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I.  Introduction 
 
For decades poverty reduction in developing countries has been one of the most challenging 
tasks for the national policy maker.  Recent trends show the income distribution in most 
countries  has become more biased toward the rich.  This paper reports on efforts to develop a 
dynamic model to evaluate the impact of alternative policies focused on the poor, including such 
common ideas as providing them free health care and reducing their income tax obligation.  The 
model measures the impact of a particular policy on the Gini coefficient or on the number of 
households below an arbitrary poverty line.  The purpose for creating the model is to possibly 
develop a poverty reduction sector to include in the T21 (Threshold 21) National Development 
Model. 

 
The economic literature shows that household income distribution in most countries is close to 
the lognormal distribution.  Hence the lognormal distribution was selected for this work to 
represent the income distribution, and a method for estimating the mean and standard deviation 
of the lognormal distribution is developed (see Section II).  The method starts from household 
survey data of the country at a certain time.  Over time, both the mean and the standard 
deviation change.  It is straight-forward to model the change of the income mean using elements 
already in the T21 model, such as GDP, tax rate, household size, and population.  To estimate 
the standard deviation, however, is more complicated.  To make matters worse, it is difficult for 
most people to understand the meaning of the standard deviation, even when you have computed 
it, as, for example,  $15,000. 

 
To provide an indicator that is easier for most people to understand than the standard deviation, 
we chose the Gini coefficient.  In Section III, it is explained that the Gini coefficient is related to 
the ratio of the income standard deviation over the income mean.  Then two methods are 
developed:  one for deriving the income distribution from the known Gini coefficient and income 
mean, and the other for computing the Gini coefficient from a known lognormal distribution. 
 
Section IV explains how the model takes government poverty reduction policy as input and 
generates changes to the Gini coefficient and the number of households under the poverty line as 
output, assuming all other factors, such as GDP, employment, and foreign aid, stay constant. 
 
Section V demonstrates the model built in Vensim and Section VI lists a few topics for further 
research. 
 



II. Developing the Lognormal Income Distribution from Household Survey Data 
 

1. Household survey of income 
 
Table 1 is a summary of a 1997-98 urban household income survey of a large developing 
country. 
 
Income 
class 

Lower bound Upper bound Number of households Percentage  

1 0 30000 10534 21.87% 
2 30001 60000 16576 34.42% 
3 60001 90000 10650 22.11% 
4 90001 125000 5439 11.29% 
5 125001 infinity 4962 10.30% 
Table 1:  Urban income survey summary 
 
In the table there are five income classes (rows).  The lower and upper income bounds of 
each class are specified in the second and third columns.   The fourth column is the count 
of households in the class, and the fifth column is the percentage of households in each 
class. 
 

2. Finding the lognormal distribution of income 
 
We assume that household income is lognormally distributed, as is found to be the case in 
most countries.  The lognormal distribution is defined by two parameters:  mean and 
standard deviation.  Thus, finding the lognormal distribution is equivalent to finding the 
mean and the standard deviation of the income. 
 
The mean of income can be obtained from national accounts data, dividing national 
income by the number of households.  If you do not have national accounts data for the 
country, you can still estimate the mean from Table 1 or from some other source. 
 
Given the mean, a program we developed in C++ estimates the standard deviation of the 
lognormal income distribution.  For the example in Table 1, the mean is estimated to be 
65,033, and the standard deviation is 50,053. 
 
Another C++ program was developed to calculate the percentage of households in each 
of the five income classes from the lognormal distribution with mean of 65,033 and 
standard deviation of 50,053.  The results are listed in Column 6 of Table 2.  Column 7 of 
Table 2 calculates the relative difference between data and model results. The first five 
columns of Table 2 are copied from Table 1. 
 
 
Income 
class 

Lower 
bound 

Upper 
bound 

Number of 
households 

Percentage 
from data 

Percentage 
calculated 

Difference 

1 0 30000 10534 21.87% 21.38% -2.25% 



2 30001 60000 16576 34.42% 37.46% 8.84% 
3 60001 90000 10650 22.11% 20.50% -7.30% 
4 90001 125000 5439 11.29% 10.98% -2.77% 
5 125001 infinity 4962 10.30% 9.68% -6.05% 
Table 2:  Comparing data with model results 
 
The relative difference in Column 7 is calculated, using class 1 (first row) as example, as 
(21.38% - 21.87%)/21.87% = -2.25%.  All differences are within the range of  (-10%, 
10%). Considering the error range in household income survey caused by many factors, 
such as bias in sampling and under- or over-reporting, we regard the differences in 
column 7 as acceptable. 

 
3. Application of the lognormal income distribution 

 
With the Lognormal Distribution, we have developed C++ programs to calculate several 
indicators, such as the fraction of income that the poorest fraction (from zero to 100%) of 
the population makes, and the fraction of households below any arbitrary poverty line 
(such as $1/day per person).   In the Table 1 example, the poorest 20% of households get 
6.4% of income, and using income level of 40,000 as the household poverty line, 35.5% 
of households are below this line. 

 
4. Limitation of this approach 
 

Over time, both the mean and the standard deviation will change.  It is straightforward to 
model and to explain the change of the income mean using elements already in the T21 
model, such as GDP, tax rate, household size, and population.  To estimate the standard 
deviation, however, is more complicated.  To make matters worse, it is difficult to 
interpret the meaning of a standard deviation of, say 50,053, to an ordinary user, even 
when you have computed it.  As explained in the next section, we chose the Gini 
coefficient as an income distribution indicator that most people can readily understand. 
 

III. Linking Lognormal Distribution to the Gini coefficient 
 

1. Relationship between Gini coefficient and the lognormal distribution 
 
As we explained earlier, the lognormal distribution is defined by two parameters: mean 
and standard deviation.  So when one thinks about the relationship between Gini and the 
lognormal distribution, one is in essence thinking about the relationship between Gini and 
the two parameters, the mean and the standard deviation. 
 
It can be shown that, if income is lognormally distributed, there is a one-to-one 
correspondence between the Gini coefficient and the ratio of standard deviation over 
mean (S/M ratio).   
 



For instance, if the income mean of a country is $50,000, and its standard deviation is 
$30,000, the Gini coefficient can be computed as 30.39%.  The S/M ratio is computed as 
30000/50000, or 0.6. 
 
If we measure income in thousands of dollars, then the mean will be 50000/1000, or 50, 
and the standard deviation will be 30.  But the S/M ratio will remain at 0.6.  The Lorenz 
curve of the Gini coefficient will not change either, as the poorest a% (0 < a < 100) of 
population will have the same b% (0 < b <= a) of income, no matter what unit you use to 
measure income.   
 
We can also measure the income distribution in any other currency, Japanese Yen or 
Chinese RMB, by using an exchange rate.  When converted to a different currency, both 
the mean and the standard deviation will be multiplied by the same parameter (i.e., the 
exchange rate), and their ratio will stay unchanged.  The Lorenz curve will remain the 
same, and so will the Gini coefficient.  We can even use an imaginary exchange rate to 
convert the income distribution to an imaginary currency, and the Gini coefficient will 
always remain the same. 
 
Thus we can say, when the S/M ratio is 0.6, the Gini coefficient will be 30.39%. When 
the ratio changes, so does the Gini coefficient, and there exists a one-to-one 
correspondence between the two. 
 
The one-to-one relationship is only true when income is log normally distributed.  If the  
income distribution is non-lognormal, then one Gini coefficient value might correspond 
to multiple ratio values of standard deviation over mean. 

 
2. Deriving income standard deviation from Gini coefficient and income mean 

 
As there exists a one-to-one relationship between the S/M ratio and the Gini coefficient, a 
C++ program was developed to compute the table similar to the following to quantify 
their relationship. 

 
S/M Ratio 0.1 0.2 0.5 1 1.5 2 3 4 5 
Gini 5.18% 10.90% 26.05% 44.29% 55.54% 62.70% 71.03% 75.72% 78.74% 

Table 3:  Relationship between S/M ratio and Gini 
 
The actual table has many more columns to define the relationship in more details. 
 
Graphically, the table looks like Figure 1 below. 
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Figure 1:  Graph of S/M Ratio and Gini Coefficient  
 
With this table and using linear interpolation, we can quickly find the value of the 
standard deviation, given the values of the income mean and the Gini coefficient.  For 
instance, if income mean is 3,000, and Gini coefficient is 30%, from the table (not Table 
3, but the complete table with more details not presented here) and using linear 
interpolation, we can find that the S/M ratio is 59.09%.   Then the value of standard 
deviation is: 
 
 S = M * S/M ratio = 3000 * 59.09% = 1772.7 
 

3. Deriving Gini coefficient from a known lognormal income distribution 
 
Similarly, with the table and using linear interpolation, we can find the Gini coefficient 
from the known values of the mean and the standard deviation of a lognormal income 
distribution. 
 
We further found that the lognormal distribution is defined by any known point in the 
form of:  “The poorest a% of population gets b% of income”.  In other words, when that 
point is known, the S/M ratio is defined. 
 
Since that point defines the ratio, it also defines the Gini coefficient.  For many countries, 
there exists the estimate of the fraction of income that the poorest 20% of population gets.  
We can compute the Gini coefficient from that known point.  A C++ program was 
developed and added to Vensim’s external function library to deal with the computation. 
 
Although we can compute Gini coefficient from only one such point, it is advantageous 
to have multiple points, so that we can test whether the Gini coefficients computed from 
different points are similar.  If they are not, it could indicate data error, or it could mean 
that the lognormal distribution is not a good fit to the income distribution of the country. 



 
For the countries we have tested so far, the Gini coefficients derived from different points 
are all very close.  Table 4 is China urban income data from the China Statistical 
Yearbook 2001 (Section 10-5). 
 

Income % 
from low 
to high 

10 10 20 20 20 10 10 

Average 
disposable 
income 

2653.02 3633.51 4623.54 5897.92 7487.37 9434.21 13311.02 

Table 4:  China urban income data 
 
The table reads from left as:  The lowest 10% of urban households has an average 
disposable income of 2653.02 RMB (per person per year), the next 10% has an average 
disposable income of 3633.51 RMB, and so on. 
 
From Table 4 we calculated six points on the Lorenz curve, and further computed the six 
Gini coefficients from these points.  The results are in Table 5.  The Gini coefficients in 
the bottom row are surprisingly close. 
 

Poorest 
fraction of 
Population 

10.00% 20.00% 40.00% 60.00% 80.00% 90.00% 

Income 
fraction 

4.08% 9.66% 23.88% 42.01% 65.03% 79.54% 

Gini 
coefficient 
computed 

0.255 0.254 0.253 0.252 0.252 0.252 

 
Table 5: Gini coefficients derived from China urban income data 
 
The conclusions of this section are (1) that we can compute the Gini coefficient from a 
known lognormal distribution, (2) that we can even compute the Gini coefficient from a 
single point on the lognormal distribution, and (3) that with multiple points we can test 
data consistency and possibly adjust our estimates of the mean and the standard deviation 
of the lognormal income distribution.  
 

4. Simulating income distribution dynamically under normal conditions 
 
Most economists believe that the Gini coefficient of a country under normal conditions 
does not change much over a short to medium period of time.  In other words, the S/M 
ratio remains rather constant over time.  If we can obtain the value of Gini coefficient and 
assume that value stays constant, then when we simulate T21 into the future, we can 
easily compute the standard deviation from the endogenous mean of household income.  



This method, of course, tells us nothing about the relative effectiveness of alternative 
policies to change the Gini coefficient. 
 
In reality, however, Gini coefficient could, as a result of different policies, change 
noticeably even during a short period of time. Factors that might change the Gini 
coefficient include employment, government tax, government subsidy, and GDP growth.  
In the next section we will explore how changes in government policies can affect the 
Gini coefficient, assuming all other factors stay constant.  Of course other factors will 
change, but in this first step, let’s assume they do not. 
 

IV. Policy Effect on Income Distribution 
 

Let’s assume that the government increases its income tax rate and uses the extra tax 
income to subsidize the poor in the form of providing free health care to the poor and free 
lunch to school children of families below the poverty line.  If GDP is not affected, and if 
the government uses all the extra tax income on these subsidies, then the mean of 
household income should be the same.  But the standard deviation, or the Gini 
coefficient, will be different. 
 
Of course increasing the income tax rate may not be politically feasible, and GDP could 
be negatively affected by higher income tax rates.  But as a first step, we would assume 
that these policies are doable, and GDP growth will not be affected. 
 

 Steps of the method are as follows: 
1. Assume our interest is in the poorest 20% of population.  Before implementing the 

intended government poverty reduction policies, we can calculate how much income 
this group of households makes based on the Lognormal Distribution.  The result is, 
let’s assume, 6.5% of total income.  We can also compute the Gini coefficient based 
on the information that the lowest 20% population gets 6.5% of income.  The result is 
36.49%. 

2. Calculate the real income this group of households will make, including health care 
and children’s lunch provided free, after the implementation of the government 
policies.  The result could be, let’s assume, 6.7%.  And the corresponding Gini 
coefficient would be 35.69% 

3. As the mean of household income does not change, while the Gini coefficient does, 
we can compute the two standard deviation values from the same mean but different 
Gini values, corresponding to two different policy scenarios:  adopting these policies 
or not.   

4. With the mean and the standard deviation values of the log normal distributions 
known, we can compute and compare the poverty situation of the country before and 
after the policy implementation, such as the number of households under the poverty 
line. 

 
V. Model in Vensim 
 



An income and poverty reduction policy model built in Vensim will be demonstrated 
during presentation, and its run-only version will be available by request. Initial 
application of this model in the T21 national development model will be discussed. 

 
VI. Further Research 
 

Further study is needed in at least the following areas: 
1. The feedback effect of government poverty reduction policies on GDP growth. 
2. The feedback effect of poverty conditions on national development. 
3. How other factors might change when government policy changes. 
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