in Figure 1 below. The figure shows the following

(Retiond-2, 20

Decision (branch) ~_

[amount available]

Decision (merge) — ‘

Synchronization bar (join)

03):

Activity states— the performance of an activity or stepsin the flow of
events.

Trandtions— the activity states that follow one another.

Decisons — the guard conditions that control which trangtion follows a
completed activity.

Synchronization bars— the parald subflows or concurrent threads in the
flow of events.

Activity state

~

Alternative threads

Guard condition Handle incorrect

Concurrent threads

. Transition
Dispense Prepare to
print receipt /
[not resolved]

Finish transaction
& print receipt

o

Figurel Annotated Activity Diagram © Rational Unified Process 2002.05.00.25

Stock and Flow Diagram

Like UML, SD has adiagramming notation. SD uses the diagramming notation
described below and illustrated in Figure 2. The primary elements of the SD
dlagramml ng notation are as follows (Sterman, 2000, p. 192):
Stocks, a container or accumulator of some thing, appear as rectangles.
Inflows, adding to the stock, appear as a pipe with an arrow head pointing into
the stock.
Outflows, subtracting from the stock, appear as a pipe with an arrow head
pointing out of the stock.
Vaves control the flows.
Clouds, defining the boundaries of the model, represent the sources and sinks
for flows.

The structure of dl SD models congsts of stock and flow eemerts, see Figure 2.

Valves regulate
—— amount -

e . . N
. flowing in or out .
Flow of material // owing in or ou \\ Flow of material
into stock // \ Tt of stock
\
Stock
Ouitflow
A
}I
\ / .
Source \ / Sink
N /
/
\\ /
~ /

7
~ -

—— Name of flow -

Figure2 SD diagramming notation, (Sterman, 2000, p. 193)

Bridged Activity, and Stock and Flow Diagrams

For arecent assgnment, a team prepared ADs to define business activitiesin order to
identify business flows for an information system development project. As part of the
project, identification of business process that should be developed firgt, critical process
with high impect leverage points, were sought.

The business domain for the project isthe U.S. federd government, which provides an
information services to the public, to industry partners, and to other federal and local
government entities.

One of the ADs devel oped addressed the “request for information” process and the
activities performed by the government to satisfy the request. Figure 3illustratesthe
activities performed. Within the AD, there are divisons of the activities by vertica bars
that separate what is performed by the requestor of information, the provider of the
information and the receiver of information for review and adjudication before providing
an officid response to the requestor.

In the parlance of ADs, the vertical separators presented on Figure 3 are cdled
“swimlanes’. An AD without svimlanesis excdlent at telling the story of what happens
in abusiness or system process flow, but does not readily indicate who or what is
performing the activitiy(s) — the actor. A swimlane isthe means of indicating who or
what is the actor (Fowler, 1997, p.138). From an information system perspective the
swimlanes may represent the software “class’ responsible for each activity, where a class
describes the objects in the information system and the various kinds of gatic
relationships that exist among them (Fowler, 1997, p. 53).

Externa Requestor Processing System Adjudication System
> Receive Eligibility Request J
. o Entry/ Send Acknowledge
Start with Need for Eligibility

Validate Eligibility Request

Entry/ Vaidaie Common

Do/ Create Validation Report
Submit Eligibility Exit/ Make Validation Decision

Request, Form xxx |

Validate Request?
Industrial?

Exit/ Return Notification

Return Request
to Requestor

— Investigation?; | Analyzefor Adjudication
Request Returnec Scope, Eval, & Investigation Entry/ Notify Adjudicator

Entry/ Create leads Do/ Analyze Request
Do/ Assign Investigation Do/ Check Index

EXit/ Open Investigation Do/ Determine need to
Investigate

Discontinue Investigation? AdjudicationPone Exit/ Record Decision
Yes No

[Manage & Analyze Investigation

Entry/ Review Investigation Adjudicaie
Exit/ Close Investigation

T

Adjudicate?
Yes AdjudicateiFinals

Process Compl ete

Figure 3 Activity Diagram with swimlanes

From the AD, an example SD stock and flow mode was constructed as shown in Figure
4. The boundary of the SD modd starts with the Externa Requestor and ends with the
Adjudication System actors. The SD model focuses on the Processing System.

The SD model equatesthe AD activitiesto SD flows. The results of the AD activity/SD
flow processes are the SD stocks representing accumulaions:

return requests
reject requests
Eligibility
—X—P» Requests |
receive digibility | _Received |\ gidate

equests digibility External
External requests Adjudication
Requestor process requests it 22t
Interface
Scoped, & 4#@
evaluated Managed & process industrial r S
investigations analyzed
discontinm perform investigations = P
investigation investigation forward adjudications
Discontinued end investigation
Invedtiaations Completed investigations

Figure4 SD Stock and Flow Mode based on UML Activity Diagram

Once the fundamental SD Stock and Flow modd is established based on the AD, the
remainder of the SD model needs to be developed in order to provide a capability to
perform asmulation and analys's of the Processing System. From the SD perspective,
the feedback loops, if any, and auxiliary variables, if gppropriate, that help govern the
flow in and out of the Stocks need to be established both graphicaly and dgorithmicaly;
this exercise is outsde the scope of this paper, which focuses on the AD to SD Stock and
Flow modd!.

For example, in the case of the model presented in Figure 4, the auxiliary variables that
dfect the flowsin and out of Eligibility Request Recelved and Vaid Eligibility Request
are items such as the number of requests received from al sources, the typica delay in
validating the requests, the rate of rgection of the requests, and the amount of gaffing
required to process the request. Figure 5 illusratesthe SD Stock and Flow mode that
adds the auxiliary variables to the Eligibility Request Received and Vdid Eligibility
Requests stocks.

Eligibility g Vdid
Request Eligibility

Recelved vaidate Requests
oot

vaiH S sat ot \

_badine
vdidation effort

typicd #4dl I
sources Vi?' O;dUdaion fraction
#daysdday # daysper month 7

rejection percent
Figure5 lllustration of SD mode with auxiliary variables and feedback loop.

Once the SD mode is developed to this point the smulation mode needs to be formed to
study the dynamics of the stocks and flows — the reference mode and the agorithms.
Thisexercise is not within the scope of this paper but identified as the next step once the
SD stock and flow model is derived based on the AD.

Summary

Kwak (2002) announced viathe SD Ligtserve that he was struggling to find some way to
apply SD to acommercid project rdative to Humanex, Inc., Korea, where he had begun
modding usng UML. Responsesto his request for help were posted by Forest (2002),
and Hypercube (2002) Joseph (2002). Forest (2002) said that UML produces static
models in contrast to SD that produces dynamic ones. He further aborated that his
preference isto use UML &fter he has scoped a problem with a SD modd to identify
critical business processes. In contrast to Forest (2002), Hypercube (2002) indicated his
preference to pick bits and pieces out of the UML that map to the SD flows. Thethird
listserve responder, Joseph (2002) generdly thought that SD was appropriate to Kwak's
(2002) problem but felt the best course of action under the circumstances was to not
switch from UML to SD, but to consider cancedling the effort to avoid further lossesto the
client.

This paper discusses the synergism between UML and SD as awin-win Stuation for
system developers and system dynamecists. UML practitioners will have the opportunity
to see static UML rendered into dynamic SD modds. Likewise, SD modders of
information systems will have the opportunity to see high payoff processes and drategies
implemented as new information system capabilities.

To facilitate an understanding that there is synergism between UML and SD, the
following was discussed:

The UML Activity Diagram (AD)

The SD Stock and Flow Diagram, and

The Activity Diagram and Stock and FHow (S&F) synergiam.

Oncethe SD stock and flow modd is developed from the AD, the Smulation model

needs to be formed — the reference model and the dgorithms. This exerciseis not within
the scope of this paper but identified as the next step once the SD stock and flow modd is
derived based on the AD.

Conclusons

This paper illugrates by example that there is synergism between UML and SD that
presents awin-win stuation for information system developers, system dynameacists and
their clients.

References

Forest, T (2002). REPLY Limitations of System dynamics? (SD3965). (October 17,
2002, 12:07:56). Retrieved November 11, 2003 from,
http:/Amww.vena m.comv/sdmail/archives/

Fowler, M., & Scott, K. (1997). UML didtilled: applying the standard object modeling
languege. Reading: ADDISON-WESLEY .

Hypercube, L (2002). REPLY Limitations of Sysem dynamics? (SD3979). (October 31,
2002, 18:28:26). Retrieved November 11, 2003 from,
http:/Avww.vensm.com/sdmail/archives/

Joseph, R. (2002). REPLY Limitations of System dynamics? (SD3960). (October 14,
2002 19:31:33). Retrieved November 11, 2003 from,
http:/Avww.vens m.comy/sdmail/archives/

Kwak, W (2002). QUERY Limitations of System dynamics? (SD3953). (October 14,
2002 12:30:02). Retrieved November 11, 2003 from,
http:/Avww.vens m.convsdmail/archives/

Rationa-1 (2003). Guiddines. activity diagram in the busness object modd. (n.d.),
Retrieved January 14, 2003 from
Rationa\Rati oanl UnifiedProcess\process\modguidémd _bactdb.

Reationd-2 (2003). Guiddines activity diagram in the use-case moddl. (n.d.), Retrieved
January 14, 2003 from
Rational\Rati oanl UnifiedProcess\process\modguidemd _actdb.htm

Sterman, J. D. (2000). Businessdynamics system thinking and modeling for a complex
world. Boston: Irwin McGraw-Hill.

Back to the Top

	Abstracts:
	Table of Contents:
	back to the top:

