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ABSTRACT 

 
Those sub-systems corresponding to production processes are complex systems, due to 
information feedback, delays, and the nonlinearities present within the process of the 
company’s decision making. The System Dynamics allows having a systemic vision of the 
processes, which leads to identifying some factors that might be generating behaviors not 
easily foreseen. With the theory of the Qualitative Mathematical Analysis it is possible to 
find the stability and instability zones of the systems beside the variation of some 
parameters and the starting values of the condition variables. The attraction basin might 
present behaviors such as the point ones, the cyclic ones, the odd ones, or the chaotic ones. 
The above mentioned concepts and techniques are used to compare two simple models of 
production systems: Push and Pull; the results show different behaviors in both systems 
when changes in the values of some parameters being common in both models are made. 
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1. INTRODUCTION 
 
The manufacturing systems have a hard mathematical representation of their behavior, and 
therefore, every time a study of them is required, it is necessary to make use of the ability, 
knowledge and criteria of those who have the responsibility of making decisions in such 
systems. A very important manufacturing sub-system is the one regarding the process of 
production, which demands a great effort from the company in order to know in great detail 
some factors such as the availability of production assets, personnel, material to be 
transformed, product demand,  production costs, transport and production time, inventory 
of finished goods, and many other factors that intervene in the production process. 
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The union of the factors of productions and the productive processes management 
techniques generates very complex systems of production that many times are not easily 
understood. That’s why there’s the need to make use of diverse techniques allowing to 
analyze the system, such as the qualitative mathematical analysis and the simulation. The 
system dynamics is a simulation technique with which the relations between the factors 
intervening in a system and its influence in its dynamic behavior can be seen and 
understood. This quality of the system dynamics gives the analyst, manager or director 
using it the chance to have a systemic vision and therefore a greater understanding of the 
production process. 
 
The present research has a main goal to describe, study, analyze, simulate and present 
policies for a simple production system having two stages: one corresponding to the 
production process of any given goods, and another one corresponding to the level of the 
inventory of finished goods. To achieve this, relations between other variables are 
established. Variables such as demand, prevision of demand, coverage extent of the 
expected inventory, inventory adjustment time and production process time. Additionally, 
it is intended to find the attraction basins and its respective balances.  
 
In order to achieve the above mentioned goals, the general production model is studied, 
which includes a production process and an inventory of finished goods. The model is 
made starting from the System Dynamics. The differential equations representing the 
system are established and the qualitative mathematical analysis is made from the 
differential equations in state of balance, which leads to obtaining the Jacobian Matrix, the 
characteristic equation and the eigenvalues; this late ones indicate the kind of attractor that 
can be presented. A later study leads to making a qualitative analysis of the trajectories and 
behaviors of the results of the simulations, which are carried out starting the sensitivity 
analysis of the initial conditions of the state variables; and finally, the conclusions about the 
system stability are given. 
 
 
2. THEORETICAL APPROACH 
 
For the elaboration of the model it is required to know about three specific areas: direction 
of operations, qualitative mathematical analysis and simulation. The direction of operations 
allows the understanding of the production system and its relations; the qualitative 
mathematical analysis provides the basis to make the stability study, and the simulation 
shows the behaviors emerging when stating different policies for direction as well as 
varying the parameters for the model. 
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2.1. Direction of Operations 
 
The industrial systems, and more concretely the manufacturing sub-systems are known to 
be complex systems where the required day after day decisions in order to carry out an 
operation system for manufacture, involves the need to understand and direct the dynamic 
behavior associated to it. Without understanding the dynamic behavior, it is very difficult 
to design proper control systems to decide when it might be necessary to intervene and 
what optimal policies must  be given. The natural dynamics of system plays a crucial role 
in deciding how the direction control system must be chosen (BICKLE and 
MCGARVEY,1996). The behavior of complex systems depends on their structure, 
understanding as structure the group of variables of the system and their inter-relations. In 
(FORRESTER, 1961; FORRESTER, 1987; STERMAN, 1994; MACHUCA, 1998; 
SENGE et AL., 1995; PRIGOGINE, 1987) some of the factors and the relations between 
the effects and the factors that make up the complex systems, can be read. Such features 
increase the difficulty in the direction of businesses and increase the undesirable effects as 
well. 
 
2.2. System Dynamics 
 
The behavior of a system is observable through the patterns of its  components such as 
levels, rates or other variables. With different variables, the behavior of the system must be 
different and the dominant curl of every pattern in every period of time should not be the 
same in every instant (TU, CHEN, and TSENG, 1997). The success of the research in 
system dynamics depend on a clear initial identification of a purpose and an important 
objetive; a system dynamics model must organize, clarify and unify the knowledge. 
 
The simulation of the model must lead to a process of validation through which the stability 
of the model, the fluctuation periods, the relations of time among the variables, and other 
factors, are judged. The final concept of the industrial dynamic models will depend on the 
utility they have for the manager in the design of better industrial systems. The simulation, 
validation, and sensibility analysis of the parameters and the structures allow the proposal 
of scenarios, these ones understood as a hypothetical situation through which “an 
imaginative jump towards future” takes place.  Its objective is not to predict what will 
happen but to propose several potential future scenarios. It is quite probable none of them 
will come to terms, but all of them might have more awareness about the forces acting on 
the present, which might also act on the future. 
 
 
2.3. Qualitative Mathematical Analysis of Dynamic Systems 
 
The joint application of the theory of Qualitative Mathematical Analysis and the one of 
System Dynamics is owed to Ilya Prigogine who, altogether with his collaborators, focuses 
his work on Mathematical Analysis of the bifurcations, chaos, and other forms of 
instabilities that occur even in non linear models relatively simple. The Qualitative 
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Analysis might be considered as a complement of the results obtained with the simulations 
of the models of System Dynamics and it helps understand the relations or interactions 
between the mental models and all the ways of behaviors they might generate. 
 
The linear dynamic systems  present a unique point attractor, or so to speak, a unique 
balance. The non-linear and the delay times in the feedback control systems might cause 
complex behaviors, such as those giving origin to the periodical attractors and the odd 
attractors; the non-linear systems might present multiple attractors, and every single one of 
them might be different.  Over the last 300 years the behavior of the systems had been 
thought to be predicted if the systems behavior laws and their initial conditions were 
known. However, due to the discovery of the deterministic chaos, randomness in the 
behavior of the systems has been introduced, and therefore, it is understood that the 
deterministic processes might generate unforeseen situations when there are nonlinearities 
among them. (PRIGOGINE And STENGERS, 1984; CHEN, 1988; BRIGGS and PEAT, 
1999; FORRESTER, 1972; STURIS and MOSEKILDE, 1988; ARACIL and TORO, 1993; 
ARACIL and GORDILLO, 1997). 
 
The term attractor refers to the fact that the trajectories that start in different points within 
the space of phase, or in an attraction basin, all of them will approach a stationary 
movement when the transitory period has disappeared (ANDERSEN and STURIS, 1988). 
Aracil and Gordillo (1997) say that the first step towards the development of qualitative 
analysis of a dynamic system is the determination of the number and kind of its attractors, 
and their corresponding attraction basins. Altogether with the attractors, the theory of 
bifurcation shows up. There are three main kinds of attractors: 
 
• Point Attractor: In the Point Attractor, all the trajectories converge towards the balance 

trajectory represented by repose. Figure 1 shows a point stable temporary behavior. In 
the phase, the point stability is represented by an asymptotically stable spiral. 

• Cyclic Attractor: The cyclic behavior might be classified in: a simple attractor, which is 
a closed curve in the state space, and it is a non-cushioned wave in the temporary 
drawing (Figure 2); A periodical attractor, which has double original revolution period, 
that is a cycle-2. 

• A quasi-periodical attractor, which gets to have a strange shape such as, for instance, 
the one known as Bull; the strange or chaotic attractor, which does not show any 
repetitive pattern but it has an unpredictable direction every time.  

 
3. MODEL OF THE PRODUCTION SYSTEM 
 
Figure 3 shows the model of a general, non-linear production system, in which the policy 
of the production order varies in three ways: first, when the production policy does not take 
into account the product in process; second, when the production policy does take into 
account the product in process; and third,  when besides the product in process, a delay in 
the production order is present.  
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FIGURE 1 – Temporary behavior of the point attractor. 
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FIGURE 2 – Temporary behavior of the cyclic attractor. 
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3.1. Case 1. Non Linear Dynamic Model; the product in process is not taken into account. 
This case was worked upon the feature of the “work in process” (WIP) variable not 
affecting the production order. There is a simple production system – inventory, 
represented by two processes: first, a production process that will provide information 
about the inventory in process every moment; second, the storage process of the finished 
goods (Figure 3). A general fabrication process is then analyzed, starting from a lower level 
of the inventory of finished goods. When the real inventory of finished goods lies under the 
level of expected inventory, production orders for the difference the level of expected 
inventory and the level of real inventory are launched, in addition to the demand; the 
production order is: 
Order = demand + discrepancy/tai, where: 
 
discrepancy = expected inventory-INV. 
 

mcp inv ini
wip ini

tpd

<pentrega>

<Time>

<demanda>

entrega

<tproceso>

tp

tai

gci
D

prevision
inv

deseado

fptfp

discrepancia

fd
INVWIP

 
FIGURE 3.  Flow diagram of a general production-inventory model. 
 
 
The process time of the product depends on the quantity of product in process. The quantity 
of finished product that is delivered to the customer depends on the level of the inventory. 
Initially, the demand is constant through time, and that one not satisfied, does not remain 
pending.  
 
Within a linear system there will never be a long term cyclic behavior, a situation that does 
happen within a non-linear system, and that in addition, might be considered as a normal 
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situation of the non-linear systems. In the theory of differential equations, this cyclic 
behavior is called Center, and in the theory of qualitative analysis is called Limit Cycle 
Attractor. The non-linear systems might show other strange behaviors in their trajectories, 
and some of them might be chaotic.  The instable points of balance lead to the behavior of 
the system being directed towards one or another stable balance zone, or it leads to 
catastrophe. The non-linear system being analyzed in this case, includes nonlinearities 
represented by means of tables, for which it is somehow difficult to make a mathematical 
analysis; then it is necessary to make use of a graphical analysis, for both the non-linear 
and the results of the simulations. The simulation software used here is VENSIM. Figure 3 
shows a Forrester diagram, also known as Flows and Levels diagram. 
 
The parameters used in the model are: gci = coverage degree or period of security of the 
inventory; tai = time of adjustment for the inventory (constant); tpd = period of forecast for 
the demand; mcp: top production capacity (workmanship, capital equipment, raw materials, 
and other resources); D: The D Variable (demand) is a table that might take the values that 
range between 100 and 120, and it depends on time; delivery(inv): “delivery”, is a non-
linear function that depends on the level of the inventory for finished product (INV); 
tp(wip): The “tp” variable is a table of a non-linear function that depends on the amount of 
product in process (WIP). 
 
Procedure to find the balance regions: 
 
Analytically, the stability and instability regions of the models might be found.  Starting 
from the level equations, in state of balance, the balance points for such variables are 
found. With the derivatives of the expressions of the balance points, the Jacobian matrix is 
found, the characteristic polynomial is stated, and with this it is defined whether there is 
stability or instability. Below, the analytical development carried out until finding the 
characteristic polynomial of the case study is presented.  
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( ) ( ) ( )( )inv tai D gci D tai D entrega inv= + −* * * *  

( ) (wip D entrega inv tp wip= * * )                            (4) 
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Starting from the previous matrix, it is possible to obtain the characteristic equation, which 
allows calculating the characteristic roots, or the following eingenvalues: 
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There are two conjugated eigenvalues that might be complex. However, it is somehow 
difficult to conclude on the form of the stability starting from these eigenvalues, due to the 
fact that the point or points of balance should be known accurately, in order to be able to 
know the sign of the derivative of h  (h’), and with this, to determine whether the value of 
the root is positive or negative, and if the real part is negative or positive. What can be 
surely identified are the parameters that will affect the form of the trajectories. 
 
The points of balance might be found when graphing the intersections of the balance 
equations. Figure 4 shows the three intersection points of the balance lines; points 1 and 5 
correspond to point attractors, point 3 corresponds to a rejecter or separator, and the points 
2 and 4 correspond to a top and lower respectively, which represent changes of attraction 
basins. 
 
Figure 5 represents the behavior in the portrait of phase of the point attractors. Figure 6 
presents the temporary behavior of the two point attractors, with trajectories being 
originated in different values of initial conditions; the space where the separator is, can also 
be seen; how the trajectories head towards the attractor of the upper part of the graphic and 
other trajectories head towards the attractor of the lower part of the graphic is seen. The 
two points of balance are in WIP = 107 and in WIP = 52.5. 
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FIGURE 5.  Phase Drawing of two point attractors. 
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FIGURE 6. Two attraction basins and the bifurcation separator 
 
 
3.2. Case 2. Non-linear Dynamic Model; the product in process is taken into account 
 
Figure 7 represents the same system of case 1, but with a new policy of production orders; 
in this new policy, the WIP makes part of the production order, a situation that is 
considered in the diagram of Figure 3. Although with this new model the policy of 
production orders has been improved, which leads to having a situation of balance faster 
than it did before, two attraction basins still happen for the WIP variable, each one of them 
with a point attractor. The production order has the following expression: 
 
Order = demand + discrepancy/tai, where: 
discrepancy = expected inventory-INV-WIP. 
 
The INV variable that is shown in Figure 8 presents two stable points of balance, a point 
attractor, in INV = 31.5, and another point attractor in INV = 12.5. The WIP variable, even 
though is not shown here, also presented two point attractors: one in the WIP = 74 value, 
and another in the WIP = 52.5 value. In the simulation of the model of CASE 1, the INV 
variable only presents a point attractor, that is, only one attraction basin, regardless of the 
initial values of the INV variable. 
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FIGURE 7. The WIP variable affects the production order. 
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FIGURE 8. Case 2. Possibility of two point attractors: inv = 31.5; inv = 12.5 
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3.3. Case 3. Non-linear Dynamic Model; there is a delay in the production order. 
 
This Case 3 is a system equal to that one of Figure 7, in which the Work in Progress (WIP) 
affects the Production Order variable, and this at the same time, has a delay of third order, 
with delay time equal to 1.5 units of time. With this production order, the trajectories of the 
WIP variable, each one with different initial values, present a cyclic attractor. Figure 9 
shows the cyclic stable behavior of a trajectory of the WIP variable with an initial value 
equal to 50 units. The production order has the following form: 
 
 Order = DELAY3(prevision + discrepancy/tai,1.5), where discrepancy = expected inv -
INV-WIP. 
 
Figure 10 shows the behaviors of several trajectories of the INV variable, facing different 
initial values; it can be seen that during the first 150 units of time there are two attractors: a 
periodic one around the INV = 12 point, and another chaotic one that might be described as 
an instable point attractor in form of an every time wider spiral, to turn into a periodic 
attractor around the time equal to 150. Starting from this time, the system will only have a 
periodic attractor. During the first 50 units of time it can be seen that the trajectories range 
pretty much up to reaching a stability, which may produce critical situations in the 
productive system if the possibility of these behaviors taking place, is not considered. 
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FIGURE 9. The WIP variable ranges cyclically between 44.27 and 100.92 
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FIGURE 10. Case 3. Two attractors up to the time equal to 150: chaotic and periodic. 
 
 
3.4. Other Cases. Non-linear Dynamic Model; delay times higher than 1. 
 
Other cases may be the ones having delay times higher than 1 unit in the production order, 
which give as a result, for all the cases, trajectories with cyclic behavior in the WIP 
variable and N-periodic behavior in the INV variable; the higher the day time might be the 
higher width both for the cycle and the N-period. Delay times lower than the unit provide 
point stable behaviors.  
 
4. SUMMARY OF THE THREE FIRST CASES 
 
Figure 11 shows the temporary behaviors of the WIP and INV variables, according to four 
policies of the production order variable, such as: the three policies that are presented in 
this article, and an additional one that was simulated with the delay policy, where the delay 
has an average time of one unit and adjustment time of the inventory equal to the double of 
that one used in the three mentioned cases.  For this later policy, the behaviors of the 
trajectories are stable point attractors, very similar to the behaviors presented in the model 
of Case 2. Although it is not possible to see in the graphic the accurate point of the 
bifurcation, it is indeed possible, for the naked eye, to observe that the critical zone where 
the bifurcation takes place has a WIP value equal to 50. This means that giving initial 
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actions in this point should be a very careful action, as there might be bifurcations that lead 
to different stabilities. 

Simulations of four models
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FIGURE 11. Four different cases of production orders. 
 
 
 
5. PUSH AND PULL MODELS 
 
In the present research two models corresponding to the PUSH and PULL systems have 
been analyzed, which are represented in an added form, and taking from every single one of 
them the main feature such the added planning in the PUSH system, and the concept of 
lower times and lower inventories for the PULL system, through the KANBANS concept. 
The two analyzed models have: three variables of level in the PUSH system, and four 
variables of level in the PULL system;  but only starting from the variations of some 
parameters the behaviors of the variables of the Product in Process (WIP) level and 
Finished Product Inventory (INV) are analyzed. The other two variables of the PULL 
system level are: Pending orders portfolio (CTRA) and Production Planning (PP); the third 
variable of level in the PUSH system is the one corresponding to the pending orders 
portfolio.  
 
The analysis of these two models was made for two cases: in the first one the relation 
among the variables Product in Process (WIP) and discrepancy of inventories is not 
considered. In the second case this relation is indeed considered. 
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5.1. PUSH AND PULL MODELS WITHOUT WIP CONTROL 
 
The following five situations are analyzed because of considering that they affect somehow 
the behaviors of the two systems: PUSH and PULL. 
 
(a) To analyze graphics obtained with a non-linear production time table. 
(b) To modify the production times table slightly. 
(c) To keep the first times table and modify the values of the security period SS in the 

PULL system and the coverage degree GCI in the PUSH system. 
(d) To increase the demand in the horizon of the simulation. The other parameters are kept 

with the same values used in the first situation. 
(e) To convert into non-linear tables the adjustment times for the TAI inventory and the IT 

Kanban cycle time. The other data remain as in those of the first situation. 
 
The parameters that are modified in the five situations are: 
 
TAI: Time of adjustment for the inventory; IT: Kanban Cycle; GCI: Coverage degree for 
the inventory; SS: Security Period; TP: Time of process (Lead Time); D: Demand.  
 
Figure 12 shows the PUSH system with the relation between the INV PUSH variables and 
the expected inventory SS, starting from which the gross needs NN are calculated. Figure 
13 shows the PULL system with the relation between the INV PULL variables and the 
KANBAN number, starting from which the expected production FPD is calculated. 
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FIGURE 12. Diagram of a PUSH system. The WIP variable makes no part of the policy of 
the production order. 
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FIGURE 13. Diagram of a PULL system. The WIP variable makes no part of the policy of 
the production order. 
 
 
In figures 12 and 13 it is seen that none of the two models, neither the PUSH nor the PULL, 
have related the WIP PUSH – DIF nor WIP PULL – OP PULL, respectively. 
 
Table 1 shows the initial values of the model with which the situation (a) is simulated. In 
this situation the time of process (TP) is a non-linear function, specifically, logarithmic.  
 
TABLE 1. Parameters used in the simulation. TP non-linear. 

CASE TAI GCI IT SS TP D WIP 
initial 

INV 
initial 

Result: 
Attractor 

PUSH 0.5 0.8   Non- linear 105 50 80 Point 
PULL   0.5 0.3 Non- linear 105 50 80 Limit Cycle  

 
Figures 14 and 15 show the trajectories of WIP and INV of the PUSH system. In Figure 14 
three attraction basins are observed, with their respective point attractors, whose 
approximate values are 50, 110 and 210 units. Figure 15 only shows an attraction basin 
with its respective point attractor, whose approximated value is 105. 
 
Figures 16 and 17 show the trajectories of WIP and INV of the PULL system. Figure 16 
shows an attraction basin with an attractor of limit cycle having an approximate range 
between 0 and 1,400 units. Figure 15 only shows an attraction basin with an attractor of 
limit cycle having an approximate range between 60 and 1,200 units. 
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FIGURE 14. Temporary drawing of the work in process, WIP. Three point attractors. 
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FIGURE 15. Temporary drawing of the finished inventory, INV. One point attractor. 
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FIGURE 16. Temporary drawing of the work in process, WIP. Limit cycle attractor. 
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FIGURE 17. Temporary drawing of the finished inventory, INV. Limit cycle attractor. 
 
 



The Twenty-first International Conference of the System Dynamics Society  July 20-24, 2003  

From these four figures (14, 15, 16 and 17), it can be seen that for the variation of the time 
of process used here and for the policy of the production order in which the amount of the 
product in process is not taken into account, the PUSH system seems to be better than the 
PULL system, due to the fact that it has much lower inventories and besides they reach a 
point stable condition. According to what was expressed by Damodarna and Malouk 
(2002), most of the times the PUSH system provides better results than the PULL system. 
 
Figure 18 shows the phase drawing for the WIP and INV variables, in the PULL system. 
The trajectory has a transitory condition that starts in the initial conditions (wip, inv)= (50, 
80) and it moves until reaching the cyclic stable condition. 
 
The results obtained up to this moment with the models of figures 12 and 13, show one, 
two and up to three attraction basins with point attractors whose trajectories are 
asymptotically stable spirals; limit cycle attractors are also present, specifically in the 
PULL system. The most common behaviors shown by the results are the ones of point 
attractors, specifically for the PUSH systems. In the PULL systems the limit cycle 
attractors are more common. 
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FIGURE 18. Phase drawing of the WIP and INV. Limit cycle attractor.  One period. 
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5.2. PUSH AND PULL MODELS WITH WIP CONTROL 
 
The analysis made from now on represents both systems, PUSH and PULL, and it has as its 
main feature the fact that for the calculation of the production orders, the inventory of the 
product in process is taken into account; such calculation is made with information related 
to the inventory of product in process, with the one of finished product INV and the one of 
expected inventory (SS in the PUSH system and OP in the PULL system). 
 
Figure 19 shows the PUSH system with the relation between the WIP PUSH and DIF 
(difference between the expected inventory and the existing inventory, for both the product 
in process and the finished product) variables. Figure 20 shows the PULL system with the 
relation between the WIP PULL and OP PULL (production order) variables. 
 
In this section the same five situations of the 5.1. section were analyzed, but only the 
results of the (a) situation are shown, that is, non-linear Time of Process (TP). Table 2 
shows the values with which the models PUSH and PULL are simulated. The values are the 
same ones used in section 5.1.  
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FIGURE 19.  Diagram of a PUSH system. The WIP variable makes part of the production 
order policy. 
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FIGURE 20.  Diagram of a PULL system. The WIP variable makes part of the production 
order policy. 
 
TABLE 2. Parameters of the simulation. Non-linear time of production. 

CASE TA
I 

GCI IT SS TP D WIP 
initial 

INV 
initial 

Attractor 

PUSH 0.5 0.8   Non- linear 105 50 80 Point 
PULL   0.5 0.3 Non- linear 105 50 80 Point 

 
Figure 21 keeps two of the three point attractors that it had in Figure 14 when there was no 
control for the WIP. The new balance points are about 52 and 110, as well as two of the 
attractors in Figure 14. The third point balance that was in Figure 14 is not shown in Figure 
21. It might be thought that the control of the WIP balances the PUSH system a little more 
when a relatively high balance such as that one of Figure 14 disappears, whose 
approximate value is 230 units. Besides, the trajectories of Figure 21 reach balance faster, 
almost at half the time in which the trajectories of Figure 14 do it, and they do not present 
that many fluctuations. The trajectories of Figure 14 are asymptotically stable spirals, 
whereas the trajectories of Figure 21 are more approximate to improper asymptotically 
stable nodes, which  means the stability is reached after a single oscillation that does not 
even complete a cycle. 
 
Figure 22 presents the trajectory of the INV variable in the PUSH system when there is 
control of the WIP variable in the production order. The balance point, a point attractor, is 
exactly the same one of Figure 15, even though in this last Figure there is no control of the 
WIP. The balance is reached approximately in 105 units. The attractor of Figure 15 is an 
asymptotically stable spiral whereas in Figure 22 it tends to be an improper asymptotically 
stable node. 
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FIGURE 21. Temporary behavior of the WIP in the PUSH system with control of the WIP 
in the production order policy. Two attractors. 
 
 

R-WIP- 
INV PUSH 
400 

300 

200 

100 

0 
0 3.75 7.5 11.25 15 

Time (Month)
 

FIGURE 22.  Temporary behavior of the INV in the PUSH system with control of the   
WIP in the policy of production order. One attractor. 
 
According to the graphics presented in Figures 14, 15, 21 and 22, it might be said that the 
PUSH system with control of the WIP variable in the production order policy, leads to 
having a more stable system due to the fact that there are fewer attractors; the balances are 
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reached almost in half the time of the system without control of the WIP; and moreover, the 
trajectories fluctuate less when passing the asymptotically stable spirals in the system with 
the control of the WIP, to improper asymptotically stable nodes. 
 
The limit cycle attractor of the PULL system in Figure 16 turns into a system that may have 
three point attractors, which are shown in Figure 23, and these last ones are exactly equal to 
the attractors of the PUSH system in Figure 14. The difference between the PUSH system 
in Figure 14 (without control of the WIP variable in the production order) and the PULL 
system (with control of the WIP variable in the production order) is that the trajectories of 
Figure 14 are asymptotically stable spirals, whereas the trajectories in Figure 23 are 
improper asymptotically stable nodes. The two systems PUSH (without control of the WIP) 
and PULL (with control of the WIP) show that depending on the initial conditions of the 
level variables, three balances in both systems might be present, and regardless of the 
system, the points of balance are approximately 52, 110 and 220. The balances in Figure 23 
are reached in a third of the time they are reached in Figure 14. It might be said that 
between the PULL system of Figure 16 (without control of the WIP in the production 
order) and the PULL system of Figure 23 (with control of the WIP variable), the PULL 
system of Figure 23 should be preferred as it shows stability in form of point attractors, 
whereas the system shown in Figure 16 shows a stability of limit cycle with seemingly 
large sizes as they range between zero and about 1,400 units. 
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FIGURE 23. Temporary behavior of the WIP in the PULL system. Three attractors. 
 
 
It is important to note that being in the same PULL system, when including the WIP 
variable as a control in the policy of production order, the behavior of the system goes from 
some trajectories with stability of limit cycle, Figure 16, to some trajectories that might 
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start from three attraction basins that are stabilized each one in point attractors, Figure 23. 
It is also remarkable to remember that the time of the process is a non-linear function. 
 
Figure 24 shows the trajectories of the INV variable in the PULL system with control of the 
WIP variable in the production order. Three balance points are seen, point attractors, with 
approximate values of 90, 52 and 30 units. The corresponding PUSH system is the one that 
does not have the WIP variable as control in the policy of production order, and this is seen 
in Figure 17, which presents stable trajectories of limit cycle with approximate sizes 
between 15 and 1,200 units, which seemingly are pretty large. When comparing the 
trajectories of this PULL system, with and without the WIP variable as control in the 
production order, it is possible to say that is preferable to choose the PULL system with 
control of the WIP variable in the production order, due to the fact that it does not present 
such wide cycles as those of Figure 17, but balances of point attractor that might be present 
in the range (0,100). However, when comparing the INV variable in the PUSH system 
(with and without control of the WIP; Figures 17 and 22) and PULL (with control of the 
WIP; Figure 24), it might be preferable the PUSH system, as for any initial condition there 
is always going to be a single attraction basin and therefore a single point attractor reaching 
a value of about 105 units; unless that those who make decisions might consider that even 
though in the PULL system with control of the WIP three point attractors might be present, 
depending on the initial conditions, this system might be preferable to that one shown in 
Figures 17 and 22 (both of them PUSH),  due to the fact that any of the three point 
attractors are always below the point if balance of the PULL system shown in Figure 24. 
 
The attractor of Figure 17 (PULL system) is an asymptotically stable spiral, and the ones of 
Figures 22 and 24 (PUSH and PULL systems respectively) tend to be improper 
asymptotically stable nodes. As in Figures 16 and 23, in the case of the INV variable, it is 
important to note that even being in the same PULL system, when including the WIP 
variable as a control in the policy of production order, the behavior of the system goes from 
some trajectories with stability of limit cycle, Figure 17, to a system that might have three 
attraction basins with trajectories that are stabilized each one in point attractors, Figure 24. 
From the graphics presented in Figures 16, 17, 23 and 24, it might be said that the PULL 
with control of the WIP variable in the policy of production order, leads to having a more 
stable system due to the fact it goes from a system with stability of limit cycle with pretty 
large sizes, to a system of point stability with attractors of relatively low values. 
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FIGURE 24. Temporary behavior of the INV in the PULL system. Three attractors. 
 
 
6. CONCLUSIONS 
 
The qualitative mathematical analysis and the simulation, allow seeing the critical values of 
some parameters that might lead the system to a collapse.  A collapse might be produced 
both for excess of production and for lack of it. The excess of production might lead to the 
use of physical resources that might result very expensive for the company. The lack of 
production might lead to not having enough production and therefore, not enough sales to 
keep the company going. 
 
Initial intermediate production values also might present strange behaviors, for instance, 
that after a period of stability, it goes to a new point of balance completely different to that 
one they used to have. 
 
The qualitative analysis and the simulation, specifically with System Dynamics, might get 
those people in charge of decision making in an organization, either a manufacture, an 
agricultural, a health, a financial, or an educational one, and in general, in every kind of 
systems, to have a better clarity on the effects that might result from the process of decision 
making; it is therefore achieved, a greater capacity to foresee the emerging behavior of 
every conglomerate, calling a conglomerate a group of people, companies, environments, 
resources. 
 
To make the analysis of the systems the different values of the parameters and the initial 
conditions must be analyzed. The fact that a system might be controlled by some initial 
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conditions and parameters, does not guarantee the global stability, as any change, no matter 
how insignificant, might change it. 
 
The analysis of sensitivity of the systems that do not involve the inventories of product in 
process, WIP, shows one, two and up to three attraction basins that present point attractors 
with trajectories that are asymptotically stable spirals; there are also limit cycle attractors, 
specifically in the PULL system. The more common behaviors that show the results are 
those of point attractors, especially for the PUSH systems. In the PULL systems the limit 
cycle attractors are more common. 
 
 The analysis of sensitivity of the systems that do involve the inventories of product in 
process, WIP, shows one, two and up to three attraction basins both for the PUSH and the 
PULL systems, but in this case the attractors are all point attractors and their trajectories 
are improper asymptotically stable nodes; only in one figure it is seen a proper 
asymptotically stable node. 
 
The inventories of product in process and finished product, when the WIP variable is not 
included in the policy of production order, have levels higher than the inventories in the 
systems that do include the WIP variable in the production order. 
 
The stability of the inventories, either with high or low values, is reached in a faster and 
smoother way in the systems including the WIP variable in the production order, than it is 
in those systems not including it. As seen in the figures of section 5.1, which does not 
include the WIP variable in the production order, the point attractors have trajectories in the 
form of asymptotically stable spirals, whereas the figures in section 5.2 show point 
attractors with trajectories in the form of improper asymptotically stable nodes. 
 
Starting from this analysis it is not easy to identify the preference for a PUSH system or a 
PULL system, due to the fact that, even though both systems are pretty simple, the 
nonlinearities cause the variations in the parameters to lead the simulations to sometimes 
show the PUSH system being better, and sometimes the simulations show the opposite. 
 
Another situation that is not easy to define, is the one considering if a system with cyclic 
stability might be preferable to a system with trajectories in asymptotically stable spiral, or 
a system with improper asymptotically stable trajectories. The selection of one or another 
situation remain to the choice of a decision maker; in some occasions a limit cycle attractor 
of low size, might be preferable to a point attractor with a pretty high level of inventory. 
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