

DESIGN OF INFORMATION SYSTEMS:

SIMULATING THE EFFECTIVENESS OF KNOWLEDGE
TRANSFER THROUGHOUT THE SYSTEM ANALYSIS

PHASE.

Peter Otto
potto@csc.albany.edu

Salvatore Belardo

s.belardo@albany.edu

University at Albany, State University of New York
School of Business

1400 Washington Avenue,
Albany, New York 12222

Abstract
One of the critical issues determining the successful development of information
systems is what might be described as the communication gap between the user group
and the IS development group that occurs during the system analysis phase. This gap,
we contend, stems from the lack of understanding of one another’s domain knowledge
without for example, a common vocabulary it is difficult to exchange knowledge. This
article presents a system dynamics model that can simulate various knowledge
exchange scenarios, to help develop strategies for an optimal knowledge transfer
between these two groups. Knowledge exchange scenarios are a function of both the
quantity (e.g. vocabulary) and quality (e.g. timeliness) of the knowledge possessed by
each group. The paper concludes with a demonstration of different policy
implementations and their impact on the effectiveness of the knowledge transfer during
the systems analysis phase.

Keywords: Knowledge transfer, Knowledge quality, Communication in system design

Introduction
From the beginning of the computer era systems analysts have been confronted with the
challenge of developing systems that satisfactorily meet user needs. All too often
systems developed at considerable expense are not used, because the resulting system
does not meet the user’s expectations and requirements. It is generally agreed that one
of the most significant factors in this failure is ineffective communication between the
user group and the development group. Traditionally the development team has
considerable knowledge of IS but is not necessarily familiar with the knowledge

mailto:potto@csc.albany.edu
mailto:s.belardo@albany.edu

domain of the client. Conversely, the user group may have superficial knowledge of IS
but not sufficient to judge, which systems, technologies, or development options would
meet their needs. That the development and user groups typically have different mental
models, and so a statement that is perfectly understandable and meaningful to one party
is either not absorbed by the other or worse, is misinterpreted. Thus, the quality of the
knowledge transfer is deficient. Senge (1990) cogently noted that surfacing and testing
mental models is essential to learning. As a result of a deficient knowledge transfer, the
information system typically does not perform as expected, is not operational at a
specified time or cannot be used as intended.

In order to understand the knowledge transfer problem, we first examine the nature of
knowledge in the developmental context and then introduce a set of ideas and concepts,
which provide guidance on how best to structure teams to overcome these problems.
Ideal knowledge transfer strategies can vary substantially depending upon the
characteristics of both the development team and the user group. While such knowledge
transfer strategies are difficult to frame, a system dynamics model could provide
guidance as to what knowledge transfer strategy is most appropriate given the
knowledge possessed by the development and user teams as well as the nature of the
project environment.

One of the underlying premises of our work is that the degree of conformity between
the developer’s and users tacit knowledge for the other’s domain has a substantial and
critical impact on the nature and effectiveness of overall knowledge transfer. We
assume that individuals possess both tacit knowledge and explicit knowledge. Explicit
knowledge is what a person can articulate such as the personnel policy of a firm. Tacit
knowledge entails information that is difficult to express, formalize, or share. Tacit
knowledge in contrast to explicit knowledge, which is conscious and can be put into
words. An individual experiences tacit knowledge as intuition, rather than as a body of
facts or instruction sets he or she is conscious of having and can explain to others. Tacit
knowledge is "knowing how" while explicit knowledge is "knowing that" (Lubit 2001).
Tacit knowledge therefore is a mental model used by an individual to process
information produced by others or to absorb information from observations.

Depending upon one’s mental model(s), the explicit knowledge provided by one party
could be interpreted by another as intended or could be badly misinterpreted determined
by the receiving party’s tacit knowledge. Therefore, the levels of tacit knowledge each
side has of the other’s domain affects the correctness and rapidity of the explicit
knowledge transfer. Belardo et al. (2002) discuss the nature of the knowledge transfer
problem and provides the excellent example that amplifies the importance of both
explicit and tacit knowledge.

Our use of knowledge is in the context of Bloom’s taxonomy (1956). Bloom’s
taxonomy consists of three domains – cognitive, affective and motor skills. Since we
are concerned here with what a person knows and how efficiently and effectively a
person can learn from others, we will focus on the cognitive domain. The cognitive
domain defines in ascending order six levels of knowledge, beginning at the very

lowest level vocabulary and progressing to the highest level, evaluation. The cognitive
domain then is essentially a scale that can be used to evaluate the level of explicit
knowledge possessed by an individual.

Dynamics of Knowledge Transfer
In situations where knowledge transfer is applied to a relatively stable technology with
a slowly changing environment, the problems are more easily managed. This is true
both, because knowledge accumulated during past interactions is more likely to be still
relevant as well as, because the time pressure to complete the current system design
before it is outdated will be minimized. An example of this situation would be
developing a database to monitor the production of furniture, a relatively stable market
with established supplier relationships and a more or less predictable product life cycle
(Belardo et al. 2002).

An example where the knowledge transfer is more dynamic would be the design of a
system to monitor the marketing of personal computers. The fact that the analyst had
experience a number of years ago in developing an information system for mainframe
computers, may provide little knowledge of current relevance. Likewise, from the users
perspective, the marketing manager’s pervious experience with an early electronic
marketing application may be largely outdated by rapid evolution of the Internet
(Belardo et al. 2002). Thus, the pressure on the knowledge transfer process are
increased by the highly time dependent nature of the market as well as the short half-
life of Internet innovations.

It is generally agreed that in more dynamic environments, the rates of knowledge
acquisition as described by the learning curves of the design team and the user group
become increasingly relevant. Among the factors, which influence the shape of these
learning curves, are group size, tacit knowledge, and relevant explicit knowledge from
previous experience.

Objective of the Study
The main objective of this paper is to build a system dynamics model that represents
the dynamics of the knowledge transfer rate during the analysis stage of information
systems development. The model is aimed at testing different policies in order to
establish a target profile for tacit and explicit knowledge for the user and developer
teams. While the composition of teams is understood in a general way by successful
practitioners, a major contribution of this paper is to provide a framework for a more
micro view of current and targeted knowledge levels for a user and developer team.

The system dynamics model focuses on the impact of tacit knowledge on the rate of
acquisition of explicit knowledge by the developer and the user team. Using a model to
determine a desired knowledge level is especially important when a dynamic design
environment requires that the design process be compressed. Belardo et al. (2002)
concludes that such a model can be used to make mid-course corrections in team
composition. For example, by adding a senior member to the team, when there is a
threat of not completing the project in time, we can evaluate the impact of knowledge

acquisition from the team, which then determines the effectiveness. Using a system
dynamics tool could help to optimize strategies about how to compose a team for the
information system analysis project.

Problem statement
To create effective information systems, the design team must acquire a firm
understanding of the user’s expectations and requirements. On the other hand, the user
should also be able to understand what the technical considerations and constraints for
the information systems are. In order to do this there must be an efficient and effective
transfer of knowledge between the two groups. The more efficient and effective the
knowledge transfer is the more successful will the information system be.

Without a good understanding of the required knowledge levels between the teams
during the information systems development, there is a likelihood that the team is not
able to finish the project in time or costs are not kept in budget. One of the critical
issues determining the rate of knowledge transfer between the teams hence, the success
rate of an information system, is the composition of tacit and explicit knowledge within
the user and developer team.

Audience
The model is aimed at managers who have responsibility for information system
development and implementation. These managers work in industry or consulting
companies and have strategic and tactical responsibilities for information systems,
which include securing needed investments and resources, and making sure that all IT
efforts are consistent with the business objectives of the firm. A broader target audience
would include information systems developers and users. Here, the model could be
used to support managers who must articulate information system development task
specific strategic recommendations.

Model Purpose
The purpose of the model is to simulate the outcome of different policies to evaluate the
quantity and quality of explicit and tacit knowledge in user and developer teams. The
model could also be used to monitor the progress for improving both the quantity and
quality of explicit knowledge over time. Simulating the dynamics of the team
composition will give managers a tool for assessing initially the potential for effective
knowledge transfer for a particular choice of individuals in the user and developer team.

Modelling Structure
Key questions addressed in this paper are:

I. How do individual levels of tacit and explicit knowledge influence the
efficacy and effectiveness of knowledge transfer and consequently the
quality of the information system?

II. What insights concerning team composition strategies can the model
provide?

With regard to the first question, the proposed model should be able to predict the effect
of changes from initial values of tacit, and explicit knowledge with regard to the quality
of the information system.

With regard to the second question, the model should provide the manager with insights
about the effect of different strategies concerning the best way to compose an
information development team.

Theoretical Framework
Figure 1 shows the causal loop diagram for the network of variables that affect
knowledge acquisition, the effectiveness of the teams, and as a result the quality of
information systems development.

Transfer of IS skill

Transfer of
domain skill

Task specific
developer
knowledge

Task specific
user

knowledge

IS skill

Initial developer
knowledge

Tacit knowledge of
developer

Explicit knowledge of
developer

Knowledge
acquisition rate of

developer

Domain skill

Initial user
knowledge

Tacit knowledge
of user

Explicit knowledge
of user

Knowledge
acquistion rate of

user

Effectiveness of
team

Time to complete
project

Quality of system
analysis

Experience gained

++
+

+

++

+
+

+

+

+

++

+
+

+

+

Cost

Pressure on team

Burn-out rate

End user
satisfaction

-

+

+

+
Confidence in

team ability

+

+
+

-

+
-

Task
accomplishment rate

+

-

R1 R2

R3

R4

Effectiveness

+

+

Need for
training

+

+

+

+

+

+
Gaining knowledge

Pressure building up

Gaining knowledge

Figure I – Causal feedback structure

Description of the Causal loop diagram and Feedback Loops
There are many reinforcing loops in the causal loop diagram shown in figure 1. The two
reinforcing knowledge loops (R1 and R2), determine the effectiveness of the team,
which could have opposite effects depending on the initial degree of tacit and explicit
knowledge of either group. This means that insufficient tacit and explicit knowledge
can inhibit the transfer of knowledge from one team to the other, which will gradually
reduce the effectiveness of the system analysis team. Another strong reinforcing loop,
which influences the quality of the information system, and user satisfaction is R3
“Pressure building up”. If time to complete the project goes up, the pressure on the
team builds up, thus causes a burn-out effect that can dramatically reduce the
effectiveness of the team.

Dynamic Hypothesis
The effectiveness of a system design team is related not only to the initial explicit
knowledge that the team will bring to the project but also to the tacit knowledge
possessed by the members of the team. Narrowly conceived decisions about the team
composition could lead to unexpected behavior and greatly influence the effectiveness
of the team. The following figure visualizes the dynamic hypothesis.

Figure 2 – Diagram for Dynamic Hypothesis

The diagram on the left side of figure 2 shows the reference mode and the expected best
and worst-case behavior in the information systems development project. The diagram
on the right side represents the causal loops, which causes the behavior of the system. A
fear, or worst-case scenario, as represented in the diagram with the sloop F1, is when
the initial level of tacit and explicit knowledge is low and, as a consequence, causes low
effectiveness. As a result of low tacit and explicit knowledge, the team will not meet
the anticipated time (td) to finish the project but end the project later (tt). Another fear,
represented with the sloop F2, is when the team realizes that the project needs mid-term
correction, which could be accomplished either by adding more people to the team or
by going through some training.

After training, the effectiveness of the team would increase, however, costs would
exceed initial estimates. Higher costs could also lead to higher pressure on the team,
which would result in a “burn-out effect”, where the effectiveness of the team will
decrease, causing a similar effect as in the F1 scenario. The “best case or hope scenario”
(H) represents the dynamic where a system analysis team has the necessary level of
tacit and explicit knowledge to finish the project in the desired time (td) without
pressure building up, and without cost overrun.

td tf

F1

F2

H

Effectiveness

Initial tacit and
explicit knowledge

Initial user
knowledge

Task specific
knowledge

Transfer of
knowledge Effectiveness of

team

Task
accomplising rate

Time to complete
project

Quality of system

Experience gained

Need for training

Cost

Pressure on team

+

+

+

+

+

+

-

+
+ +

+

+
-

B

R

Effectiveness

Training/Cost

td tf

F1

F2

H

Effectiveness

Initial tacit and
explicit knowledge

Initial user
knowledge

Task specific
knowledge

Transfer of
knowledge Effectiveness of

team

Task
accomplising rate

Time to complete
project

Quality of system

Experience gained

Need for training

Cost

Pressure on team

+

+

+

+

+

+

-

+
+ +

+

+
-

B

R

Effectiveness

Training/Cost

Stock and Flow Diagram
The stock and flow diagram is separated into different sectors as shown in figure 3 and
4. Each of the stock and flow is part of the conceptual system dynamics model, which is
represented in figure 5.

Effectiveness
of teamIncrease eff. from

gaining knowledge

Effectiveness
decay rate

Loss of eff. from
pressure

Fractional decay rate

Effect from team
knowledge

Pressure from
schedule overrun

Team training based on
anticipated schedule

overrun

Figure 3 – Stock and Flow Determining the effectiveness of the team.

The effectiveness of the team is determined by the task specific knowledge of the user
and developer teams, aggregated in the variable “Effect of team knowledge”. Increasing
the effectiveness of the team could either be a result of higher levels of knowledge,
based upon higher initial values of tacit or explicit knowledge, or could be due to
training. Losing effectiveness is a result of pressure, which builds up when the expected
date to complete the project is not met. The fractional decay rate is a constant
representing a normal loss of effectiveness due to exhaustion in team-based projects.

The next stock and flow diagram (figure 4) represents the accumulation of task specific
user and developer knowledge, which is based on initial values of tacit and explicit
knowledge.

Task specifig
user

knowledge

Task specifig
developer
knowledge

User knowledge
acquisition rate

User knowledge
decay rate

Developer
knowledge

acquisition rate

Developer
knowledge decay

rate

Tacit user
knowledge

Explicit user
knowledge

Tacit developer
knowledge

Explicit developer
knowledge

Fractional
knowledge decay

rate

Initial user domain
knowledge

Initial developer
knowledge

Initial tacit developer
knowledge level

Initial explicit
developer knowledge

level

Transfer of domain
knowledge

Transfer of IS
knowledge

Figure 4 – Stock and flow for task specific knowledge

The initial values of tacit and explicit knowledge determine the domain and IS
knowledge of the two teams. The acquisition rate of knowledge depends on the degree
of initial knowledge and the transfer rate between the developer and the user team.
Outflow is determined by a fractional knowledge decay rate over time, which in
essence represents the rate of losing knowledge. The remaining stock and flow structure
of the system dynamics model is represented in figure 5.

Effectiveness
of teamIncrease eff. from

gaining knowledge

Effectiveness
decay rate

Loss of eff. from
pressure

Fractional decay rate

Task specifig
user

knowledge

Task specifig
developer
knowledge

User knowledge
acquisition rate

User knowledge
decay rate

Developer
knowledge

acquisition rate

Developer
knowledge decay

rate

Tasks to do

Tacit user
knowledge Explicit user

knowledge

Effect on user
domain knowledge

Tacit developer
knowledge

Explicit developer
knowledge

Effect on developer
IS knowledge

Fractional
knowledge decay

rate

<Task specifig
developer

knowledge>

Scheduled
completion date

Tasks remaining

Time to complete
remaining tasks

Estimated
completion date

Initial scheduled
completion date

Time to adjust
schedule

Size of team

<Time>

Effect from team
knowledge

KN F

Effect from team
effectiveness

ET F

Finished
tasks

Progress rate

Fraction of tasks
remaining

Total tasks for
project

Adjustment to
schedule

People productivity

PP F

Pressure from
schedule overrun

PF F

Anticipated
schedule overrnun

NT F

Team training based on
anticipated schedule

overrun

Budgeted cost to
complete project

Estimated cost to
complete based on

progress

Estimated cost to
complete

<People
productivity>

<Total tasks for
project>

<Tasks remaining>

<Tasks to do>

<Finished tasks>

Effect on quality from
schedule overrun

Effect on quality
from cost overrun

Quality of System

Normal quality

EFU F

Initial user domain
knowledge

EFD F

Initial developer
knowledge

Effect of team
effectiveness

EFT F

<Time>
FKD F

Initial user tacit level
Initial user explicit

knowledge

IUT F IUK F

Initial tacit developer
knowledge level

Initial explicit
developer knowledge

level

EDK F

TDK F

Transfer of domain
knowledge

TDOK F

Transfer of IS
knowledge

TIK F

Figure 5 – Overview of the model

The stock and flow structure in figures 3 and 4 represent the build block of the model,
the remaining stock and flow representation is based upon generic type structures,
which are often used in system dynamics models for project management. For example,
the stock and flow structure of “task to do” and “unfinished tasks”, as well as
“scheduled completion rate” are generic model formulations.

Input Variable Description
The model has two input variables, which determine the level of tacit and explicit
knowledge of the user team and the developer team.

Explicit knowledge; is operationalized along four quality descriptors; accuracy,
completeness, timeliness, and consistency. These quality descriptors have been
discussed extensively in the information quality literature (e.g. Ballou and Pazer 1985,
Wang and Strong 1996) as useful measures for the quality of explicit knowledge
(Huang et al., 1999).

For the purpose of this study and for the sake of simplicity, the variable “explicit
knowledge” is an aggregated value to represent the quality of knowledge with a three-
point ordinal scale of high, medium, and low. The input value in the model for a high
explicit knowledge level is between 0.7 and 0.9. Input value for medium explicit
knowledge level is from 0.55 – 0.69, and low from 0.3 – 0.54.

Figure 6 – Lookup table for explicit knowledge

Figure 6 shows the table function for the input variable “explicit knowledge”. It is
suggested that explicit knowledge, e.g. accuracy, completeness, timeliness, and
consistency, are easier to gain and learn. Therefore, the effect from explicit knowledge
on the variable “initial knowledge” is different from the table function of tacit
knowledge.

Graph Lookup - IUK F

1

0
0 1

The second input variable is tacit knowledge. Tacit knowledge; as stated before, is
operationalized as the mental model used by an individual to process explicit
knowledge, information or data provided by others as well as the ability to effectively
assimilate observations of the relevant environment (Belardo et al. 2002). The lookup
table for the variable “tacit knowledge” - as represented in figure 7 - is based on the
assumption that tacit knowledge is much harder to gain, thus the shape of the curve in
the table function is not so steep as for the explicit knowledge table function.

Figure 7 – Lookup table for tacit knowledge

The lookup tables for the developer team and the user team are identical for both the
initial level of explicit as well as tacit knowledge.

Knowledge Transfer Variables
An initial level of user or developer knowledge determines the rate, with which each
team can transfer their knowledge to the other team. For example, a developer team
with high tacit and explicit knowledge is able to better communicate and understand the
needs of the user, thus the user team will easier learn the content of the developer’s
domain.

Figure 8 – Lookup table for the variables knowledge transfer

The graph on the left side of figure 8 represents the table function for the variable
“transfer of IS knowledge”. The curvature suggests that the developer team is better

Graph Lookup - IUT F

1

0
0 1

Graph Lookup - TIK F

0.5

0
0 1

Graph Lookup - TDOK F

0.5

0
0 1

able to facilitate understanding and to optimize knowledge transfer for all situations. On
the other hand, the graph on the right side, which is the table function for the variable
“transfer of domain knowledge”, suggests that the transfer of knowledge from the
domain of the user team needs a higher degree of comprehension on the part of the
system developer.

Model Behavior

In Time and Budget Policy
The first policy simulation is an example of a situation where at the project start each
member of the user and developer team has a rather high level of tacit and explicit
knowledge, and experience from previous information systems development (input
value for the model is: tacit = 0.7, explicit = 0.8). The model then simulates the
effectiveness of the team to fulfill 42 tasks in a given time frame of 50 months. The
number of tasks, the time to complete the project, and the cost for developing an
information system are arbitrarily and do not represent real conditions. However, it is
not our objective to apply real data to represent cost and timing for the development of
an information system but to simulate the effect of knowledge transfer based upon
initial levels of tacit and explicit knowledge.

Results from the first policy simulation

Knowledge and Effectiveness
2 Dmnl
2 Dmnl
2 Dmnl

1.3 Dmnl
1 Dmnl
1 Dmnl

0.6 Dmnl
0 Dmnl
0 Dmnl

3

3
3

3 3 3 3 3 3 3 3 3 3 32

2 2
2

2
2 2 2 2 2 2 2 2 2

1

1 1
1

1
1

1
1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Time (Month)

Task specifig developer knowledge : base Dmnl1 1 1 1 1 1 1
Task specifig user knowledge : base Dmnl2 2 2 2 2 2 2 2
Effectiveness of team : base Dmnl3 3 3 3 3 3 3 3 3

Figure 8 – Graph for effectiveness and task specific knowledge

Performance
60 task
60 Month
1 Dmnl

2,000 dollar

0 task
0 Month

0.6 Dmnl
-200 dollar

4
4

4

4

4
4

4

4

4

43 3 3 3 3 3 3 3 3 3

2 2 2
2

2

2
2

2 2 2

1

1

1

1
1

1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Time (Month)

Finished tasks : base task1 1 1 1 1 1 1 1
Scheduled completion date : base Month2 2 2 2 2 2 2
Quality of System : base Dmnl3 3 3 3 3 3 3 3
Estimated cost to complete : base dollar4 4 4 4 4 4 4

Figure 9 - Graph for team performance

Observation
Task specific developer knowledge is lower compared to the user knowledge. In
addition the level of developer knowledge declines faster than that of the user. There
could be two reasons. First, the rate of knowledge transfer from the user team is not
high enough to bring the level of task specific developer to a sufficient level. Second,
since the transfer of user knowledge, which is determined by the function table, is not
the same as for the user team, the decay of task specific developer knowledge is steeper.

The performance of the team, based on the initial values, is sufficient to finish the 42
tasks in time and budget, and achieve the desired level of quality.

Medium knowledge level policy
The second policy tested is based on medium levels of tacit and explicit knowledge on
both sides of the teams. Input values are 0.5 for tacit and 0.6 for explicit knowledge.

Results from the second policy simulation

Knowledge and Effectiveness
0.6 Dmnl
0.8 Dmnl

1 Dmnl
0.4 Dmnl

0 Dmnl
0 Dmnl
0 Dmnl
0 Dmnl 4 4 4 4 4 4 4 4

4

4
3

3
3 3

3
3

3
3

3

3

3

2

2 2

2

2
2

2
2 2 2 2

1

1

1

1
1

1
1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Time (Month)

Task specifig developer knowledge : medium Dmnl1 1 1 1 1
Task specifig user knowledge : medium Dmnl2 2 2 2 2 2
Effectiveness of team : medium Dmnl3 3 3 3 3 3 3 3
Pressure from schedule overrun : medium Dmnl4 4 4 4 4 4 4

Figure 10 - Graph for effectiveness and task specific knowledge

Performance
60 task
60 Month
0.8 Dmnl

2,000 dollar

0 task
0 Month

0.2 Dmnl
0 dollar

4

4

4

4

4 4
4

4

4

4

3 3 3 3 3 3 3

3 3 3

2 2 2
2

2

2
2

2 2 2

1

1

1

1
1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Time (Month)

Finished tasks : medium task1 1 1 1 1 1 1 1
Scheduled completion date : medium Month2 2 2 2 2 2 2
Quality of System : medium Dmnl3 3 3 3 3 3 3 3
Estimated cost to complete : medium dollar4 4 4 4 4 4

Figure 11 - Graph for team performance

Observation
Because of the medium levels of tacit and explicit knowledge as well as the decay rate
(simulated as a value which decreases over time) the task specific knowledge of both
teams is too low to complete the system in the scheduled time. Pressure is building up
(graph 4, in figure 10) because of the number of unfinished tasks, and as a result,
reducing the effectiveness of the team.

As a result of a lower level of effectiveness the system will not be completed in time
and as we can see, the costs are higher than anticipated. Finally, the quality of the
system is below expectations (as represented with the graph “Quality of system”,
shown in figure 11).

Policy to compensate lack of user knowledge
The third policy tries to compensate for low levels of tacit and explicit knowledge on
the user side (initial values: tacit = 0.5, explicit = 0.5), with high levels of tacit and
explicit knowledge on the developer side.

Results from third policy simulation

Knowledge and Effectiveness
1 Dmnl

0.8 Dmnl
1 Dmnl

0.2 Dmnl

0 Dmnl
0 Dmnl

0.4 Dmnl
0 Dmnl

4 4 4 4 4 4 4 4

4

4

3

3

3 3
3

3
3

3
3

3

3

2

2 2

2

2
2

2
2 2 2 2

1
1

1

1
1

1
1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Time (Month)

Task specifig developer knowledge : compensate Dmnl1 1 1 1 1
Task specifig user knowledge : compensate Dmnl2 2 2 2 2 2
Effectiveness of team : compensate Dmnl3 3 3 3 3 3 3
Pressure from schedule overrun : compensate Dmnl4 4 4 4 4 4

Figure 12 - Graph for effectiveness and task specific knowledge

Performance

60 task
60 Month

0.8 Dmnl
2,000 dollar

0 task
0 Month

0.2 Dmnl
0 dollar

4

4
4

4

4 4
4

4

4

4

3 3 3 3 3 3 3 3

3 3

2 2 2
2

2

2
2

2
2 2

1

1

1

1
1

1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Time (Month)

Finished tasks : compensate task1 1 1 1 1 1 1
Scheduled completion date : compensate Month2 2 2 2 2 2
Quality of System : compensate Dmnl3 3 3 3 3 3 3 3
Estimated cost to complete : compensate dollar4 4 4 4 4 4

Figure 13 - Graph for team performance

Observation
Without an appropriate level of tacit and explicit knowledge on the user side, the
quality of knowledge is too low to transfer the desired domain knowledge to the
developer. Thus, the developer team is not able to comprehend the vocabulary and
requirements from the user, which would be required to achieve a desired level of
effectiveness.

This policy implies that we cannot compensate for a lack of user knowledge by having
more senior people in the developer team with higher tacit and explicit knowledge. The
user team must be able to transfer their domain knowledge to the developer team in
order to achieve a level of effectiveness.

Insights from the Model
One insight from the system dynamics model is described in the previous policy, where
low levels of user knowledge cannot be compensated with high levels of developer
knowledge. Another insight from the model is based on testing the effect from a low
tacit knowledge and high explicit knowledge on the user side. The results suggest that
the level of tacit knowledge has a higher effect on the quality of knowledge as opposed
to altering the scale for explicit knowledge.

Conclusion
The model described in this paper is a first attempt to capture the dynamics of
knowledge transfer during the system analysis phase. The model can be helpful to
determine a desired level of explicit and tacit knowledge for the user and developer
group, necessary to form an ideal team capable of delivering a system analysis project
in time.

A further expansion of the model is necessary to gain insights in the various knowledge
exchange scenarios when the size and the composition of the team is changing during
the system analysis phase. Because knowledge is an abstract concept, further research
should also investigate the parameter values that we have used in the model to better
quantify the ideas and concepts in the proposed system dynamics model.

References

Bloom, B. S. (1956). Taxonomy of Educational Objectives, David McKay Company,

New York.
Huang K., L. Y., and Wang R. (1999). Quality Information and Knowledge, Prentice-

Hall PRT, Upper Saddle River, NJ.
Lubit, R. (2001). “Tacit Knowledge and Knowledge Management: The Key to

sustainable Competitive Advantage.” Organizational Dynamics, 29(3).
Pazer, D. P. B. a. H. L. (1985). “Modeling Data and Process Quality in Multi-Input,

Multi-Output Information Systems.” Management Science, Vol. 31(No. 2), pp.
150-162.

Salvatore Belardo, D. P. B., and Harold L. Pazer. (2002). “Design of Information
Systems: A Knowledge Quality Perspective.” , Paper under Review, Data on
File.

Senge, P. M. (1990). The Fifth Discipline: The Art and Practice of the Learning
Organization, Doubleday/Currency., New York.

Strong, R. W. a. D. (1996). “Beyond Accuracy: What Data Quality Means to Data
Consumers.” Journal of Management Information Systems, Vol. 12(No. 4), pp.
5-34.

Appendix: Model Formulation

Quality of System=
 Normal quality*Effect on quality from schedule

overrun*Effect on quality from cost overrun
 ~ Dmnl
 ~ |

Scheduled completion date= INTEG (
 Adjustment to schedule,
 Estimated completion date)
 ~ Month
 ~ |

IUT F(
 [(0,0)-

(1,1)],(0,0.100877),(0.0948012,0.122807),(0.253
823,0.149123),(0.370031,0.214912\

),(0.458716,0.350877),(0.504587,0.52
193),(0.562691,0.692982),(0.666667,0.79386),(0
.813456\

 ,0.885965),(0.996942,0.960526))
 ~ Dmnl
 ~ |

TDOK F(
 [(0,0)-

(1,0.5)],(0,0.0460526),(0.116208,0.0635965),(0.
342508,0.122807),(0.590214,0.241228\

),(0.69419,0.342105),(0.82263,0.4495
61),(0.996942,0.497807))

 ~ Dmnl
 ~ |

TDK F(
 [(0,0)-

(1,1)],(0,0.100877),(0.0948012,0.122807),(0.253
823,0.149123),(0.370031,0.214912\

),(0.458716,0.350877),(0.504587,0.52
193),(0.562691,0.692982),(0.666667,0.79386),(0
.813456\

 ,0.885965),(0.996942,0.960526))
 ~ Dmnl
 ~ |

Developer knowledge acquisition rate=
 Effect on developer IS knowledge*Initial

developer knowledge*Transfer of domain
knowledge

 ~ Dmnl
 ~ |

Tacit user knowledge=
 IUT F(Initial user tacit level)
 ~ Dmnl
 ~ Initial value: 0.6
 |

EDK F(
 [(0,0)-

(1,1)],(0,0.0921053),(0.0550459,0.328947),(0.15
5963,0.583333),(0.330275,0.776316\

),(0.504587,0.872807),(0.663609,0.91
2281),(0.810398,0.942982),(0.993884,0.973684)
)

 ~ Dmnl
 ~ |

Initial user tacit level=
 0.5
 ~ fraction
 ~ ~

 :SUPPLEMENTARY
 |

Transfer of domain knowledge=
 TDOK F(Initial user domain knowledge)
 ~ Dmnl
 ~ |

IUK F(
 [(0,0)-

(1,1)],(0,0.0921053),(0.0795107,0.289474),(0.18
3486,0.473684),(0.35474,0.688596\

),(0.522936,0.802632),(0.675841,0.87
7193),(0.828746,0.925439),(0.993884,0.973684)
)

 ~ Dmnl
 ~ |

Initial explicit developer knowledge level=
 0.8
 ~ fraction
 ~ |

Explicit user knowledge=
 IUK F(Initial user explicit knowledge)
 ~ Dmnl
 ~ 0.8 as initial value
 |

Initial user explicit knowledge=
 0.8
 ~ fraction
 ~ |

TIK F(
 [(0,0)-

(1,0.5)],(0,0.0789474),(0.0948012,0.203947),(0.
201835,0.348684),(0.412844,0.445175\

),(0.70948,0.489035),(0.993884,0.493
421))

 ~ Dmnl
 ~ |

Tacit developer knowledge=
 TDK F(Initial tacit developer knowledge level)
 ~ Dmnl
 ~ |

Initial tacit developer knowledge level=
 0.7
 ~ fraction
 ~ |

User knowledge acquisition rate=
 Effect on user domain knowledge*Initial user

domain knowledge*Transfer of IS knowledge
 ~ Dmnl
 ~ |

Explicit developer knowledge=
 EDK F(Initial explicit developer knowledge

level)
 ~ Dmnl
 ~ |

Transfer of IS knowledge=
 TIK F(Initial developer knowledge)
 ~ Dmnl
 ~ |

FKD F(
 [(0,0)-

(50,0.5)],(0,0.140351),(4.89297,0.210526),(10.7
034,0.260965),(17.4312,0.296053\

),(22.63,0.324561),(28.5933,0.348684
),(33.3333,0.366228),(38.2263,0.370614),(44.95
41\

 ,0.377193),(50,0.394737))
 ~ Dmnl
 ~ |

Fractional knowledge decay rate=
 FKD F(Time)
 ~ fraction
 ~ |

Initial developer knowledge=
 Explicit developer knowledge*Tacit developer

knowledge
 ~ Dmnl
 ~ |

EFT F(
 [(0,0)-

(1.5,1.5)],(0,0.0921053),(0.0703364,0.157895),(
0.174312,0.355263),(0.278287,0.809211\

),(0.41896,1.14474),(0.590214,1.3157
9),(0.770642,1.38158),(0.993884,1.42105),(1.32
569\

 ,1.46053),(1.48624,1.49342))
 ~ Dmnl
 ~ |

Initial user domain knowledge=
 Explicit user knowledge*Tacit user knowledge
 ~ Dmnl
 ~ |

EFD F(
 [(0,0)-

(1,1)],(0,0.0745614),(0.0672783,0.223684),(0.14
0673,0.438596),(0.373089,0.745614\

),(0.816514,0.969298),(0.993884,0.99
5614))

 ~ Dmnl
 ~ |

Normal quality=
 0.95
 ~ fraction
 ~ |

Effect of team effectiveness=
 EFT F(Effectiveness of team)
 ~ Dmnl

 ~ |

Effect on developer IS knowledge=
 EFD F(Task specifig developer knowledge)
 ~ Dmnl
 ~ |

EFU F(
 [(0,0)-

(1,1)],(0,0.0745614),(0.0672783,0.223684),(0.14
0673,0.438596),(0.373089,0.745614\

),(0.816514,0.969298),(0.993884,0.99
5614))

 ~ Dmnl
 ~ |

Effect on user domain knowledge=
 EFU F(Task specifig user knowledge)
 ~ Dmnl
 ~ |

Effect on quality from cost overrun=
 IF THEN ELSE(Estimated cost to complete >

50, 0.65 , 1)
 ~ Dmnl
 ~ |

Effect on quality from schedule overrun=
 IF THEN ELSE(Anticipated schedule overrnun

> 0, 0.55 , 1)
 ~ fraction
 ~ |

Estimated cost to complete based on progress=
 (Tasks to do/People productivity)*Finished tasks
 ~ task/fraction
 ~ |

Estimated cost to complete=
 Budgeted cost to complete project+Estimated

cost to complete based on progress
 ~ fraction*task
 ~ |

Budgeted cost to complete project=
 Total tasks for project+Tasks remaining/People

productivity
 ~ task/fraction
 ~ |

Effectiveness of team= INTEG (
 +"Increase eff. from gaining knowledge"-

Effectiveness decay rate-"Loss of eff. from
pressure"\

 ,
 0.5)
 ~ Dmnl
 ~ |

Pressure from schedule overrun=
 PF F(Anticipated schedule overrnun)
 ~ Dmnl
 ~ |

Anticipated schedule overrnun=
 Scheduled completion date-Initial scheduled

completion date
 ~ Month

NT F(
 [(0,0)-

(50,1)],(0,0.210526),(5.04587,0.368421),(13.608
6,0.574561),(28.5933,0.807018)\

 ,(49.6942,0.973684))
 ~ Dmnl
 ~ |

Tasks remaining=
 Total tasks for project-Finished tasks
 ~ task
 ~ |

PP F(
 [(0,0)-

(1,1)],(0.0030581,0.0921053),(0.140673,0.23245
6),(0.217125,0.464912),(0.321101\

 ,0.820175),(0.492355,0.969298),(0.65
4434,0.95614),(0.779817,0.824561),(0.862385,0
.517544\

),(0.95107,0.311404),(0.990826,0.280
702))

 ~ Dmnl
 ~ |

Time to complete remaining tasks=
 IF THEN ELSE(Tasks remaining >0, Tasks

remaining/(Size of team*People productivity),\
 0)
 ~ task/(Month*people)
 ~ |

"Loss of eff. from pressure"=
 Pressure from schedule overrun*Effectiveness of

team
 ~ Dmnl
 ~ |

PF F(
 [(0,0)-

(20,1)],(0,0.0263158),(2.69113,0.127193),(6.177
37,0.337719),(8.68502,0.662281\

),(12.6606,0.846491),(17.1254,0.9385
96),(19.8777,0.982456))

 ~ Dmnl
 ~ |

People productivity=
 PP F(Effect from team effectiveness*Fraction of

tasks remaining)
 ~ fraction
 ~ |

Progress rate=
 People productivity*Size of team
 ~ task/people
 ~ |

Adjustment to schedule=
 (Estimated completion date-Scheduled

completion date)/Time to adjust schedule
 ~ task/months
 ~ |

Finished tasks= INTEG (
 Progress rate,
 0)

 ~ task
 ~ |

Fraction of tasks remaining=
 Tasks to do/Total tasks for project
 ~ Dmnl
 ~ |

Total tasks for project=
 42
 ~ task
 ~ |

Tasks to do= INTEG (
 -Progress rate,
 Total tasks for project)
 ~ task
 ~ |

ET F(
 [(0,0)-

(2,1)],(0,0.0438596),(0.0733945,0.232456),(0.26
9113,0.403509),(0.617737,0.570175\

),(1.11927,0.72807),(1.98777,0.99122
8))

 ~ Dmnl
 ~ |

KN F(
 [(0,0)-

(10,1)],(0,0.166667),(0.58104,0.328947),(1.2232
4,0.486842),(2.47706,0.644737)\

 ,(4.22018,0.75),(5.99388,0.833333),(
7.95107,0.903509),(9.96942,0.97807))

 ~ Dmnl
 ~ |

Effect from team effectiveness=
 ET F(Effectiveness of team)
 ~ Dmnl
 ~ |

Effect from team knowledge=
 KN F(Task specifig developer knowledge+Task

specifig user knowledge)
 ~
 ~ |

Developer knowledge decay rate=
 Fractional knowledge decay rate*Task specifig

developer knowledge
 ~ fraction
 ~ |

Effectiveness decay rate=
 Fractional decay rate*Effectiveness of team
 ~ Dmnl
 ~ |

Estimated completion date=
 Time to complete remaining tasks+Time
 ~ Month
 ~ |

Fractional decay rate=
 0.12
 ~ fraction

 ~ |

Initial scheduled completion date=
 50
 ~ Month
 ~ |

Size of team=
 2
 ~ people
 ~ |

Task specifig developer knowledge= INTEG (
 Developer knowledge acquisition rate-Developer

knowledge decay rate,
 Initial developer knowledge)
 ~ Dmnl
 ~ |

Task specifig user knowledge= INTEG (
 User knowledge acquisition rate-User knowledge

decay rate,
 Initial user domain knowledge)
 ~ Dmnl
 ~ |

Time to adjust schedule=
 4
 ~ Month

**
 .Control
**

********~
 Simulation Control Parameters
 |

FINAL TIME = 50
 ~ Month
 ~ The final time for the simulation.
 |

INITIAL TIME = 0
 ~ Month
 ~ The initial time for the simulation.
 |

SAVEPER = 1
 ~ Month [0,?]
 ~ The frequency with which output is

stored.
 |

TIME STEP = 1
 ~ Month [0,?]
 ~ The time step for the simulation.
 |

	Salvatore Belardo
	Abstract
	
	Keywords: Knowledge transfer, Knowledge quality, Communication in system design

	Dynamics of Knowledge Transfer
	Audience
	Model Purpose
	Modelling Structure

	Table of Contents:
	Abstracts:
	back to the top:

