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Learning from Experience with Delayed Feedback 
 
 
 
 
 
 
 
 
 
 
Abstract 
 
Many important settings in individual and organizational life involve allocating resources 
between different types of activities with different delays between allocation and results.  
Examples include factory managers choosing to spend time on production now or on process 
improvement that may boost output later, and individuals choosing to get a job now or stay in 
school to get a better job later.  Empirical studies show that learning is difficult in dynamic 
systems and people often fail to learn from experience in the presence of delays. Understanding 
the processes that hinder learning from experience is central to improving learning and decision-
making. We use a formal model to examine the effect of time delays on learning from 
experience. The model represents a decision-maker engaged in a continuous time allocation task 
who learns from his performance as he tries to improve the payoff determined by his own 
actions. Our analysis shows that in an easy learning task where the payoff landscape is smooth 
and has only a single peak, we can still observe sub-optimal performance. Moreover, the 
decision maker can learn to believe that the sub-optimal performance is really the best she can 
do. 
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1-Introduction 
 
Many important situations in individual and organizational life involve allocating resources 
between different types of activities with different delays between allocation and results. These 
situations, often involving tradeoffs between short term and long-term results, are found in 
diverse fields.  For example, an individual must allocate her time between different activities, 
some satisfying her daily needs and some contributing to her long-term goals. At a more 
aggregate level of analysis, a factory can boost output in the short run by cutting maintenance, 
but in the long run, output falls as breakdowns increase.  Other examples include learning and 
process improvement (Repenning and Sterman 2002) and environmental issues (Meadows et al., 
1972).  Often such settings entail a worse-before-better dynamic in which system performance 

Hazhir Rahmandad 
Ph.D. Student, Sloan School of 

Management, M.I.T 
E53-364A, 30 Wadsworth Ave., 
Cambridge, MA 02142, U.S.A 

617-253-3865 
hazhir@mit.edu 

Nelson Repenning 
Associate Professor, Sloan 

School of Management, M.I.T
E53-335, 30 Wadsworth Ave.,

Cambridge, MA 02142, 
U.S.A 

617-258-6889 
nelson@mit.edu 

John Sterman 
Professor, Sloan School of 

Management, M.I.T 
E53-351, 30 Wadsworth Ave., 
Cambridge, MA 02142, U.S.A 

617-253-1951 
jsterman@mit.edu 

 
 
 



 
 

2

falls in the short run but improves in the long run (and vice-versa); Forrester (1969) described 
such worse-before-better tradeoffs in urban and other public policy settings.  
 
Individuals, organizations and societies often fail to learn from experience to improve their 
performance in these allocation and decision-making tasks.  Studies show that learning in 
complex dynamic systems is often difficult (Sterman 1994, Paich and Sterman 1993, Diehl and 
Sterman 1995, Dörner 1996). Understanding the processes that hinder learning from experience 
is central to improving learning and decision-making. 
 
Researchers have suggested a few factors that contribute to poor learning. One is misperceptions 
of feedback (Sterman 1994), including the difficulties people have in recognizing feedback 
loops, time delays, stocks and flows, nonlinearities and other structural elements common in 
complex dynamic systems.  Other theories stress the complexity of the payoff landscape, 
focusing on the potential for people (and machine learning processes) to become stuck at a local 
optimum in a rugged landscape (Levinthal, 1997;Busemeyer, 1986).  Our focus in this paper is 
the role of time delays in impeding learning.  While studies show how time delays degrade 
decision-making quality (Brehmer, 1992; Paich and Sterman, 1993; Diehl and Sterman, 1995), 
there are few if any formal models examining how learning may be affected by the presence of 
time delays.   
 
Our study was motivated by recent fieldwork in a manufacturing company. Repenning and 
Sterman (2002) found that managers learned the wrong lessons from their interactions with the 
workforce as a result of different time delays inherent in how various types of worker activity 
influence the system's performance.  Specifically, managers seeking to meet production targets 
had two basic options: (1) increase process productivity and yield through better maintenance 
and investment of time and resources in improvement activity; or (2) pressure the workforce to 
“work harder” through overtime, speeding production, taking fewer breaks, and, most 
importantly, by cutting back on the time devoted to maintenance and process improvement. 
Though the study found, consistent with the extensive quality improvement literature, that 
“working smarter” provides a greater payoff than working harder, many organizations find 
themselves stuck in a trap of working harder, resulting in reduced maintenance and improvement 
activity, lower productivity, greater pressure to hit targets and thus even less time for 
improvement and maintenance (Repenning and Sterman 2001, 2002).   
 
What makes these situations theoretically interesting, as well as of practical importance, is that 
people often consistently learn the wrong lessons from their experience, incorrectly interpreting 
the outcome feedback they receive as reinforcing the wisdom of a harmful course of action.  
Consider a manager facing a production shortfall.  Pressuring the employees to work harder 
generates a short run improvement in output, as they reallocate time from improvement to 
production.  The resulting decline in productivity and equipment uptime, however, comes only 
with a delay.  It appears to be difficult for many managers to recognize and account for such 
delays, so they conclude that pressuring their people to work harder was the right thing to do, 
even if it is in fact harmful.  Repenning and Sterman (2002) show how, over time, managers 
develop strongly held beliefs that pressuring workers for more output is the best policy, that the 
workers are intrinsically lazy and require continuous supervision, and that process improvement 
is ineffective or impossible in their organization—even when these beliefs are false.  
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In this paper we develop a formal model to examine the effect of time delays on learning from 
experience. The model represents a decision-maker engaged in a continuous-time resource 
allocation task.  As in many real world tasks, the decision-maker must simultaneously allocate 
resources (make decisions) and try to learn from experience how to make better allocation 
decisions to achieve better outcomes. 
 
We investigate the effect of different delays between resource allocation decisions (activities) 
and results (the payoff) on the ability of the decision-maker to find the optimal payoff. We draw 
on current literature on learning in psychology, game theory and attribution theory to model 
learning, and investigate four different learning procedures with different levels of 
sophistication, rationality, and information processing requirements. By including these different 
models, we can distinguish the effects of decision-making rationality from learning problems 
arising from delayed feedback. Our analysis shows that performance can still be significantly 
sub-optimal in very easy learning tasks, specifically, even when the payoff landscape is 
unchanging, smooth, and has a unique optimum. Moreover, the decision-maker can learn to 
believe that the sub-optimal performance is really the best she can do. The difficulty of learning 
in the presence of delays appears to be independent of the specific learning procedures we 
examined and is instead rooted in the delays between actions and outcomes. 
 
In the next section we describe the structure of the model and discuss the different learning 
procedures in detail. The “Results and Analysis” section presents a base case demonstrating that 
all four learning procedures can discover the optimum allocation in the absence of action-payoff 
delays. Next we analyze the performance of the four learning procedures in the presence of 
action-payoff delays, followed by tests to examine the robustness of these results under different 
parameter settings. We close with discussion of the implications, limitations, and possible 
extensions. 
 
 
2-The Model 
 
Our model represents a decision-maker engaged in a continuous-time resource allocation task. 
The manager must allocate a fixed resource among different activities; each allocation generates 
a payoff. The payoff can depend on the lagged allocation of resources, and there may be different 
delays between the allocation of resources to each activity and its impact on the payoff.  The 
decision maker receives outcome feedback about the payoff and past resource allocations 
(possibly after some reporting delays), and must attempt to learn from these actions how to 
adjust resource allocations to improve performance (Figure 1). 
 
As a concrete example, consider a plant manager allocating the time of his employees (the 
resource) among three activities: production, maintenance and process improvement. These 
activities influence production, but with different delays. Time spent on production yields results 
almost immediately. There is a longer delay between a change in maintenance activity and 
machine uptime (and hence production). Finally, it takes even longer for process improvement 
activity to affect output. 
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The plant manager gains experience by seeing the results of his past decisions and seeks to 
increase production based on these experiences. He has some understanding of the complicated 
mechanisms involved in controlling production and he may be aware of the existence of different 
delays between each activity and observed production. Consequently, when evaluating the 
effectiveness of his past allocation decisions, he takes these delays into consideration (e.g., he 
does not expect last week’s process improvement effort to enhance production today). However, 
his mental model of the production process may be imperfect, and there may be discrepancies 
between the length of the delays he perceives and the real delays. 
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Figure 1- Learning Model Overview 
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2-1- Allocation and payoff 
 
The decision maker continuously allocates a fraction of total resources to activity j of m possible 
activities at time t, )(tFR j

i where: 

1)( =�
J

j tFR         For  j:1,…, m      (1) 

In our simulations we assume m = 3 activities, so the decision-maker has two degrees of 
freedom. Three activities keep the analysis simple while still permitting different combinations 
of delay and impact for each.  Total resources, )(tR , are assumed to be constant so R(t) = R, and 
resources allocated to activity j at time t, )(tAj are: 

RtFRtA jj *)()( =         (2) 

 
These allocations can influence the payoff with some delay.  The payoff at time t is determined 
by the Effective Allocation, )(tEAj , which can lag behind jA  with a payoff generation delay 
of jT .  We assume a pipeline delay for simplicityii: 

)()( jjj TtAtEA −=         (3) 

 
The payoff generation delays are fixed but can be different for each activity.  
In our plant manager example, R is the total person hours available in one time period (day, 
week, etc), )(tFR j  is the fraction of the workers’ time the manager allocates to activity j (j: 
producing, maintenance, process improvement) and )(tAj is total person-hours/period spent on 
activity j. The delays in the impact of these activities on production (the payoff) are presumably 
ordered approximately as 0 ≈ Tproduction < Tmaintenance < Timprovement.  
 
For simplicity we assume the payoff, )(tPF , to be a constant-returns-to-scale, Cobb-Douglas 
function of the effective allocations:  
 

jtEAtPF
J

j
α)()( ∏=       , 1=�

j
jα       (4) 

 
The Cobb-Douglas function provides a smooth payoff function with a single peak—yielding a 
very simple learning task compared to most real life situations. We selected this payoff function 
to concentrate solely on the effects of delays on learning, eliminating the problems in learning 
that arise in more complicated landscapes with multiple peaks or payoff landscapes that change 
over time.  
 
2-2- Perception delays 
 
The decision-maker perceives her own actions and payoff, then she uses this information to learn 
about the efficiency of different allocation profiles and to come up with better allocations. We 
assume decision makers account for the delays between past allocations and payoffs, but 
recognize that the decision maker’s estimate of the length of these delays may not be correct.   
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In real systems it takes time to measure, report and perceive information such as activities and 
payoffs, so our model provides for the possibility that the perceived payoff, )(tPPF , differs 
from the actual payoff, )(tPF . However, to keep things simple and give learning algorithms the 
most favorable circumstances, here we assume these delays to be zero and measurement and 
perception to be fast and unbiased, so PPF(t) = PF(t).  
 
The decision-maker accounts for the delays between allocations and payoff based on her beliefs 
about the length of the payoff generation delays, jτ . She attributes the current observed payoff, 

)(tPPF , to allocations she made jτ  periods ago, so the allocation attributed to the current 
payoff, )(tAPFj , is: 

)()( jjj tAtAPF τ−=         (5) 

The values of )(tAPFj  and )(tPPF are used as inputs to the various learning and decision-
making procedures representing decision maker’s behavior. 
 
With our plant manager, for example, the production record represents )(tPPF , and we assume 
current production is immediately available to and perceived by the manager. The manager 
understands that the current production rate is the result of the worker time he has allocated to 
production, maintenance and process improvement activities 1τ , 2τ  and 3τ  periods ago. 
 
2-3- Learning and decision-making procedures 
 
Having perceived her own actions and payoff streams, the decision-maker learns from her 
experience, that is, selects what she believes is a better set of allocations and updates her beliefs 
about the efficiency of different allocations (Figure 1).  We developed four different learning 
algorithms to explore the sensitivity of the results to different assumptions about how people 
learn. The inputs to all of these modules are the perceived payoff and action associated with that 
payoff, )(tPPF  and )(tAPFj ; the outputs of the algorithms are the allocation decisions )(tFR j . 
The learning algorithms differ in their level of rationality, information processing requirements, 
and assumed prior knowledge about the shape of the payoff landscape. Here, rationality indicates 
decision-maker’s ability to make the best use of the information available by trying explicitly to 
optimize her allocation decisions. Information processing capability indicates her cognitive 
capacity for keeping track of and using information about past allocations and payoffs. Prior 
knowledge about the shape of the payoff landscape determines her ability to use off-line 
cognitive search (Gavetti and Levinthal, 2000) to find better policies. 
 
We use four learning models we denote Reinforcement, Myopic Search, Correlation and 
Regression. The Reinforcement and Myopic Search algorithms assume a low level of rationality 
for the decision-maker, specifically, that she is unable to infer the general shape of payoff 
landscape and instead searches the neighborhood of her current allocations and adopts 
allocations she finds to be better than those currently used. These models also assume relatively 
low information processing capacity for the decision-maker has and no prior knowledge about 
the shape of the payoff landscape.  
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The correlation model assumes a higher level of rationality for the decision-maker in that she can 
infer the direction in which better allocation policies may be found by extrapolating observed 
performance data, based on the correlation between allocations and the payoff. It also includes 
higher information processing capacity assuming that the decision-maker engages in some 
calculations in order to infer the correlation between action and payoff. However the correlation 
method does not assume the decision maker has any prior knowledge about the shape of the 
payoff landscape. 
 
In the Regression model the decision-maker is endowed with a high level of rationality.  Every 
few time periods the decision maker runs a regression to estimate the best allocation policy based 
on all the information she has received so far. The regression method requires extensive 
information processing capacity to frequently perform regressions over the stored data and solve 
the equations for the optimal allocations given the estimated regression coefficients. Finally, the 
decision-maker is assumed to know the true shape of the payoff landscape (she is given a 
perfectly specified model and only has to estimate its parameters). Table 1 summarizes the 
characteristics of the different models on these dimensions. 
 
Table 1- Sophistication and rationality of different learning models 
           Dimension 
Algorithm 

Rationality Information 
Processing Capacity 

Prior Knowledge of 
Payoff Landscape 

Reinforcement Low Low Low 
Myopic Search Low Low Low 
Correlation Medium Medium Low 
Regression High High High 
 
In all the learning modules, the decision-maker has a mental representation of how important 
each activity is. We call these variables “Activity Value,” )(tAV j . The activity values are used to 
determine the allocation of resources to each activity (equations 12-14 explain how allocation of 
resources is determined based on Activity Values.) The main difference across the different 
learning algorithms is how these activity values are updated. Below we discuss the four learning 
algorithms in more details. The complete formulation of all the learning models can be found in 
the Appendix 1. 
 
1- Reinforcement learning: In this method, the value (or attractiveness) of each activity is 
determined by (a function of) the cumulative payoff achieved so far by using that alternative. 
Attractiveness then influences the probability of choosing each alternative in the future. 
Reinforcement learning has a rich tradition in psychology, game theory and machine learning 
(Sutton and Barto 1998; Erev and Roth 1998). It has been used in a variety of applications, from 
training animals to explaining the results of learning in games and designing machines to play 
backgammon (Sutton and Barto, 1998)iii.  
 
In our model, each perceived payoff, )(tPPF , is associated with the allocations believed to be 
responsible for that payoff, )(tAPFj . We increase the value of each activity, )(tAV j , based on 
its contribution to the perceived payoff. The increase in value depends on the perceived payoff 
itself, so a small payoff indicates a small increase in the values of different activities while a 
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large payoff increases the value much more. Therefore large payoffs shift the relative weight of 
different activity values towards the allocations responsible for those better payoffs.  

)(tAV
dt
d

j = 

/)t(AV)t(APF*)t(PPF jj
werorcementPoinfRe − Reinforcement Forgetting Time (6) 

 
Our implementation of reinforcement learning includes a forgetting process, representing the 
decision-maker’s discounting of older information.  Discounting old information helps the 
algorithm adjust the activity values better. Equation 6 shows the main formulation of the 
Reinforcement algorithm. Here both “Reinforcement Power” and “Reinforcement Forgetting 
Time” are parameters specific to this algorithm. “Reinforcement Power” indicates how strongly 
we feedback the payoff as reinforcement, to adjust the “Activity Values” and therefore 
determines the speed of converging to better policies. “Reinforcement Forgetting Time” is the 
time constant for depreciating the old payoff reinforcements. 
 
Details of the model formulations are included in appendix 1.  The Reinforcement method is a 
low information, low rationality procedure:  it continues to do what has worked well in the past, 
adjusting only slowly to new information, and does not attempt to extrapolate from these beliefs 
about activity value to the shape of the payoff landscape or to use gradient information to move 
towards higher-payoff allocations.  
 
2- Myopic search: In this method the decision maker explores neighboring regions of the 
decision space (at random).  If a better set of resource allocations is found, it is selected as a 
goal; otherwise the current activity values are retained. This procedure is similar to the 
underlying process for most of the stochastic optimization techniques where, unaware of the 
shape of payoff landscape, the algorithm explores different possibilities and usually moves to 
better policies upon discovering them. 
 
Optimization models assume decisions switch instantly to better policies, if found, for the next 
step. This assumption is also used in some behavioral models (Levinthal and March, 1982; 
Levinthal 97). In reality, decisions adjust slowly, due to the time required to perceive new 
information, make decisions, and implement them; that is, to the factors that lead to 
organizational inertia.  To be behaviorally more realistic, we assume activity value, )(tAV j , 

adjusts gradually towards the best currently known allocation, )(tAV j
∗ (Equation 7.) )(tAV j

∗ is 
the last allocation that improved the payoff from its recent average. 

λ))()(()( tAVtAVtAV
dt
d

jjj −= ∗       (7) 

where λ  is the Value Adjustment Time Constant. The formulation details for Myopic search 
method can be found in the appendix 1.  The myopic method is a low information, low 
rationality method.  It compares the payoff from the current allocation to the results of a local 
exploration and does not attempt to compare multiple experiments; it does not use information 
about the payoffs in the neighborhood to make any inferences about the shape of the payoff 
landscape or even the local gradient.  It is essentially conservative, retaining the current 
allocation until a better one is found. 
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3- Correlation: This method uses principles from attribution theories to model learning. In our 
setting, learning can be viewed as how people attribute different allocations to different payoffs 
and how these attributions are adjusted as new information about payoffs and allocations are 
continuously perceived. Several researchers have proposed different models for explaining how 
people make attributions. Lipe (1991) reviews these models and concludes that all major 
attribution theories are based on the use of counterfactual information. However it is difficult to 
obtain counterfactual information (information about contingencies that were not realized) so she 
proposes the use of covariation data as a good proxy. The correlation module is based on the 
hypothesis that people use the covariation of different activities with the payoff to make 
inferences about action-payoff causality. 
 
In our model, the correlations between the perceived payoff and the actions associated with those 
payoffs let the decision-maker decide whether performance would improve or deteriorate if the 
activity increases. A positive (negative) correlation between recent values of )(tAPFj  and 

)(tPPF  suggests that more (less) of activity j will improve the payoff. Based on these inferences 
the decision-maker adjusts the activity values, )(tAV j , so that positively correlated activities 
increase above their current level and negatively correlated activities decrease below the current 
level.  
 

λ/)1))(_((*)()( −= telationPayoffCorrActionftAVtAV
dt
d

jjj   

f(0)=1 ,  f’(x)>0       (8) 
 
The formulation details for the correlation algorithm are found in Appendix 1, Table 3. At the 
optimal allocation, the gradient of the payoff with allocation will be zero (the top of the payoff 
hill is flat) and so the correlation between activities and payoff will be zero. Therefore the 
change in activity values will become zero and the decision-maker settles on the optimum policy. 
The correlation method is a moderate information, moderate rationality approach:  more data is 
needed than required by the myopic or reinforcement methods to estimate the correlations among 
activities and payoff, and these correlations are used to make inferences about the local gradient 
so the decision maker can move uphill from the current allocations to allocations believed to 
yield higher payoff, even if these allocations have not yet been tried. 
 
4- Regression: This method is a sophisticated learning model with significant information 
processing requirements. We assume that the decision-maker knows the correct shape of the 
payoff landscape and uses a correctly specified regression model to estimate the parameters of 
the payoff function. 
 
By observing the payoffs and the activities corresponding to those payoffs, the decision-maker 
receives the information needed to estimate the parameters of the payoff function. To do so, after 
every few periods, she runs a regression using all the data from the beginning of the learning 
taskiv. From these estimates the optimal allocations are readily calculated. For the assumed 
constant returns to scale, Cobb-Douglas function, the regression is: 
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� ++=
j

jj tetAPFtPPF )())(log(*)log())(log( 0 αα    (9) 

The estimates of ∗
jj αα , , are evaluated every “Evaluation Period,” EP. Based on these 

estimates, the optimal activity values, )(tAV j
∗ , are given by: 

)0,()( �
∗∗∗ =

J
jjj MaxtAV αα v       (10) 

The decision-maker then adjusts the action values towards the optimal values (see Equation 7). 
 
The regression model helps test how delays affect learning over a wide range of rationality 
assumptions. The three other models represent an individual ignorant about the shape of the 
payoff function, while in some cases decision-makers have at least partial understanding of the 
structure and functional forms of the causal relationships relating the payoff to the activities. 
Although in feedback-rich settings, mental models are far from perfect and calculation of optimal 
decision based on the understanding of the mechanisms exceeds our cognitive capabilities, the 
regression model offers an extreme case of rationality to test the robustness of our results.  
 
The tradeoff between exploration and exploitation is a crucial issue in learning (Sutton and 
Barto, 1998; March, 1993). On one hand the decision-maker should explore the decision space 
by trying some new allocation policies if she wants to learn about the shape of the payoff 
function. On the other hand pure exploration leads to random allocation decisions with no 
improvement. By using the data from exploration, the decision-maker can focus on better 
policies that she has found and therefore improve her payoff. This exploitation policy is required 
if any improvement is to be perceived.  
 
We use random changes in resource allocation to capture the exploration/exploitation issue in 
our learning models. The “Activity Values” represent the accumulation of experience and 
learning by the decision-maker. In pure exploitation, of the set of activity values, )(tAV j , 
determine the allocation decision.  Specifically, the fraction of resources to be allocated to 
activity j is: 

�=′
J

jjj tAVtAVtFR )()()(        (11) 

 
The tendency of the decision-maker to follow this policy shows her tendency to exploit the 
experience she has gained so far. Deviations from this policy represent experiments to explore 
other regions of the payoff landscape. We multiply the activity values by a random disturbance 
to generate Operational Activity Values, )(tOAV j ’s, which are the basis for the allocation 
decisions.  

))(1(*)()( tPNtAVtOAV jjj +=       (12) 

�=
J

jjj tOAVtOAVtFR )()()(       (13) 

 
)(tPN j is a pink noise term specific to each activity. Pink noise (Sterman, 2000) generates a 

stream of random numbers with autocorrelation. In real settings, the decision-maker experiments 
with a policy for some time before moving to another. Such persistence is both physically 
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required (decision makers cannot instantly change resource allocations), and provides decision 
makers with a large enough sample of data about each allocation to decide if a policy is 
beneficial or not. A high value of the autocorrelation time constant, or “Activity noise correlation 
time”, δ , means the stream )(tPN j  is highly autocorrelated and the random numbers do not 
change abruptly, representing decision makers who only slowly change the regions of allocation 
space they are exploring; a low value represents decision makers who jump quickly from one 
allocation to another in the neighborhood of their current policy.vi   
 
 The standard deviation of the noise term, which determines how far from the current allocations 
she explores, depends on where she finds herself on the payoff landscape. If her recent 
explorations have shown no improvement in the payoff, she concludes that she is near the peak 
of the payoff landscape and therefore extensive exploration is not required (alternatively, she 
concludes that the return to exploration is low and reduces experimentation accordingly). If, 
however, recent exploration has resulted in finding significantly better regions, she concludes 
that she is in a low-payoff region and there is still room for improvement so she should keep on 
exploring, so Var ( )(tPN j ) remains large: 
 

Var ( )(tPN j )= g (Recent Payoff Improvement(t)),   
  g(0)=Minimum Exploration Variance, g’(x)>0   (14) 
 
Here “Recent Payoff Improvement(t)” is calculated by comparing the observed payoff to its 
recent average. If the current payoff is higher than recent payoff, Recent Payoff Improvement 
will be increased, if not, it will decay towards 0. 
 
 
3- Results and Analysis 
 
In this section we investigate the behavior of the learning model under different conditions. We 
first explore the basic behavior of the model and its learning capabilities when there are no 
delays. The no-delay case helps compare the capabilities of the different learning modules and 
provides a base against which we can compare the behavior of the model under other conditions. 
Next we introduce delays between activities and payoff and analyze the ability of the different 
learning modules to find the optimal payoff, for a wide range of parameters. 
 
In running the model, the total resource, R, is 100 units and the exponents in the payoff function 
are set to 1/2, 1/3 and 1/6 for activities one, two and three, respectively. The optimal allocation 
fractions are therefore 1/2, 1/3 and 1/6.  The decision-maker starts from a random allocation and 
tries to improve her performance in the course of 240 periods.vii 
 
We report two aspects of learning performance: (1) How close to optimal the simulated decision-
maker gets, and (2) how fast she converges to that level of performance, if she converges at all. 
Given the parameters for the payoff function, the optimal payoff is 36.37 and the percentage of 
this achieved by the decision-maker at the end of simulation is reported as Achieved Payoff 
Percentage. Monte-Carlo simulations with different random noise seeds for the exploration term 
(equation 12) and for the randomly chosen initial resource allocation give statistically reliable 
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results for each scenario analyzed. The reported statistics are based on sets of simulations 
differing only in the stream of random numbers used in exploration and in the initial resource 
allocation. 
 
To facilitate comparison of the four learning modules, they are run in parallel using the same 
noise seed for the initial allocations and the exploration terms in each.  Therefore any differences 
in a given run are due only to the differences among the four learning procedures.   
 
 
3-1- Base case 
 
The base case represents an easy learning task where there are no delays between actions and the 
payoff. The decision-maker is also aware of this fact and therefore she has a perfect 
understanding of the correct delay structure. In this setting, we expect all the learning models to 
find the optimum solution. Figure 2 shows the trajectory of the payoff for each learning model, 
averaged over 100 simulation runs. The vertical axis shows the percentage of the optimal payoff 
achievedviii by each learning model.  
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Figure 2- Payoff relative to optimal in the base case, averaged over 100 simulations 
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When there are no delays, all four learning models converge to the optimal resource allocation. 
For comparison, the average payoff achieved by a random resource allocation strategy is 74.5% 
of optimal (since the 100 simulations for each learning model start from randomly chosen 
allocations, all four models begin at an average payoff of 74.5%.)ix 
 
An important aspect of learning is how fast the decision-maker converges to the allocation policy 
she perceives to be optimal. In some settings and with some streams of random numbers it is also 
possible that the decision-maker does not converge within the 240 period simulation horizon. 
Table 2 reports the payoffs, the fraction of simulations that have converged as well as the 
average convergence timex (for those that did) in the base case. The hypothesis H0: µ=100% is 
not rejected for any of the algorithms at the 90% level and therefore one can conclude that all the 
algorithms find the optimal payoff.xi  Essentially all simulations converge prior to the 240 period 
horizon and the average convergence times range from a low of 41 periods for the regression 
model to a high of 86 periods for the myopic model. 
 

Table 2- Achieved Payoff, Convergence Time and Percentage Converged for the Base case 

Learning Algorithm Regression Correlation Myopic Reinforcement 

Estimates 
Variable 

µ σ µ σ µ σ µ σ 
Achieved Payoff 
percentage at period240 99.67 1.225 99.78 0.817 97.42 4.75 93.81 7.38 

Convergence Time  40.89 6.08 57.68 25.32 86.49 47.59 51.55 9.29 

Percentage Converged 100  100  99  100  

 
3-2-The Impact of delays 
 
Different programs of research on learning implicitly share a basic assumption that the decision-
maker has a perfect understanding of any delay structures in the generation of payoffs. Under 
this conventional assumption, all our learning algorithms reliably find the optimum allocation 
and converge to it. In this section we investigate the results of relaxing this assumption.  
 
A simple variation is to introduce a delay in the impact of one of the activities, leaving the delay 
for the other two other activities at zero. We simulate the model for 9 different values of the 
“Payoff Generation Delay” for activity one, 1T , ranging from 0 to 16 periods, while we keep the 
delays for other activities at 0. In our factory management example the long delay in the impact 
of activity 1 is analogous to process improvement activities that take a long time to bear fruit. 
Because activity one is the most influential in determining the payoff, these settings are expected 
to highlight the effect of delays more clearly. 
 
We keep the perceived payoff generation delay for all activities, including activity one, at zero, 
corresponding to a decision maker who believes all activities affect the payoff immediately. 
Fieldwork has shown that managers may often fail to account correctly for delays between 
process improvement initiatives and their results (Repenning and Sterman, 2002).  
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Figure 3 shows the performance of four learning algorithms under these settings. Average results 
over 200 simulations are reported for higher confidence. Under each delay time the Average 
Payoff Percentage achieved by decision-maker at the end of 240 periods and the Percentage 
Converged xii are reported. In the “Average Payoff Percentage” graph, the line denoted “Pure 
Random” represents the case where the decision-maker selects her initial allocation policy 
randomly and sticks to that, without trying to learn from her experience. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3- Average Payoff Percentage and Percentage Converged with different time delays for first activity 

 
The following patterns can be discerned from these graphs: 

- Learning is significantly hampered if the perceived delays do not match the actual 
delays. The pattern is consistent across the different learning procedures. As the true 
delay grows longer, all four learning procedures yield average performance worse than 
the random allocation policy (which yields 74.5% of optimal under this payoff function).  
- Under biased delay perception, a significant fraction of simulation runs converge 
to sub-optimal policies. This means that the decision-maker usually ends up with some 
inferior policy concluding that this is the best payoff she can get, and stops exploring 
other regions of the payoff landscape, even though there is significant unrealized 
potential for improvement. 
- Different learning algorithms show the same qualitative patterns. They also show 
some differences in their precise performance, where the more rational learning 
algorithms, regression and correlation, perform better.  Nevertheless, even these higher 
rationality methods eventually underperform a random allocation policy as the delay 
grows. 
 

 
In short, independent of our assumptions about the learning capabilities of the decision-maker, a 
common failure mode persists: when there is a mismatch between the true delay and the delay 
perceived by the decision-maker, learning is slower and the simulated decision maker frequently 
concludes that an inferior policy is the best she can achieve. Often, the decision makers reach 
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equilibrium allocations that yield payoffs significantly lower than the performance of a 
completely random strategy. To explore the robustness of these results, we investigate the effect 
of important model parameters on the performance of each learning algorithm.  
  
 
3-3-Robustness of results 
 
Each learning model involves parameters whose values are highly uncertain.  To explore the 
sensitivity of the results to these parameters we conducted sensitivity analysis over all the 
important parameters of each learning procedure. 
 
We conducted a Monte Carlo analysis, selecting each of the parameters listed in Table 3 from a 
uniform distribution over the indicated range.  We carried out 3000 simulations, using random 
initial allocations in each. Table 3 shows the parameters used in this analysis and their low, high 
and base values. 
 
Table 3- Parameter settings for sensitivity analysis 

Parameter  Algorithm Low High Base Description 
Payoff Generation 
Delay[activity 1] 

T1 All 0 16 0 How long on average it take for resources 
allocated to activity 1 to become effective and 
influence the payoff 

Perceived Payoff 
Generation 
Delay[activity1] 

τ1 All 0 16 0 The decision maker’s estimate of the delay 
between resources allocated to activity 1 and the 
payoff. 

Action Noise 
Correlation Time 

δ  All 1 9 3 The correlation time constant for the pink noise 
used to model exploration  

Value Adjustment 
Time Constant 

λ  All 3 17 10 How fast the activity value system moves towards 
the indicated policy 

Action Lookup Time 
Horizon 

 Correlation 2 10 6 The time horizon for calculating correlations 
between an activity and the payoff 

Sensitivity of 
Allocations to 
correlations 

 Correlation 0.05 0.8 0.2 How strongly the allocations respond to 
differences among the correlations between each 
activity and the payoff 

Reinforcement 
Forgetting Time 

 Reinforcement 3 17 10 The time constant for forgetting past activity 
values. 

Reinforcement Power  Reinforcement 4 20 12 How strongly the differences in payoff will be 
reflected in action value updates. 

Evaluation Period EP Regression 1 9 3 How often a new regression is conducted to 
recalculate the optimal policy 

 
 
Simple graphs and tables are not informative about these multidimensional data. We investigate 
the results of this sensitivity analysis using regressions with three dependent variables: Achieved 
Payoff Percentage, Convergence Time, and Probability of Convergence. For each of these 
variables and for each of the learning algorithms, we run a regression over the independent 
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parameters in that algorithm, listed in Table 3.  The regressors also include the Absolute 
Perception Error, which is the absolute difference between the Payoff Generation Delay and 
Perceived Payoff Generation Delay. Having both Absolute Perception Error and Payoff 
Generation Delay makes the perceived influence time almost redundant so we omit it from the 
independent variables. OLS is used for the Achieved Payoff Percentage and Convergence Time; 
logistic regression is used for the Convergence Probability. Tables 4–8 show the regression 
results. All the models are significant at p < 0.001. 
 
An important trend persists in this data: increasing the absolute difference between the real 
delay, “Payoff Generation Delay,” and the perceived delay, “Perceived Payoff Generation 
Delay,” always decreases the achieved payoff significantly (Table 5, row 4). The coefficient for 
this effect is large and highly significant, indicating the persistence of the effect across different 
settings of parameters and different learning models. It is interesting to note that the fraction of 
runs that converge does not necessarily decrease with higher values of Absolute Perception 
Error: the regression model shows a negative relationship between perception error and 
convergence, but the correlation and myopic search algorithms show a positive trend in this 
relationship. In fact, even in the case of the regression model, close examination of the 
simulations with high absolute perception error indicates that a significant percentage of them do 
converge.  The interpretation is that the decision maker not only fails to find the optimum 
allocations, but also concludes that a significantly sub-optimal payoff is the best that she can do 
and ceases exploration and search for better allocations.   
 

Table 4- Summary Statistics for Dependent variables   

Variable Observations Mean Std Dev Median 
Achieved Payoff Percentage[Rgr] 3000 84.5 22.5 92.9 
Achieved Payoff Percentage[Crr] 3000 76.5 23.9 85.0 
Achieved Payoff Percentage[Myo] 3000 62.8 26.2 67.3 
Achieved Payoff Percentage[PfR] 3000 76.6 22.0 84.0 
Convergence Time[Rgr] 2836 106.2 37.0 98.9 
Convergence Time[Crr] 1694 116.6 61.3 88.3 
Convergence Time[Myo] 2404 112.2 51.6 96.2 
Convergence Time[PfR] 2981 81.2 22.7 76.1 
Convergence Probability[Rgr] 3000 0.945 0.227 1.0 
Convergence Probability[Crr] 3000 0.564 0.496 1.0 
Convergence Probability[Myo] 3000 0.801 0.399 1.0 
Convergence Probability[Pfr] 3000 0.994 0.079 1.0 
 
Table 5- Regression for Achieved Payoff Percentage 

Variable  \  Algorithm Regression Correlation Myopic Reinforcement
1 Adj. R2\ Model DF 0.226 5 0.315 6 0.070 4 0.028 5 
2 Intercept 85.5 <.0001 88.4 <.0001 58.1 <.0001 79.8 <.0001 
3  Payoff Generation Delay [a1] 0.788 <.0001 -1.65 <.0001 -0.109 0.274 -0.145 0.090 
4 Absolute Perception Error -2.63 <.0001 -1.82 <.0001 -1.24 <.0001 -0.723 <.0001 
5 Log (Correlation Time) 0.346 0.244 -0.060 0.84 -0.206 0.587 -1.60 <.0001 
6 Value Adjustment Time 0.583 <.0001 1.62 <.0001 1.28 <.0001   
7 Reinforcement Forgetting Time       0.291 0.003 
8 Evaluation Period 0.062 0.691       
9 Correlation Slope at Origin   0.814 <.0001     
10 Action Lookup Time Horizon   -23.1 <.0001     
11 Reinforcement Power       0.189 0.026 
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Table 6- Regression for Convergence Time 

Variable  \  Algorithm Regression Correlation Myopic Reinforcement
1 Adj. R2\ # Data point 0.0249 2836 0.307 1693 0.077 2404 0.29 2981 
2 Intercept 84.1 <.0001 95.4 <.0001 132.4 <.0001 80.3 <.0001 
3  Payoff Generation Delay [a1] 1.76 <.0001 3.93 <.0001 1.99 <.0001 2.18 <.0001 
4 Absolute Perception Error 4.13 <.0001 -1.16 0.0001 -0.981 0.0001 -0.481 <.0001 
5 Log (Correlation Time) -4.48 <.0001 4.12 <.0001 -0.939 0.266 -5.30 <.0001 
6 Value Adjustment Time -0.820 <.0001 -4.37 <.0001 -2.74 <.0001   
7 Reinforcement Forgetting Time       -0.319 0.0001 
8 Evaluation Period 0.810 0.002       
9 Correlation Slope at Origin   -0.422 0.430     
10 Action Lookup Time Horizon   111.5 <.0001     
11 Reinforcement Power       0.014 0.857 
 
Table 7- Logistic Regression for Convergence Probability 

Variable  \  Algorithm Regression Correlation Myopic Reinforcement
1 Wald\Percent Concordant 147.4 78.4 551 78.7 225 70.6 22.2 77.7 
2 Intercept 4.52 <.0001 1.23 <.0001 0.672 0.000 8.51 <.0001 
3  Payoff Generation Delay [a1] 0.047 0.003 -0.054 <.0001 -0.062 <.0001 -0.242 0.001 
4 Absolute Perception Error -0.259 <.0001 0.040 0.0001 0.047 0.0001 0.026 0.662 
5 Log (Correlation Time) -0.083 0.23 -0.379 <.0001 -0.239 <.0001 -0.596 0.006 
6 Value Adjustment Time 0.003 0.871 0.151 <.0001 0.166 <.0001   
7 Reinforcement Forgetting Time       0.088 0.147 
8 Evaluation Period -0.010 0.780       
9 Correlation Slope at Origin   0.066 0.000     
10 Action Lookup Time Horizon   -4.24 <.0001     
11 Reinforcement Power       -0.032 0.522 

 

Table 8- 95% Wald confidence interval estimates for Odds Ratio  

Variable  \  Algorithm Regression Correlation Myopic Reinforcement
95% Confidence Interval Low High Low High Low High Low High 
1  Payoff Generation Delay [a1] 1.02 1.08 0.930 0.964 0.921 0.960 0.684 0.902 
2 Absolute Perception Error 0.739 0.806 1.02 1.06 1.02 1.07 0.915 1.150 
3 Log (Correlation Time) 0.632 1.12 0.391 0.524 0.515 0.714 0.117 0.704 
4 Value Adjustment Time 0.963 1.05 1.14 1.19 1.15 1.21   
5 Reinforcement Forgetting Time       0.970 1.23 
6 Evaluation Period 0.922 1.06       
7 Correlation Slope at Origin   1.03 1.12     
8 Action Lookup Time Horizon   0.010 0.022     
9 Reinforcement Power       0.877 1.07 
 
 
The analysis shows that the introduction of delay between resource allocations and their impact 
causes sub-optimal performance, slower learning, and frequent convergence to sub-optimal states 
for all learning models over a wide range of parameters.  
 
 
3-4- Analysis of behavior 
 
The results show that learning is slow and ineffective when the decision maker underestimates 
the delay between an activity and its impact on performance.  It may be objected that this is 
hardly surprising because the underlying model of the task is mis-specified (by underestimation 
of the delays).  A truly rational decision maker would not only seek to learn about better 
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allocations, but would also seek to test her assumptions about the true length of the delays 
between actions and their impact; if her initial beliefs about the delay structure were wrong, 
experience should reveal the problem and lead to a correctly specified model.  We do not attempt 
to model such second-order learning here and leave the resolution of this question to further 
research.  Nevertheless, the results suggest such sophisticated learning is likely to be difficult.  
First, estimating delay length and distributions is difficult and requires substantial data; in some 
domains such as the delay in the capital investment process it took decades for consensus about 
the length and distribution of the delay to emerge (see Sterman 2000, Ch. 11 and references 
therein).  Second, the experimental research suggests people have great difficulty recognizing 
and accounting for delays, even when information about their length and contents is available 
and salient (Sterman 1989a, 1989b, 1994); here there are no direct cues to indicate the length, or 
even the presence, of delays.  Third, the outcome feedback decision makers receive may not 
signal that there is a problem with the initial assumptions about the delay structure.  Our results 
show that if the decision-maker starts with an inaccurate estimate of the delays, she may not only 
fail to find the optimal allocations, but will also find that her explorations around the 
neighborhood of the best allocation she can find, reveal no improvement.  She then concludes 
that she has found the best possible allocation and ceases to explore.  Having concluded that she 
has found the optimal allocation, and without any external reference point to indicate how far 
short of optimal she still is, there are no signals in the environment to suggest that the problem is 
the misperception of the delay times between activities and results.  
 
Learning may be difficult even when the delays are correctly perceived by the decision-maker, 
especially in the Correlation, Myopic, and Reinforcement algorithms, where we assume the 
decision maker does not have a perfectly specified model of the payoff landscape.  When there 
are no delays, the decision-maker moves from the current allocation to allocations exploration 
reveals to yield higher payoff. However, if she perceives some delay between activity and payoff 
and tries to account for those delays in her attributions, she may end up with out of date 
information for changing the value of different activities.  Specifically, her conclusions about the 
gradient of the payoff landscape may be dated and point in the wrong direction. Consider the 
case where the Perceived Payoff Generation Delay is 3 periods and equals the true value of the 
Payoff Generation Delay (no misperception). In this case the decision-maker properly attributes 
the payoff to her decisions of 3 periods ago and correctly finds out in which direction she could 
have changed the allocation decision 3 periods ago to improve the payoff. However, during the 
intervening 3 periods she has been exploring different policies and therefore the indicated 
direction of change in policy may no longer indicate the best direction to move.    
 
The discussion above suggests why a decision maker might not be able to learn the optimal 
policy and fail to discover the misperception of the delay structure.  However, it does not explain 
why the results show frequent convergence to sub-optimal policies (rather than behavior in 
which the decision maker continuously wanders around in the payoff landscape or oscillates 
between different sub-optimal allocations).  
 
To illustrate, consider again the plant manager example. Our plant manager starts his job 
underestimating the delays involved in process improvement activities, e.g., suppose he expects 
these programs to become influential after three months, while the actual time required for 
workers to experiment with new ideas and successfully implement them is actually about one 



 
 

19

year. To boost production he tries different policies. For example he may put pressure on 
workers to work harder (allocating more resources to production) or he may implement new 
process improvement plans (allocating resources to process improvement). Implementing a 
process improvement plan, he expects to observe the benefits after three months, so he attributes 
the increase or decrease in production, as observed after this period, to the improvement plan he 
had started. However, after three months, production is still lower than before the improvement 
plan was implemented, because worker hours have been allocated to improvement, thus cutting 
production effort, while the benefits of the improvement activity have not yet been realized.  
Observing that production has not recovered, the manager starts to revise his initial belief that 
improvement activity will boost performance and begins to conclude that the improvement 
program is not working. Having made such an attribution, if he then pushes the employees to 
work harder (allocating resources to producing), he will boost the payoff and learns that reducing 
investment in improvement is the way to boost production. His experience may then suggest that 
he cut maintenance and process improvement even further. Eventually, however, cuts in 
improvement and maintenance reduce production as equipments fail and quality drops.  The 
manager then finds that output falls.  If the reallocation of resources is slow enough, the drop in 
output as worker time devoted to production increases will cause the manager to perceive that 
there is an optimum allocation (an allocation in which change in any direction yields inferior 
results;) He settles on this allocation policy and stops exploring different policies.  He concludes 
that he has found the best balance between production effort, maintenance, and improvement 
when in fact he is systematically under-investing in improvement and maintenance.   
 
 
4- Conclusions 
 
Two main patterns of behavior were highlighted in the analysis. First, a range of formal learning 
models can learn to make optimal decisions when there are no delays between resource 
allocations and their impact on the payoff.  However, introducing a delay between the allocation 
of resources to an activity and the impact of that activity on performance causes significant 
deterioration in the ability of the models to learn; indeed, in many cases, the simulated decision-
maker never finds the optimal solution and instead settles on an inferior allocation. The analysis 
of results sheds some light on how people can learn the wrong lessons from experience.  Further, 
the results are robust to wide variation in the rationality and sophistication of the learning 
methods we tested, from a myopic method using little information and making no assumptions 
about the shape of the payoff landscape through a sophisticated method that uses all available 
data and uses perfect knowledge of the payoff landscape.  Unrecognized delays between 
decisions and their impact can distort the outcome feedback people receive so that learning 
procedures that work well when there are no delays, fail.  
 
 The results also suggest it is important to investigate how people can learn about the delay 
structure of a system. Managers do not start their job with perfect estimates of the delays 
between different actions and their payoffs.  Decision makers face a triple task: First, they must 
use the information available to them to decide what to do right now.  Second, they decide how 
they might make better decisions in the future; such learning is conditioned on their current 
mental model of the decision setting.  Third, they must learn about flaws in their mental model 
and revise it (in this case, revising their estimates of the length and distribution of any delays in 
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the environment, but more generally, recognizing and accounting for feedback processes, stocks 
and flows, nonlinearities, and other elements of dynamic complexity).  All these decisions and 
learning activities go on simultaneously. Challenging the mental models underlying our 
interpretation of events is difficult.  It is likely to happen only when a decision-maker repeatedly 
fails to find any way to reconcile and interpret the information she believes to be relevant (at 
best; research suggests mental models are highly resistant to change, and even condition the 
information people perceive, so that potential anomalies that might lead to new conceptions are 
not even recognized.  See the discussion in Sterman 2000, Ch. 1). Our analysis shows how 
delays can lead the decision-maker to converge on sub-optimal policies, not only learning 
incorrect lessons from experience, but also closing the window of opportunity for learning about 
the flaws in the underlying mental model.  
 
These mechanisms have been documented empirically in the case of a manufacturing company 
by Repenning and Sterman (2001). They conclude: 
 
“ The most important implication of our analysis is that our experiences often teach us exactly 
the wrong lessons about how to maintain and improve the long-term health of the systems in 
which we work and live.” 
 
Our research also has methodological implications.  We introduce several formal models of the 
learning process appropriate for continuous time settings and continuous decision variables.  
Despite the prevalence of such settings in the real world, the vast majority of formal models of 
human learning assume discrete time and/or discrete decision spaces.  Our models also assume 
different degrees of rationality, information use, and computational power.  We show how the 
exploration/exploitation tradeoff can be modeled, including persistence in exploratory 
experiments and an endogenous propensity to carry out such experiments based on the perceived 
potential for improvement.  There are many opportunities to extend this line of modeling to 
generate and test explicit theories of learning in dynamic decision-making environments. 
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Appendix 1- Mathematics of the model 
 

This appendix includes the formulation details for all four learning algorithms: Regression, 
Correlation, Myopic Search and Reinforcement.  
 
Table 1- Reinforcement Learning algorithm 

Reinforcement Learning Algorithm 

Variable Formulation 

)(tAV
dt
d

j  )()( tFRtAR jj −  

)(tAR j  )t(APF*)t(PPF j
enetPowerReinforcem  

)(tFR j  )(tAV j / Reinforcement Forgetting Time 
 
Table 2- Myopic Search algorithm 

Myopic Search Algorithm 

Variable Formulation 

)(tAV
dt
d

j  λ))()(( tAVtAV jj −∗  if PPF(t) ≥ Historical Payoff(t) , else 0 

Historical 
Payoff(t) 

Smooth(PPF(t), Historical Averaging Time Horizon) 

)(tAV j
∗  � )(*)( tAVtActionsFractionof jj  

 
Where )(tActionsFractionof j is: 
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Table 3- Correlation algorithm 

Correlation algorithm 

Variable Formulation 

)(tAV
dt
d

j  λ))()(( tAVtAV jj −∗  
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∗  ))(_(*)( telationPayoffCorrActionftAV jj  
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 and γ is Correlation Slope at origin 
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)(_ telationPayoffCorrAction j  
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tancePayoffVaritanceActionVari
tiancePayoffCoAction

j
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)(var_ tiancePayoffCoAction j  smooth( )(ttionChangeinAc j *Change in Peyoff(t),Action 
Lookup Time Horizon) 
Where smooth function is defined by: 

τ
ττ ),()),(( xsmoothxxsmooth
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d −= , Initial value 

of ),( τxsmooth  is equal to initial x 
)(tanceActionVari j  smooth( 2)(ttionChangeinAc j ,Action Lookup Time Horizon) 

Payoff Variance smooth( )(2 tyoffChangeinPa j ,Action Lookup Time Horizon) 

Change in Action[j] )),(()( zonupTimeHoriActionLooktAPFsmoothtAPF jj −  
Change in Payoff PPF(t)- smooth(PPF(t),Action Lookup Time Horizon) 
 
 
Table 4- Regression algorithm 

Regression Algorithm 

Variable Formulation 

)(tAV
dt
d

j  λ))()(( tAVtAV jj −∗  

)(tAV j
∗  )0),()(( ssMax

J
jj �
∗∗ αα ,   

s = EP* INT(t/EP) 
where EP is the evaluation period (the decision maker runs the 
regression model every EP time periods). 

)(sj
∗α  The )(sj

∗α  are the estimates of jα  in the following OLS regression 

model: � ++=
j

jj tetAPFtPPF )())(log(*)log())(log( 0 αα  

The regression is run every Evaluation Period (EP) periods, using all 
data between time zero and the current time (every time step is an 
observation). 
 

 
 
 
                                                 
i The model is formulated in continuous time but simulated by Euler integration with a time step of 0.125 period. 
Sensitivity analysis shows little sensitivity of the results to time steps < 0.2 periods. 
ii Different types of delay, including first- and third-order Erlang delays, were examined; the results were 
qualitatively the same. 
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iii For a brief history of reinforcement learning idea and some well-known applications see chapter 1 of Sutton and 
Barto (1998). 
iv A more realistic formulation discounts older data in favor of new data to do the regression to account for the 
possible changes in the environment and the payoff function. Assuming the payoff function to be constant during the 
learning task, this consideration makes no significant difference in our case. 
v Because ∗

jα ’s are not bound to positive values, the resulting )(tAV j
∗ ’s are adjusted to a close point on the 

feasible action space in case of negative ∗
jα . This adjustment keeps the desired action values ( )(tAV j

∗ ’s ) 
feasible (positive). 
vi We set the mean of PNj(t) = 0, so the decision-maker has no bias in searching different regions of the landscape. 
We also truncate the values of PN so that PNj(t) ≥ –1 to ensure that OAVj(t) ≥ 0 (Equation 12).  
vii The simulation horizon is long enough to give the decision-maker opportunity to learn, while keeping the 
simulation time reasonable.  In the example of the factory managers choosing among production, maintenance and 
improvement, the length of a period might be one month, so the 240 period horizon would represent 20 years, ample 
time to examine how much managers learn from their work experience. 
viii Note that by optimum we mean the best payoff one can achieve over the long-term by pursuing any policy.  
However this does not need to be the highest possible payoff.  For example, if there is a one period delay between 
activity 1 and its impact on the payoff and the two other activities are instantaneously influential (0 delay), the 
decision-maker can allocate all 100 units to activity 1 during the current period and allocate all the resource between 
two other activities during the next period. Under these conditions, she can achieve higher than optimum payoff for 
the next period, at the expense of getting no payoff this period (because activities 2 and 3 receive no resources) and 
the period after the next (because activity 1 receives no resources in that period). A constant returns to scale payoff 
function prevents such policies from yielding higher payoffs than the constant allocations in longterm. 
ix Equal rather than random initial allocations gives qualitatively similar results, as shown here: 
 
Learning Model Regression Correlation Myopic Reinforcement 

Estimate 
Variable 

µµµµ σσσσ µµµµ σσσσ µµµµ σσσσ µµµµ σσσσ 

Achieved payoff 
percentage at 
period 240 

99.69 1.03 99.93 0.033 98.77 2.13 95.80 3.95 

Convergence Time  
40.29 3.95 43.34 5.28 80.09 45.32 47.04 5.93 

Percentage 
Converged 100  100  98  100  

 
x The criterion for determining when a simulation has converged follows the following logic: We consider a 
particular learning procedure to have converged when the variance of the payoff falls below 1% of its recent 
(exponential) average. If later the variance increases again, to 10% of its average at the time of convergence, we 
reset the convergence time and keep looking for the next instance of convergence. 
xi In case of Myopic search and Reinforcement algorithms, a few runs ended up in low payoff values while most of 
the runs converged to values very close to 100%, as a result their average is around 98% and 95% while with higher 
variance H0 is not rejected. 
xii Convergence times are (negatively) correlated with the fraction of runs that converge and therefore are not 
graphed here. 
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