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Abstract 

Decision-makers are often concerned with forecasts of environmental variables. In 
accordance with this the quality of forecasts is often discussed. The interest in forecasts 
also show up in much modeling activity. However, the value of forecasts in terms of 
improved quality of decisions is not extensively studied. In this article we investigate 
the value of forecasts by the use of stochastic, dynamic optimization. The case is 
Northeast Arctic cod (Gadus Morhua) in the Barents Sea. We find that the value of 
ideal forecasts, when used to their full potential, is around 3 to 5 percent improvement 
in expected net present value. More realistic forecasts lead to improvements less than 
one percent. For practical purposes, it is only the forecast for the coming year that 
matters, long-term forecasts are of no use because the managed fishery is very flexible. 
These findings suggest that highly simplified forecasts can be used in models. The 
conclusions are likely to be somewhat sensitive to choice of model, a theme for further 
research. 

1.  Introduction 

In this article we analyze harvesting policies for a fish species in the case of (partly) 
predictable environmental variation. The case is Northeast Arctic cod (Gadus Morhua) 
in the Barents Sea. Systematic fluctuations or autocorrelation in environmental vari-
ables1 imply that one can make forecasts of these variables.2 Many studies show that 
environmental variation is correlated with the productivity of cod and other species in 
the Barents Sea3. Hence if one can (partly) predict environmental variation, one can also 
(partly) predict cod growth. Based on this line of reasoning it is often claimed that 
forecasts of environmental variation is important for fishery management. Here we use a 
simple surplus growth model for the cod fishery to quantify the value of such forecasts. 
We investigate the required time-horizon of forecasts and we explore simplified 
harvesting strategies that still reap most of the benefits of available predictions. The main 

                                                
1  See e.g. Hannesson and Steinshamn (1991), Larraneta and Vazquez (1982), Yndestad (1999b), 

and a large literature on the North Atlantic Oscillation. 
2  See e.g. Ottersen et al. (2000), Bretherton and Battisti (2000), and Yndestad (1999b). 
3  See e.g. Ottersen and Sundby (1995), Ottersen et al. (1998), Michalsen et al. (1998), Ottersen and 

Loeng (2000), Sundby (2000), Skjoldal et al. (1992), and Helle and Pennington (1999). 



                               

motivation is a need to simplify complicated multispecies models where the optimal use 
of long-term predictions would contribute to excessive complexity. 
 
Several authors have discussed management strategies in light of environmental 
variation. For the case with unpredictable stochastic variation Reed (1979) found a 
constant escapement policy to be optimal in a simple bioeconomic model. Assuming a 
cyclical environment, Parma (1990) found that spawning stocks should be built up when 
good environmental conditions are expected. While this policy gives a slight 
improvement in value over fixed rate policies, it leads to increased interannual catch 
variability. Walters and Parma (1996) found a modest effect of predictions, and found 
that a fixed fishing rate (constant fraction of stock caught) performs nearly as well as the 
optimal policy. In contrast Spencer (1997) found an optimal policy to outperform a fixed 
fishing rate policy in a model with nonlinear predation, indicating that models (and 
objectives) matter. Walters (1989) found that the value of forecasts decreases when 
quotas can be adjusted throughout the year as new stock information becomes available, 
and he found that the value of predictions degrades very quickly with reduced accuracy 
of forecasts. 
 
Our findings will be consistent with the earlier findings for simple bioeconomic models. 
To gain a deeper understanding of the value of predictions, we utilize a result from the 
field of control theory for the case with a linear model and a quadratic criterion (LQ), 
e.g. Balchen et al. (1970). This result says that weights on predictions of disturbances in 
the policy should decline according to the eigenvalues (or inertia) of the optimally 
regulated system (without predictions). The intuition is that the more flexible the 
managed system is, the less time is needed to adapt to changing environmental 
conditions, and the less need there is for long-term predictions. Since our system is 
nonlinear and the criterion is asymmetric (not LQ), the LQ results cannot be applied 
directly. Therefore we find corresponding solutions to the non-linear problem. The 
policy turns out to be quite similar to the policy for the LQ case. Nearly all the weight is 
put on the forecast for the first year, with minimal weights on longer-term forecasts. 
While the potential for economic gain is small to begin with, it is quickly reduced when 
forecasts become less than perfect. These findings indicate that simplified harvesting 
strategies, which do not rely on all states of the environment, can be found with little 
loss in economic value. This is also what we find in numerical examples. 
 
Our case is likely to indicate the importance of forecasts of environmental variation for 
demersal species in other regions of the world as well. In a broader sense, the article 
indicates how other economic decisions subjected to uncertain forecasts of disturbances 
could be analyzed. Note however that by using optimization, we assume that the 
forecasts are being used to their full potential. In real situations managers are not likely 
to make perfect use of forecasts. Hence our methodology may overestimate the value of 
forecasts.  
 
Section 2 presents the fishery model and three different models (cases) of environmental 
variation. Section 3 presents the method used. First we discuss solutions to the linear-
quadratic (LQ) case and then we present the optimization method used, stochastic 
optimization in policy space (SOPS). Section 4 presents the results and section 5 
concludes. 



                               

2. Models of bioeconomics and environment  

We want to maximize the infinite horizon expected net present value 
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for the fishery by seeking a feedback policy for harvest or total quota. Here ρ is the 
discount factor. Yearly profits are given by 
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Revenues are given by a fixed price p times harvest ht . The cost per unit effort is given 

by c and the catch per unit effort is given by x β , where x denotes the instantaneous size 
of the fish stock. Total costs are found by integrating over the interval from the 
escapement level s x ht t t= −  to the pre catch stock level xt  (Clark (1985). Since most 
of the cod is exported at a fixed price, we maximize national income and not the 
domestic consumer surplus. This choice also makes it easier to compare our findings to 
earlier results by Reed (1979). 
 
The stock dynamics evolve according to the following time-discrete stochastic surplus 
growth model, Schaefer (1957): 
 

 mtttt xwssrx ≥+++=+ )1)()1(( 2
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with parameters r and α. The influence from the environment is represented by wt . This 
variable represents variations in recruitment, weight growth, and natural mortality 
including predation. The parameter xm denotes a lower limit for the stock to avoid 
extinction or negative stock values in case of extreme negative outcomes for wt. 
Parameter values are based on estimates for Northeast Arctic cod, see Table I.  
 
We make three different assumptions about the environment in order to examine the 
importance of forecasts. 
 
Case 1. First we make the standard assumption that wt is identically and independently 
distributed (i.i.d.), as in e.g. Reed (1979). 
 
 ),0(~ wt Nw σ    (4) 

 
The standard error of wt is found when estimating Equation 3, σw=0.15. Case 1 
disregards observed tendencies towards autocorrelation. 
 
Case 2. We describe the environment by an autonomous model that produces a pure 
sine-wave, a model which disregards observed irregularities.  
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The choice of parameters β1and β2 and initial values w0 and z0 is such that the model 
produces a sine-wave with constant amplitude (there is no disturbance term). Two states 
are needed to produce a cycle with an optional period. Thus the basic model with its 
state xt is augmented with the two states wt and zt (or wt-1). When we find the optimal 
harvesting strategy as a function of all three states, we will assume that wt and zt are 
measured perfectly.  
 
Consistent with observed recruitment cycles of Northeast Arctic cod, Hannesson and 
Steinshamn (1991), we choose a period length of 8.4 years. The amplitude is set such 
that the standard deviation of the environmental disturbance wt becomes 0.15, i.e. equal 
to the value of σw assumed above. Parameter values and initial conditions (w0 and z0) are 
shown in Table I. The phase shift parameter ν is drawn from a uniform distribution such 
that the sine-wave will start anywhere in the range 0 to 2π. Using Monte Carlo 
simulations, the variable phase shift makes the sine-wave case more similar to the case 
with pure random noise, which is random also in the initial year. 
 
In this second case, we interpret wt to represent temperature in the Barents Sea, an 
environmental variable which is measured with good accuracy. Temperature variations 
in the Barents Sea seem to fluctuate systematically with earth nutation and are correlated 
with the North Atlantic Oscillation, Yndestad (1999b). The pattern however is not 
perfectly described by a simple sine-wave. 
 
That temperature (and correlated inflows of water into the Barents Sea) is important for 
cod is indicated by several studies. Fluctuations with similar frequencies to the ones for 
temperature are found in the dynamics of Northeast Arctic cod, Yndestad (1999a), and 
in the recruitment data, Hannesson and Steinshamn (1991). Temperature is found to be 
important for recruitment of cod (Ottersen and Sundby (1995)), weight growth of cod 
(Michalsen et al. (1998)), spatial distribution of cod (Helle and Pennington (1999) and 
Ottersen et al. (1998)), and growth of prey species (Ottersen and Loeng (2000), 
Skjoldal et al. (1992), and Sundby (2000)). 
 
Case 3. We use a model estimated on actual data. Using temperature data for 
September4 we get the following result (p-values in parentheses) 
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4  September temperatures (Kola meridian) are likely to be the most representative monthly 

temperatures for cod growth. The September temperature is highly correlated with temperatures in 
the months June, July, and October (on average ρ=0.92), months of great importance for prey 
growth (plankton, capelin etc.). The September temperature is also highly correlated with the 
spring temperatures in the spawning grounds in northern Norway (water flows from the spawning 
grounds towards the Kola meridian). 



                               

 
A large proportion of the temperature variation is not systematic and must be considered 
random noise (standard error of 0.46 oC as compared to an average temperature of 4.92 
oC). Thus the purpose of the case 2 sine-wave model is primarily to indicate an upper 
limit for the usefulness of perfect forecasts. The model in Equation 7 on the other hand 
may not be the best one we could produce, the R2 is only 0.11. Allowing for earlier lags 
we find that the R2 does not increase above 0.11 if Tt-3 is included, it increases to 0.18 if 
Tt-4 is included, and it hardly increases above that level when four more lags (Tt-5 to Tt-8) 
are included (R2=0.19). Thus, when we rely on the model in Equation 7 we are likely to 
undervalue the usefulness of forecasts, i.e. we establish a lower limit for the usefulness in 
our bioeconomic model. 
 
In order to get the same standard deviation of the environmental disturbance wt as in the 
previous cases, we use the following description in the model 
 

tttt www ε+−= −− 21 13.034.0    (8) 

 
where 
 
 ),1(~ εσε Nt    (9) 

 
The standard deviation (σε=0.143) for εt is set such that the standard deviation for wt 
becomes equal to what was assumed in the previous cases, σw=0.15. In this connection 
remember that disturbances in the net growth of cod are not only caused by measurable 
temperatures, other factors also contribute to variations. Initial states x0 are given by a 
uniform distribution and initial values of the disturbance states, w0 and z0, are given by 
normal distributions.  
 
Table I: Model parameter values and initial values from  (Moxnes (forthcoming)). 

Name Value Name Value 
c 3.0 ρ 0.95 
p 6.0 σw 0.15 
r 0.75 σε 0.143 
α -0.18 β1 1.466 
β 0.6 β2 -1.000 
xm 0.05   
x0 U(0.5,4.0) ν U(0,1) 

Case 2, w0 )2sin(2 πνσ w
 Case 3, w0 N(σw,1) 

Case 2, z0 )/1(2sin(2 Tw −νπσ  Case 3, w-1 N(σw,1) 
T 8.4   

3. Method 

First we describe shortly the solution to the optimization problem for the LQ case. Next 
we show how stochastic optimization in policy space (SOPS) can be used to solve the 
nonlinear and asymmetric case (not LQ) for the three different assumptions about the 
description of environmental disturbances. 
 



                               

We simply refer the basic results for the LQ case as they are presented in Balchen et al. 
(1970). To find the optimal solution, they explicitly model the process that produces the 
disturbances (e.g. Equations 5 and 6 or Equation 8). The original model and the 
disturbance model forms an augmented model. Since in their case the problem is still 
LQ, it follows immediately that the optimal control is a linear function of all current 
states. 
 
 2211 xGxGu +=    (10) 
 
where x1 denotes the states of the original system and x2 denotes the states of the 
disturbance process. Balchen et al. show that the feedback from the original states is the 
same as in the case with no disturbance (the matrix G1 is not changed by the augmen-
tation of the model). (This solution requires that both the original states and the states of 
the disturbance process are measured perfectly.) 
 
Balchen et al. also show an alternative solution where the optimal policy is found as an 
explicit function of predictions of the disturbance w. The solution can be written 
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where G1 is the same matrix as in Equation 10, and G21 and G22 are constant matrices. 
ΛU is a diagonal matrix with the eigenvalues for the optimally controlled system without 
disturbances. That is, u=G1x1 is included in the system description such that the equation 
for this system reads  
 
 dx/dt=Ax1+BG1x1=Ux1   (12) 
 
where A and B are the system matrices. With negative eigenvalues, the formula in 
Equation 11 puts declining weights on future values of the disturbance w. The weights 
decline rapidly for a system with little inertia (implying large values of ΛU) and vice 
versa. While it is usually unrealistic to assume perfectly known disturbances for ever, 
Equation 11 gives deep insight into the importance of making perfect long-term 
predictions. Clearly, systems with little inertia when policies are in place, are not in need 
of long-term forecasts. 
 
To get a first indication of the importance of long-term forecasts for our fishery problem 
we start by writing down the optimal policy for the case without forecasts. This is a 
(non-linear) constant target escapement policy, Reed (1979): 
 
 h= g(x-x*) ≥0   (13) 
 
where g is a constant equal to 1.0 and x* is the escapement level. We only consider the 
linear portion of the policy when x>x*. (The case with x<x* is not very interesting 
because for low values of x, the harvest will equal zero no matter what the forecasts 
look like.) Next we reformulate the stochastic difference equation model (Equation 3) 



                               

into a deterministic differential equation, using a simple first order approximation 
(dx/dt=(xt+1-xt)/1). 
 
 dx/dt=(r+1)(x-h)+α(x-h)2-x   (14) 
 
Then we insert for h from Equation 13 and differentiate to find the system matrix 
 
 U=λU=r-rg+2α(x-g(x-x*))(1-g)-g,      x>x*  (15) 
 
Since our system is one-dimensional, U is a scalar and thus equal to the eigenvalue λU. 
With an optimal policy of g=1.0 in place, the equation collapses to λU=-1.0. Thus the 
forecast of the environmental disturbance one year ahead in time is weighted by 0.37 
relative to the current disturbance, the forecast two years ahead is weighted by 0.14 etc. 
The following method will be used to find out if these findings hold up when we depart 
from this linearized case. 
 
The fishery model augmented by the disturbance process represents a third order non-
linear system with an asymmetric objective function, i.e. not LQ. For this type of 
problem, dynamic programming is the standard method to find optimal policies. Before 
we go on we note a couple of peculiarities regarding our problem. First, when the 
disturbance is a pure sine-wave, only an ellipse of the state space for wt and zt is visited, 
see illustration in Figure 1. Second, in addition to finding a feedback policy which 
depends on all current states, we also want to find an approximate policy which depends 
on future predictions rather than the current states of the disturbance model. For these 
reasons we see standard dynamic programming as less practical than an alternative 
method which we have readily available. 
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Figure 1: Phase plot for wt and wt-1 when disturbance model produces a pure sine-wave. 
 
The method is stochastic optimization in policy space (SOPS). The practical imple-
mentation of the method used here is described in detail in Moxnes (forthcoming), 
otherwise see e.g. Walters (1986), Polyak (1987), Ermoliev and Wets (1988), 
Gaivoronski (1988), and Bertsekas and Tsitsiklis (1996). Broadly, the method 
transforms the problem of stochastic dynamic programming into a problem of 
deterministic nonlinear optimization. I.e. maximize 
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where J(θ) is a Monte Carlo estimate of the infinite horizon expected net present value 
J∞  with M Monte Carlo runs over T years, and where θ is a vector of policy parameters 
in the harvesting or quota strategy  
 
 ( ) 0, ≥= θtt xhh    (17) 

 
For logical reasons, the harvest is restricted to positive values. The system model used in 
the Monte Carlo simulation is as described in section 2. Just note that the random 
variables wt in Equation 4 or εt in Equation 8 are changed to respectively wtm and εtm. 
Thus besides varying with time t, the random variables also vary over Monte Carlo runs 
m. The same sequence of random variables (same seed) is used for each evaluation of 
J(θ). This assumption makes the search problem deterministic. M=500 and T=50. By 
restricting ourselves to infinite horizon problems (sufficiently well approximated by 
T=50), time is left out of the policy function. 
 
The optimal solution is a nonlinear function of the current values of all the state 
variables. Apriori we do not know what function characterizes this solution. Therefore 
we rely on a flexible policy function, which does not restrict the solution very much. The 
flexible policy is based on interpolation between grid points. Even though we are mostly 
interested in a three-dimensional harvesting policy, we start by explaining the procedure 
in one dimension. The policy ht  is given by 
 
 0))1(/)(()/)(( 1 ≥−−−+−−= + ixxih titit δϕθδϕθ   (18) 

  
where ϕ is the location of the first grid point, δ is the distance between grid points, and 
the policy parameter θ i  denotes harvest at grid point i, where i is determined by 
 
 41)/)int((1 ≤+−=≤ δϕtxi    (19) 

 
Compared to the discrete representation in dynamic programming, we note that the state 
variable xt and the policy ht  are continuous variables. The grid points denote the kinks in 
the piecewise linearized policy. Five grid points are used, and we note that the formulas 
extrapolate beyond the end grid points. In the two dimensional case, when the states are 
denoted x1,t and x2,t, the policy ht  is given by 
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where the policy parameter θi j,  denotes the value of ht  at grid point ij, where i and j are 

determined by 
 



                               

 41/)int((1 11,1 ≤+−=≤ δϕtxi    (21) 

 
 41/)int((1 22,2 ≤+−=≤ δϕtxj    (22) 

 
The policy surface over one cell of the two dimensional grid is illustrated in Figure 2. 
Harvesting in each of the corners is set independently by the values of θi j, . If the 

observations x1,t and x2,t fall within the shown grid cell, the policy value for this com-
bination of inputs is found as illustrated by the dashed lines. Two interpolations are 
performed in the x1 direction (for x2 equal to 0 and 1). The results are used to establish 
the dashed line lying in the policy surface. A last interpolation along this line in the x2 
direction produces the sought after policy value. With several grid cells, policies for 
adjacent cells will intercept along a common surface border line, e.g. the line given by 
θ12 and θ22. Hence the entire policy surface will be continuous but not differentiable. 
Beyond the outer cells of the grid, the formula extrapolates. Note that the individual cell 
surfaces are not restricted to planes. 
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Figure 2: Illustration of the policy surface over one grid cell. 
 
Policies for the three dimensional case can be found by the same logic. The above 
procedure for the two dimensional case is performed for two values in the x3 direction, 
e.g. for x3 equal to 0 and 1. Then one interpolates between the two policy values found 
in the x3 dimension. Higher order policies are found similarly by doubling the previous 
effort and interpolating in the last dimension. Thus the number of policy parameters in 
each cell grows exponentially with the dimension. 
 
A standard nonlinear search technique (Fletcher-Powell variable metric) is used to find 
the policy parameters θ. The search routine provides accurate parameter values judged 
by variations between repeated searches with different starting points for the parameter 
set θ0. Naturally, accurate parameters are only found in subsets of the state space that 
are visited (e.g. the ellipse in the wt and zt space) and where the policy is of importance 
for the criterion. By varying starting points θ0 we increase the probability that a global 
optimum is identified. 



                               

4. Results 

First we find the optimal policy h(xt) for the standard case with random, unpredicted 
disturbances (Equation 4). Table II (and Figure 3) shows that by using SOPS we 
replicate and quantify the constant target escapement policy found by Reed (1979). The 
slope deviates slightly from 1.0 within each grid cell (θi-θi-1). This reflects that the policy 
adapts to the particular outcomes of the random variable over the M=500 Monte Carlo 
simulations. As a further test of the importance of the particular outcomes of the random 
variables, we find the solution for a policy which depends on the entire augmented state 
vector, h(xt,wt,zt). Since the random variable in this case is independent from time to 
time, the only reason why the policy should give a better result is the increased ability to 
adapt to the particulars of the outcomes. We find J equal to 55.87, i.e. only marginally 
higher (0.03 percent) than what was found for h(xt). As expected the policy comes out 
as independent of wt and zt. 
 
Table II: Policy parameters θi at grid point xi  and criterion values J. (Policy parameters for xi=5 are 

not shown since they unreliable due to few observations in this range). 
 θi [ million tons] J 

Case and policy                               
xi: 

1 2 3 4 Billion NOK 

Case 1: Random disturbances 
 1-dimensional policy 

 
-1.3 

 
-0.16 

 
0.86 

 
1.87 

 
55.86 

Case 1: Random disturbances 
3-dimensional policy 

     
55.87 

Case 2: Sine-wave model 
1-dimensional policy for Case 1 

 
-1.3 

 
-0.16 

 
0.86 

 
1.87 

 
56.05 

Case 2: Sine-wave model 
3-dimensional policy 

     
58.84 

Case 2: Sine-wave model 
1-dimensional policy, with forecast 

 
-1.30 

 
-0.12 

 
1.00 

 
1.84 

 
58.79 

Case 2: Sine-wave model 
1-dimensional policy, no forecast 

 
-1.31 

 
0.14 

 
0.82 

 
1.58 

 
56.78 

Case 1: Random disturbances 
1-dimensional policy, with forecast 

 
-1.30 

 
-0.15 

 
0.85 

 
1.85 

 
57.56 

Case 3: Estimated disturbance model 
1-dimensional policy from Case 1 

 
-1.3 

 
-0.16 

 
0.86 

 
1.87 

 
55.88 

Case 3: Estimated disturbance model 
3-dimensional policy 

     
56.14 

 
Next we consider case 2 where the disturbance model produces a perfect sine-wave with 
period of 8.4 years. The amplitude is such that the standard deviation of the sine-wave 
equals the standard deviation for the random disturbance in case 1. In both cases the 
expected value equals zero. First we simply apply the optimal policy for the case with 
random, unpredictable disturbances. The value of J becomes slightly higher than in the 
random case, 56.05 versus 55.86 (0.34 percent). Even though standard deviations are 
equal, a slight difference should be expected due to the remaining differences between 
the distributions. We use the J value of 56.05 as our reference when we next find the 
optimal three-dimensional policy for the augmented system, h(xt,wt,zt). 
 



                               

Table III shows the exact result in terms of the policy parameters θijk, (i represents the 
fish stock xt, j represents wt and k represents zt). The solution is stable and not sensitive 
to starting values θ0 with the exception of all parameters that are not in the 
neighborhood of the ellipse in the wt and zt plane. From Table II we see that the three-
dimensional policy for the augmented model yields an expected net present value 5.0 
percent above the value produced by the constant target escapement policy. Since this 
policy builds on perfect knowledge and measurements of disturbances, it represents an 
upper limit for improvement in this case. 
 
Table III: θijk at grid points xt, wt, and zt. 3-dimensional policy, case 2 sine-wave model. 

    xi   
wt zt 1 2 3 4 5 

-0.2 -0.2 -0.85 0.14 1.12 2.12 3.28 
-0.1 -0.2 -1.23 -0.26 0.67 1.71 3.15 
0.0 -0.2 -1.25 -0.76 0.56 1.38 3.06 
0.1 -0.2 -0.99 0.16 0.80 2.08 3.28 
0.2 -0.2 -1.12 -0.04 1.24 2.09 3.24 
-0.2 -0.1 -0.51 0.48 1.45 2.48 2.88 
-0.1 -0.1 -0.55 0.23 0.71 1.98 2.94 
0.0 -0.1 -0.83 -0.43 0.45 1.57 2.76 
0.1 -0.1 -0.93 -0.62 0.38 1.24 3.00 
0.2 -0.1 -0.84 -0.26 0.60 1.46 3.17 
-0.2 0.0 -0.30 0.72 1.85 2.43 3.14 
-0.1 0.0 -0.51 0.55 1.59 2.70 3.30 
0.0 0.0 -0.95 -0.12 1.15 1.89 2.97 
0.1 0.0 -1.25 -0.57 0.38 1.50 2.72 
0.2 0.0 -1.00 -0.61 0.17 1.23 2.76 
-0.2 0.1 -1.23 0.65 1.01 1.84 2.80 
-0.1 0.1 -0.52 0.65 1.56 2.58 3.07 
0.0 0.1 -0.85 0.38 1.38 2.23 2.85 
0.1 0.1 -0.82 -0.02 0.99 1.65 2.88 
0.2 0.1 -1.14 -0.60 0.40 1.39 2.55 
-0.2 0.2 -1.22 -0.21 0.75 2.27 3.02 
-0.1 0.2 -1.27 0.09 1.34 2.01 2.98 
0.0 0.2 -1.28 0.33 1.32 2.55 2.77 
0.1 0.2 -0.93 0.00 1.04 2.00 3.12 
0.2 0.2 -1.28 -0.38 0.60 1.62 2.61 

 
Table III has all the details, however it is tiresome to interpret. Therefore the policy is 
illustrated in two dimensions in Figure 3 together with the constant target escapement 
policy for the case with random disturbances. The arrows indicate the direction of the 
movement. When the stock is low, harvest equals zero because a period with rapid 
growth is expected. As the stock starts to decline, the harvest is kept high because a 
period with low growth is expected. 
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Figure 3: Constant target escapement policy (solid line) and trajectory of optimal policy (squares). 
 
Figure 4 shows the same pattern along the time axis (thick lines): the harvest is low 
before the period with rapid growth in the stock etc. This figure also show the 
development for the constant target escapement policy (thin lines). In both cases the 
sine-wave disturbances are the same and they are in phase with each other. Clearly, the 
optimal policy leads to a more volatile fishery. Measured by the standard deviation of 
the harvest, the optimal policy leads to an increase in the variability of 38 percent (from 
0.45 to 0.63 million tons per year). If the model had included costs of variability, 
marginal unit costs increasing with effort, or prices which decrease with increasing 
supply, the variability would not have increased as much, and the benefits of forecasts 
would probably be smaller. 
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Figure 4: Stock size (upper two curves) and harvests (lower two curves). Optimal policy (thick lines) 
and constant escapement policy (thin lines). 

 
Next we test a simplified harvesting policy inspired by Equation 11 for the LQ problem, 
i.e. instead of using a three-dimensional policy we use a policy with weights on (perfect) 
forecasts of future disturbances. One reason for doing this is that this formulation 
drastically reduces the number of policy parameters to be searched for. We measure the 
loss in terms of the reduction in the expected net present value J. A second reason is that 
we want to get an impression of how far into the future it is important to make 
forecasts. We use the following adaptation of Equation 11: 
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Within the parenthesis we maintain a linear relationship, where the policy parameters θw,k 
put weights on future disturbances wt+k. The time horizon is denoted by H. To take 
account of the fact that the problem is not LQ, we search for a nonlinear function h 
using interpolations as in Equations 18 and 19. By this choice we allow for a variable 
target escapement type of harvesting policy. Since our choice of policy function puts 
some restrictions on the policy, we do not expect it to produce a fully optimal solution. 
 
We start by searching for parameters using case 2, the sine-wave model. Since the sine-
wave is perfectly autocorrelated, we do not get improvements in the criterion when 
forecasts beyond wt is used. Thus this case is not suited to estimate weights on forecasts 
of future disturbances. However, this case is interesting because we are able to compare 
the result to the truly optimal results produced above. Table II shows the resulting 
policies and criterion values. The weight on the one-year forecast of the disturbance is 
θw,1=-2.90 (not shown in the table). Interestingly, the criterion is only reduced by 0.08 
percent by using the simplified forecasting model, J equals NOK 58.79 billion as 
compared NOK 58.84 billion for the three dimensional policy. This is promising with 
regard to simplification. 
 
Note that it is not only the inclusion of the forecast that leads to the good results when 
using the policy in Equation 23. Also the adaptation of the policy, which is now 
nonlinear, contributes to the criterion. Table II shows that compared to the constant 
target escapement policy for Case 1, harvest is higher at low stock levels and lower at 
high stock levels. This is consistent with the tendency seen in Figure 3 (the squares). 
 
To get a better indication of the pure effect of using a forecast in case 2, we repeat the 
last search without the forecasts (θw,k=0 for all k). Table II shows that the resulting value 
of J is still 1.3 percent above the value obtained with the constant escapement policy, 
NOK 56.78 billion versus NOK 56.05. Hence the nonlinearity makes a difference. The 
table shows that in the case with no forecast, the policy deviates even more from the 
constant target escapement policy. 
 
Now we turn back to the case with random disturbances, case 1, and allow for forecasts 
in the policy (Equation 23). For illustrative purposes we make the highly unrealistic 
assumption that random events can be forecasted perfectly. From the preceding tests we 
expect a criterion value close to the truly optimal one, and we expect an improvement 
above the no forecast case of around 3.5 percent (Case 2 with one-dimensional policy, 
forecast versus no forecast). These numbers serve to indicate the validity of the ensuing 
results since we do not know the truly optimal policy for case 1.  
 
Table II shows that in the case with random disturbances the forecasts lead to an 
improvement in the criterion of 3.0 percent (from NOK 55.86 to 57.56 billion). This is 
quite close to what was obtained in case 2 (3.5 percent) and we see little reason to 
suspect that the obtained result is very far from the truly optimal solution. Table II 
shows that the policy is still a constant target escapement policy. This must reflect the 
lack of autocorrelation in wt as compared to the sine-wave case. 
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Figure 5: Weights θw,k on forecasts of disturbances wt. 
 
Figure 5 shows how the weights on forecasts decline with the time horizon.5 In this case 
the estimates are very stable over repeated searches as one should expect in a case 
without autocorrelation. Relative to the weight on the one year forecast, the weight on 
the two year forecast (k=2) is 16 percent and the weight on the three year forecast is 2 
percent. 
 
The weights are similar to what was indicated by the analysis in Section 3, i.e. an 
eigenvalue around -1.0. Clearly, there is little use for forecasts with a time horizon 
beyond 1 or 2 years. If we repeat the preceding search with a time horizon of H=1, the 
criterion value drops by only 0.07 percent compared to the case with H=9 years. Again 
this indicates that simplification is warranted. 
 
Finally we turn to case 3, where we use a model of the disturbance (temperature) that is 
based on time series estimates, Equation 8. When we use the constant target escapement 
policy from case 1 and no forecast, this model yields an expected net present value of 
NOK 55.88 billion (approximately the same as for case 1 with pure noise). Augmenting 
the fishery model with the estimated disturbance model and using a three dimensional 
policy, we find that the criterion value increases by 0.46 percent to NOK 56.14 billion. 
That is a small improvement. Even if the model had been twice as good at predicting 
disturbances, the potential for improvement should be considered small. Most certainly it 
is not worthwhile to use a three-dimensional policy. The policy in Equation 23 with a 
one year forecast will capture most of the rather small potential for improvement. 

5. Conclusion 

In this article we have tried to understand and quantify the value of forecasts of 
disturbances in a fishery model. The received literature already provides solutions for 
cases with linear models and quadratic criteria (LQ). Here we have used optimization in 
policy space (SOPS) to find solutions for a nonlinear fishery model with an asymmetric 
criterion (not LQ). To find optimal harvesting policies we augmented the original fishery 
model with a model of the disturbance process. 

                                                
5  Minor deviations from zero at high values of k are due to the particulars of the random sequences. 



                               

 
For a model of Northeast Arctic cod we find that there is a certain potential for value 
improvement in case disturbances can be forecasted perfectly, a between 3 and 5 percent 
increase in expected net present value. Most of this potential (99.9 percent) can be 
captured by a simplified harvesting policy, where only a forecast for the coming year is 
used. Using a less than perfect, however estimated forecasting model for temperature, 
assuming temperature is the only disturbance, reduces the potential improvement to less 
than one percent. Again most of the potential could be captured by a simplified policy. 
Furthermore, our use of optimization may lead to overoptimistic expectations regarding 
the direct value of forecasts used in real decision making. Practical decision making is 
not likely to reap the full potential of forecasts. Also note that effort spent on forecasting 
takes resources away from strategy formation, and one may wonder whether the whole 
process of forecasting may distract the process of policy design. In this regard, keep in 
mind how difficult it is to come up with near-to-optimal strategies for stochastic, 
dynamic, nonlinear problems. Thus one may wonder if resources diverted to forecasting 
gives as high a return as other activities pertaining to policy making.  
 
The identified effect of forecasts on harvesting is intuitively appealing. If fish growth is 
expected to be high in the next year, harvesting is reduced for the moment. The fish left 
in the sea experiences a higher than normal growth and more can be harvested later. 
Expected growth below normal implies increased harvest for the moment. Forecasts 
beyond one year are of little or no value as long as it takes little time to adjust the fish 
stock through harvest, i.e. when the managed system is flexible. 
 
Several aspects of the problem at hand are topics for further research. Including capacity 
restrictions and investment delays in the model makes the system less flexible and could 
imply that longer term forecasts become more valuable. Our results may also be sensitive 
to the choice of bioeconomic model and the inclusion of measurement error. Regarding 
predation, the method used here could be used to find harvesting policies for cod in light 
of forecasts of prey species like capelin. However, since there is feedback from cod to 
the prey species, while there is no such effect of cod on climatic variations, this problem 
is better dealt with within a multispecies framework. Furthermore, the method can be 
used to investigate the economics of stabilization. The policies found here typically 
increase the variability of harvests and efforts. By putting weight on effort variation in 
the criterion, and by including increasing marginal unit costs and prices that depend on 
harvest rates in the model, the costs of acting according to forecasts would increase. 
Probably the value of forecasts would decrease. 
 
The results obtained for our case imply that there is little value in long-term forecasts of 
climatic variation for management purposes. This is true even if near-to-perfect forecasts 
could be produced from stable oscillators like the earth’s nutation. This does not mean 
that information about systematic variations in environmental variables is of no value. 
Time-series data of climatic variation can help reduce uncertainty in model parameter 
estimates. If only recent fishery data are available, model parameters could be biased 
since the environmental conditions are not representative for longer time periods and for 
the near-term future for which the model will be applied. Understanding cyclical 
tendencies is of course also valuable in itself and can contribute to better structure of 
fishery models in the future. 
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