
ASP and Application
Management Services

Bulletin

In-House Versus Outsourced:
A System Dynamics Comparison

Analyst: Amy Mizoras

IDC Opinion

What are the key attributes of software implementation and
operation that can make in-house (IH) deployment more costly,
risky, and time-consuming than application outsourcing (AO)?

The phrase “don’t try this at home” can be aptly applied to the
implementation and operation of packaged software. Non-linear
relationships throughout the process produce results that are
difficult to predict and control. In addition, processes are performed
by humans whose individual decision-making behavior is essentially
unpredictable. An organization whose core business is not
implementing and maintaining applications will have difficulty
controlling the time and scope of a project, as workforce and rework
dynamics reduce productivity and increase costs.

An outsourcer will take on the risks associated with software
implementation and operation for its customers, offering experience
delivering application services on accelerated time lines and at
predictable costs.

Filing Information
August 2002
IDC #27743
Volume: 1

Tab: Markets

27743 - 2 - A IDC

In This Bulletin

Synopsis

This document is written for a technology decision-maker and is
designed to:

• Define the steps associated with the deployment of packaged
software dynamically in terms of graphs over time

• Present two models capable of reproducing the dynamics of both
in-house deployment and outsourcing

• Identify two key challenges associated with in-house deployment
and discuss how these can increase the time, cost, and risk of
this deployment option

• Show the quantitative time, cost, and risk of in-house versus
outsourced applications by comparing the results of these
models in a realistic simulation

While the focus of this document is on application outsourcing,
some key insights can be applied to other forms of outsourcing, such
as outsourced development.

Methodology

This document compares the time, cost, and risk of implementing
and supporting a packaged software application in-house versus
outsourcing these activities. Insight is derived from two system
dynamics models — one replicating in-house deployment and the
other replicating application outsourcing, in which the software is
deployed at a datacenter external to the customer site and supported
by a company like an application service provider (ASP).

System dynamicists use multiple sources of information —
including numerical data, interviews, and direct observation — to
elicit the decision rules, organizational structures, goals, and other
important managerial dimensions of the systems. All estimates for
initial time and cost, and other assumptions used in this model are
based on IDC data.

The cost of licensing the application software is not included in
either model. In both models, software is broken down into units or
functions to represent a phased implementation. These functions
can be thought of as screens in application modules.

Note: The focus of these models is to simulate the relative time, cost,
and risk of two deployment methods. As such, the quantitative

Quoting IDC Information and Data: Internal Documents and Presentations—Quoting individual sentences and paragraphs for use in your
company’s internal communications does not require permission from IDC. The use of large portions or the reproduction of any IDC document in its
entirety does require prior written approval and may involve some financial consideration. External Publication—Any IDC information that is to be
used in advertising, press releases, or promotional materials requires prior written approval from the appropriate IDC Vice President or Country
Manager. A draft of the proposed document should accompany any such request. IDC reserves the right to deny approval of external usage for any
reason.

Copyright 2002 IDC. Reproduction is forbidden unless authorized.
For additional copies please contact Cheryl Toffel, 508-935-4389.

Check us out on the World Wide Web! http://www.idc.com
Printed on recycled materials. 0

A IDC - 3 - 27743

results of the simulations will be identified and discussed in relative,
rather than absolute, terms.

Situation Overview

IDC research has already determined that outsourcing the
implementation and ongoing management of packaged applications
to a company such as an ASP can result in a positive return on
investment (ROI). (See Measuring the Business Benefits of Software
as a Service: An ROI Primer for Decision Makers, IDC #26965, May
2002.) While this information is useful to companies that are
considering purchasing an intangible service like outsourcing (by
making it more tangible), it doesn’t answer the question “What will
be the specific impact on my organization?” And while ROI analysis
will always be a featured way of measuring the relative attractiveness
of IT investments, companies are also looking to identify ways these
investments can help improve productivity.

IDC has developed two models using system dynamics to
demonstrate the potential effects of software deployment on the
organization. The lessons learned from these models can be applied
to any organization that is making an outsourcing decision. The
negative impact on productivity that results from in-house
implementation and operation will also be discussed.

Technology Management

Dynamics are the forces and motions that characterize a system. The
deployment of packaged software is characterized by:

• Non-linear relationships, which result in behavior that is
difficult to predict and control.

• Cause-and-effect that can be distant in time and space, resulting
in complex and disproportional relationships. This makes
effective management very difficult.

• A tight coupling between evolutionary attributes, in which
everything seems to influence everything else.

• Strong dynamic effects that take place on different time scales
and at many levels of aggregation.

• Processes performed and managed by humans whose individual
decision-making behavior is essentially unpredictable.

These dynamics add up to a great deal of risk. For example, it is hard
to predict the amount of resources needed to support a software
package over time, even with some prior experience.

AO and IH Models: Key Assumptions

The dynamics of packaged software deployment includes five key
phases:

1. Configuration

27743 - 4 - A IDC

2. Prototype

3. Test

4. Rollout

5. Operation

Throughout this document, phases 1 through 4 will be referred to as
implementation. Software moves from one phase to another at a rate
determined by productivity. Since time equals money in the real
world, time also equals money in these models.

In addition to the phases of software deployment, other key
assumptions include:

• Up-front costs of $385,000 for hardware and infrastructure
software in the in-house model (a very low, conservative
estimate).

• Cost per day per unit of software. IDC has assumed that there is
a higher cost per day in the AO model to account for
professional services fees.

• The cost of downtime is equal in both scenarios. IDC has
assumed 99.9% availability in the AO model, and an average
availability of 97% with a 3% standard deviation in the in-house
model.

• Nominal productivity is set to 1. IDC assumes that 1 is the
productivity that the AO provider achieves. Productivity in the
in-house model is initially set equal to AO (at 1), and this
productivity increases and decreases over time.

In-House–Specific Assumptions

• The project is started with four internal people, with a total of 20
needed on the project team for implementation and rollout.

• A team of eight internal people is needed to operate the
application.

Outsourcing-Specific Assumptions

• One internal person is needed to manage the service provider
relationship.

• The cost of the AO service is $750,000 a year to support a fully
implemented application (a very high and therefore conservative
estimate). Operating costs are incurred as soon as the first unit
of software is fully rolled out.

In-House Model

The system dynamic model illustrating in-house deployment is
shown in Figure 1. For detailed documentation, see Table A1 in the
Appendix. The five phases of software deployment appear in the
center of the model, connected by thick arrows that represent the

A IDC - 5 - 27743

rate of time it takes the software to move from one phase to another.
A number of factors impact the time and cost of implementing the
software, as well as the ongoing costs associated with operating it.
These factors are represented in Figure 1 by circles, with thin arrows
to indicate which phase or rate they impact. For example, the
configuration rate is equal to the amount of time configuration
should take in an optimal situation (configuration time) multiplied
by productivity (IH productivity). If productivity is equal to 1,
configuration is completed in the optimal time frame. If productivity
is less than 1, configuration will take longer because the workforce
is less productive.

This model reproduces two key factors that can drive in-house
deployment projects off schedule and over budget: workforce
dynamics and rework dynamics (see Figures 2 and 3).

Processes such as hiring and training unfold over time. When a
company begins a project such as a software implementation,
additional resources are needed to assist the core IT team. These
resources can range from technical to business, and can be internal
or external to the organization. The rate at which these resources
are brought into the project depends on the amount of people
needed as well as the pool of available talent.

Hiring additional workers adds to the capability of an organization
in the long run; in the short run, however, experienced workers
must divert time from their work to train recruits, reducing
productivity. The training overhead shown in Figure 2 represents
the percentage of time that experienced people spend training new
people. Once new project personnel are brought into the
organization, there is a period of time during which they must be
brought up to speed, or assimilated. As the number of new people
brought into the software project increases, productivity decreases.

Another factor that can lead to decreased workforce productivity is
attrition. Attrition can occur as a result of many factors. For
example, as a project falls behind schedule, people work overtime,
which can initially show results. However, excessive overtime causes
fatigue and burnout. Burnout can lead to absenteeism and attrition,
as employees transfer or quit, reducing the number of people on the
project and creating the need to rehire. Productivity and quality fall,
reducing progress and decreasing the quality of output.

While workforce dynamics impact productivity, productivity impacts
the amount of software that can be prototyped, tested, and rolled out
in a given period of time (refer back to Figure 3). Software is
prototyped at a rate determined by resource productivity and is then
tested by quality assurance (QA) personnel. Some of this software
will invariably have errors and will need to be reworked and
prototyped again before it can be tested once more. Uncovering
errors takes time and resources. The amount of errors that are made
and discovered is also governed by productivity.

Figure 1
Dynamics of In-House Application Deployment

~Error rate

IH configuration

IH proto
rate

IH rollout IH operation
PI rollout
rate

Hardware purchase costs

IH implementation
costs total

IH support

Configuration time

+

IH time

IH operating costs

Daily implementation costs
IH cost per function
point per day

IH implementation costs

Implementation
cost rate

Assimilation rate
~

IH productivity

IH total implementation
and operation costs

Time to assimilate

~

Training
overhead

Available talent

IH rollout time

Software purchase costs

Network costs

Attrition rate

IH operating
costs total

Cost of downtime

IH downtime

Time to protype

Acceptance

Configuration
rate

Experienced personnel
New project
personnel

Hire rate

IH rework

IH prototype

Change rate

Test

Software maintenance costs

Operating cost rate

Hardware maintenance costs

Network maintenance costs

~Error rate

IH configuration

IH proto
rate

IH rollout IH operation
PI rollout
rate

Hardware purchase costs

IH implementation
costs total

IH support

Configuration time

+

IH time

IH operating costs

Daily implementation costs
IH cost per function
point per day

IH implementation costs

Implementation
cost rate

Assimilation rate
~

IH productivity

IH total implementation
and operation costs

Time to assimilate

~

Training
overhead

Available talent

IH rollout time

Software purchase costs

Network costs

Attrition rate

IH operating
costs total

Cost of downtime

IH downtime

Time to protype

Acceptance

Configuration
rate

Experienced personnel
New project
personnel

Hire rate

IH rework

IH prototype

Change rate

Test

Software maintenance costs

Operating cost rate

Hardware maintenance costs

Network maintenance costs

Source: IDC, 2002

A IDC - 7 - 27743

Figure 2
Workforce Dynamics

New project
personnel

Experienced
personnelAssimilation rate

~

In-house
productivity

Hire rate

Time to assimilate

~

Available talent

Attrition rate

Training
overhead

New project
personnel

Experienced
personnelAssimilation rate

~

In-house
productivity

Hire rate

Time to assimilate

~

Available talent

Attrition rate

Training
overhead

New project
personnel

Experienced
personnelAssimilation rate

~

In-house
productivity

Hire rate

Time to assimilate

~

Available talent

Attrition rate

Training
overhead

Source: IDC, 2002

Figure 3
Rework Dynamics

IH rework

~
Error rate

IH implementation

Test
IH implementation rate

System rollout and
user acceptance

Acceptance

Change rate

~

IH productivity

Time to implementation

IH rework

~
Error rate

IH implementation

Test
IH implementation rate

System rollout and
user acceptance

Acceptance

Change rate

~

IH productivity

Time to implementation
Source: IDC, 2002

27743 - 8 - A IDC

Even if software is error-free, some features will not meet the needs
of internal customers. For example, a finance manager may want a
different report format. Changes in customer specifications mid-
cycle render previous work obsolete, creating even more rework.
Due to the consequences of adding change upon change, the
software becomes more and more complex unless work is done to
compensate for it. Each change may to a certain extent trigger more
demand for change. As the project evolves, continuing change and
increasing functionality are likely to lead to increased rework and
delay, and to declining productivity. In addition, customer changes
can result in work being done out of order, resulting in an
unpredictable finished product.

Application Outsourcing Model

The model demonstrating application outsourcing is a carbon copy
of the in-house model (see Figure 4), except there is/are:

• No “people” cycle: The outsourcer takes on the risk and cost of
bringing people onto the project. The customer is buffered from
this risk, since it is likely an individual from the customer’s
existing IT group can manage the relationship with the
outsourcer without having to rehire and retrain.

• No up-front costs for hardware or infrastructure software: This
model assumes that the customer does not need to purchase
hardware and infrastructure software in order to outsource. In
cases in which the customer is already running an application
in-house on their own hardware, an application outsourcer can
take over the management of this environment, resulting in
benefits for the customer.

• No change cycle: The software that is outsourced is
preconfigured to meet customer needs, and it is possible to
make changes to an outsourced application mid-cycle. However,
an application outsourcer has more experience with the cost and
time associated with a change, and can therefore put a price tag
on it. The customer can then ask the finance manager, for
example, if they really want to spend $10,000 out of their own
budget for that new report. Chances are they won’t. The
outsourcer can prevent “scope creep” in this way. When changes
are made, the outsourcer can leverage the experience of working
with other customers that have had similar needs.

For detailed documentation, see Table A2 in the Appendix.

Future Outlook

When a simulation of the models for in-house and outsourced
application deployment is run, comparisons can be made between
the relative time, cost, and risk of the two approaches.

9

Figure 4
Dynamics of Outsourced Application Deployment

AO configuration

AO rework

~
AO error
rate

AO total implementation
and operation

AO prototype

AO test

AO rollout AO operation

AO support

+

AO time

AO daily
implementation costs

AO cost per function
point per day

AO implementation costs

AO implementation
cost rate

Cost of AO service

T1 costs

AO configuration
time

AO productivity
AO rollout
time

Cost of downtime 2

AO proto time

AO proto
rate

acceptance
AO

AO rollout
rate

AO configuration
rate

AO cost rate

AO downtime

AO cumulative operating costs

AO operating
costs total

AO configuration

AO rework

~
AO error
rate

AO total implementation
and operation

AO prototype

AO test

AO rollout AO operation

AO support

+

AO time

AO daily
implementation costs

AO cost per function
point per day

AO implementation costs

AO implementation
cost rate

Cost of AO service

T1 costs

AO configuration
time

AO productivity
AO rollout
time

Cost of downtime 2

AO proto time

AO proto
rate

acceptance
AO

AO rollout
rate

AO configuration
rate

AO cost rate

AO downtime

AO cumulative operating costs

AO operating
costs total

Source: IDC, 2002

27743 - 10 - A IDC

Time

The amount of time it takes for implementing the software in each
model is shown in Figure 5. The application is fully implemented
when the software curve is equal to zero, and there is no more
software left to implement. According to the simulation, it takes
43% longer to implement the software in-house than it takes an
outsourcer to implement the same package in an external facility.
This difference is primarily due to the workforce and rework
dynamics discussed earlier. The two curves shown in Figure 5 are a
measure of productivity since they depict units of software
implemented over time. Note that AO productivity ramps up as the
project gets underway and declines as the project nears completion,
and there is less software to implement. This accounts for the
experience level of the outsourcer: Its workforce has likely already
implemented this application for many other customers. Since the
application outsourcer takes on the risk of hiring and maintaining
its resources, attrition has little impact on the productivity of the
project team from the perspective of the customer — at least
compared to the in-house method.

Figure 5
Time to Implement Software

0

500

1,000

1,500

2,000

2,500

3,000

3,500

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Days

S
o

ft
w

ar
e

(u
n

its
)

AO time IH time

= 43%

0

500

1,000

1,500

2,000

2,500

3,000

3,500

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Days

S
o

ft
w

ar
e

(u
n

its
)

AO time IH time

= 43%

Source: IDC, 2002

A IDC - 11 - 27743

Note that the initial productivity of the in-house project team drops
off just as the project should be heating up. This happens as new
people are brought on to the project and experienced resources
devote more of their time to training the new personnel.

Another feature of the in-house curve is its low rise compared to the
AO curve. In addition, if it were possible to plot each day on this
graph, the in-house curve would look like a jagged line. There are
several reasons for this. First, attrition throughout the project —
especially as it ramps up — leads to decreases in productivity, as the
team must do more with less and retrain new personnel. The
resulting productivity decreases battle with natural productivity
increases as the project team becomes more experienced. It is
therefore difficult for an in-house project team to increase
productivity at a steady rate (and to predict costs, since time equals
money). Also, the vicious rework cycle means that resources must
spend time redoing work they have already completed, slowing down
the rate at which software is implemented.

Cost

Figure 6 shows a comparison of cost over time between in-house and
outsourced application deployment. Note that the in-house curve does
not start at zero — this represents the up-front costs for
infrastructure hardware and software associated with in-house
deployment.

The first set of arrows in between the curves represents the point at
which all software modules have been implemented. At this
juncture, costs for in-house deployment are 109% greater than the
costs for outsourced deployment — despite the fact that the
outsourced application is fully implemented 43% faster, meaning
that operating costs are incurred earlier on.

The second set of arrows represents the point in which the software
has been fully implemented for a year. At this juncture, total costs
for in-house are 159% higher than for the outsourced model.
Eventually, the in-house curve will flatten out and decrease once the
system has stabilized. A major upgrade would send this system back
into chaos, however, with dynamics very similar to those
experienced during the initial implementation and operation.

The cost curve for application outsourcing flattens out almost
immediately as a result of predictable monthly costs. Upgrades in
this situation will also have a more predictable impact on cost.

Risk

Figure 7 shows a risk comparison between in-house and outsourced
deployment. It depicts the cost over time of internal resources to
support an in-house deployment compared to an outsourced
deployment. This is a risk comparison since increased cost
uncertainty equals increased risk.

27743 - 12 - A IDC

The cost over time of internal resources to support an in-house
implementation varies widely. One reason for this wide range is the
unpredictable nature of human decision-making. Another is the
erratic nature of human productivity, which can vary depending on
the day of the week, illness, morale, or outside pressures. In
addition, software itself is unpredictable and complex; it is
impossible to determine when it is going to break, or when support
calls are going to come in.

Internal costs to support application outsourcing can also vary for
the same reasons stated above, but at a smaller magnitude. This is
because less internal people need to be directly involved with
supporting the application (because it is the outsourcer’s
responsibility). The application outsourcer takes on the risk
associated with supporting the application so that the customer does
not have to. Furthermore, it is likely that the application outsourcer
has less risk to assume than its customers, since its resources are
likely more experienced with the ongoing management of the
application, and they can be used more efficiently.

Figure 6
Total Cost Comparison

Days

C
o

st
 (

$0
00

)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

AO cost IH cost

0 100 200 300 400 500 600 700 800 900 1,000

= 109%
= 159%

Days

C
o

st
 (

$0
00

)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

AO cost IH cost

0

500

1,000

1,500

2,000

2,500

3,000

3,500

AO cost IH costAO cost IH cost

0 100 200 300 400 500 600 700 800 900 1,0000 100 200 300 400 500 600 700 800 900 1,000

= 109%= 109%
= 159%= 159%

Source: IDC, 2002

A IDC - 13 - 27743

Essential Guidance

According to the results of the models, the top cost drivers of in-
house application deployment are people, erratic productivity, and
up-front and ongoing costs.

The top benefits of application outsourcing are:

• A lean/more focused staff

• Rapid implementation

• Predictable costs or cost avoidance

• Risk transfer

Actions to Consider

Although this document discusses a scenario where both application
implementation and operation are outsourced, outsourcing parts of
the process will also yield benefit where it reduces the number of
internal resources that need to be a part of the project. Companies
with recent large investments in new applications and infrastructure
may choose to outsource incrementally. For example, an outsourcer
can take over the management of applications that are already
deployed internally on customer hardware.

Figure 7
Internal Support Cost Comparison

Days

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0 100 200 300 400 500 600 700 800 900 1,000

C
o

st
 (

$)

AO support IH support
Days

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0 100 200 300 400 500 600 700 800 900 1,000

C
o

st
 (

$)

AO supportAO support IH supportIH support
Source: IDC, 2002

27743 - 14 - A IDC

Most of the advantages of the AO model in this document come from
the outsourcer’s superior experience with the application. This
reduces the outsourcers own vulnerability to workforce and rework
dynamics. If the outsourcer does not have a higher experience level
than its customer, there is little benefit to outsourcing. It is
important that the application outsourcer be an application expert.

Any company contemplating outsourcing its applications should
seek reference sites with a similar implementation approach,
company size, and generic application type (i.e., mission-critical
versus non–mission-critical). These factors, particularly the
implementation approach, seem to have the greatest impact on the
success of the outsourcing initiative.

In addition, support processes and procedures must be clearly
documented and understood. Transferring risk to an outsourcer will
derive no benefit if the quality and level of support is unpredictable.
Finally, if the outsourcer is not reliable or financially viable, the risk
of doing business with such a company will outweigh the benefit.

Learn More

Related Research

• IDC’s Top 10 Application Management Companies, 2001 (IDC
#27648, July 2002)

• Who’s Making Money? IDC’s Top 10 Software as a Service
Players (IDC #27489, June 2002)

• Worldwide Enterprise Application Software as Service
Competitive Analysis: 2002 Leadership Grid (IDC #27484, June
2002)

• Measuring the Business Benefits of Software as a Service: A ROI
Primer for Decision Makers (IDC #26965, April 2002)

Appendix

Tables A1 and A2 below are the documentation for Figures 1 and 4.

A IDC - 15 - 27743

Table A1
 Documentation for the Dynamics of In-House Deployment

Item Type Description

Acceptance Flow The rate at which the tested software is accepted

Assimilation rate Flow The amount of time it actually takes for assimilation, when productivity
and the number of new project personnel are considered

Attrition rate Constant 1%

Available talent Random number Randomly generated number representing the available talent

Change rate Random number A random number representing the percentage of correct software that
needs to be reworked as a result of changes

Configuration rate Flow The amount of time it actually takes for configuration, when
productivity and the amount of software to be configured are
considered

Configuration time Constant The amount of time it should take for configuration under optimal
conditions

Cost of downtime Constant A constant that is equal in both scenarios

Daily implementation costs Result The daily cost of implementing the software, calculated by multiplying
the cost per function point per day times the number of days the
software is being implemented

Error rate Random number A random number that is influenced up or down by productivity

Experienced personnel Stock The number of experienced personnel

Hardware maintenance costs Constant A constant representing a yearly cost of 15% of hardware purchase
costs

Hardware purchase costs Constant A constant representing a one-time charge of $250,000

Hire rate Flow The rate at which new personnel are brought into the organization,
determined by the amount of available talent, as well as the number of
people needed on the project

IH configuration Stock The amount of software that needs to be configured

IH cost per function point per day Constant A constant that is equal in both scenarios, representing the cost per
day of implementing a unit of software

IH downtime Random number A random number representing the percentage of downtime, with a
mean of 3% and a standard deviation of 3%

IH implementation costs Stock The accumulated costs associated with implementing the software,
excluding hardware, software, and network purchase costs

IH implementation costs total Result All accumulated costs associated with implementing the software

IH operating costs Stock The accumulated costs associated with operating the software,
excluding hardware, software, and network costs

IH operating costs total Result All accumulated costs associated with operating the software

IH operation Stock The amount of software that has been rolled out and is now
operational

IH productivity Graphical function The percentage of optimal productivity achieved in-house

IH proto rate Flow The amount of time it actually takes to prototype, when productivity
and the amount of software to be configured are considered

IH prototype Stock The amount of software that needs to be prototyped

IH rework Flow The rate at which software is reworked, which is influenced by the
change and error rates

27743 - 16 - A IDC

Table A1
 Documentation for the Dynamics of In-House Deployment

Item Type Description

IH rollout Stock The amount of software that needs to be rolled out

IH rollout time Constant The amount of time it should take to rollout the software, under
optimal conditions

IH support Random number A random number representing the cost of internally supporting the
application in-house, influenced by the amount of software to be
operated

IH time Result A measure of the amount of time it takes for all the software to be fully
rolled out

IH total implementation and
operation costs

Result All accumulated costs associated with the implementation and
operation of the software

Implementation cost rate Flow The rate at which implementation costs are incurred, influenced by
daily implementation costs

Network costs Constant A constant representing a one-time charge of $10,000

Network maintenance costs Constant A constant representing a cost of $14,400 a year

New project personnel Stock The number of new personnel that have been hired but not yet
assimilated

Operating cost rate Flow The rate at which operating costs are incurred, influenced by daily
downtime and support costs

Rollout rate Flow The amount of time it actually takes to roll out the software, when
productivity is considered

Software maintenance costs Constant A constant representing a yearly cost of 15% of infrastructure
software purchase costs

Software purchase costs Constant A constant representing a one-time charge of $125,000 for
infrastructure software

Time to assimilate Constant A constant representing the average amount of time it should take for
new project personnel to become assimilated

Time to prototype Constant A constant representing the amount of time it should take to prototype
under optimal conditions

Training overhead Graphical function A graphical function based on the assumption that as the number of
new personnel increases, the amount of time experienced personnel
spend on training these resources also increases

Source: IDC, 2002

A IDC - 17 - 27743

Table A2
Documentation for the Dynamics of Outsourced Application Deployment

Item Type Description

AO acceptance Flow The rate at which the tested software is accepted

AO configuration rate Flow The amount of time it actually takes for configuration, when productivity
and the amount of software to be configured are considered

AO configuration time Constant The amount of time it should take for configuration under optimal
conditions

Cost of downtime Constant A constant that is equal in both scenarios

AO daily implementation costs Result The daily cost of implementing the software, calculated by multiplying
the cost per function point per day times the number of days the
software is being implemented

Error rate Graphical function A number that is influenced up or down by productivity

AO configuration Stock The amount of software that needs to be configured

AO cost per function point per
day

Constant A constant that is equal in both scenarios, representing the cost per day
of implementing a unit of software

AO downtime Constant A constant representing the percentage of downtime, .01%

AO implementation costs Stock The accumulated costs associated with implementing the software

AO cumulative operating costs Stock The accumulated costs associated with operating the software, excluding
the cost of the AO service and T1 costs

AO operating costs total Result All accumulated costs associated with operating the software

AO operation Stock The amount of software that has been rolled out and is now operational

AO productivity Constant A constant equal to 1

AO proto rate Flow The amount of time it actually takes to prototype, when productivity and
the amount of software to be configured are considered

AO prototype Stock The amount of software that needs to be prototyped

AO rework Flow The rate at which software is reworked, which is influenced by the error
rate

AO rollout Stock The amount of software that needs to be rolled out

AO rollout Time Constant The amount of time it should take to roll out the software, under optimal
conditions

AO support Random number A random number representing the cost of internally supporting the
outsourced application, influenced by the amount of software to be
operated

AO time Result A measure of the amount of time it takes for all the software to be fully
rolled out

AO total implementation and
operation costs

Result All accumulated costs associated with the implementation and operation
of the software

AO implementation cost rate Flow The rate at which implementation costs are incurred, influenced by daily
implementation costs

T1 costs Constant A constant representing a cost of $14,400 a year

AO cost rate Flow The rate at which operating costs are incurred, influenced by daily
downtime and support costs

AO rollout rate Flow The amount of time it actually takes to roll out the software, when
productivity is considered

AO proto time Constant The amount of time it should take to prototype under optimal conditions

Source: IDC, 2002

27743 - 18 - A IDC

Document #: 27743
Publication Date: August 2002
Published Under Services: ASP and Application Management
Services; Emerging Software Delivery Models

	Abstracts:
	Table of Contents:
	back to the top:

