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Abstract 
 
The purpose of this paper is twofold. First, we compare two representations of a fish 
stock: a complex cohort (age-class) model and a simple aggregate (surplus growth) 
model. A key question is whether the aggregate model is an appropriate simplification 
of the more complex model. The comparison is made with respect to the optimal fishing 
strategies that follow from each representation. With proper economic mechanisms in 
place, the difference between the two harvesting policies is surprisingly small. Second, 
we see the comparison as an example of an advanced sensitivity analysis, where 
sensitivity in terms of policy is considered rather than in terms of behavior. Assuming 
the ultimate aim of modeling is better policies, our choice seems a proper one. 
However, we also recognize that in many cases, less costly tests of behavioral 
sensitivity may prove more practical. 
 

1.  Introduction 

The purpose of this paper is twofold. First, we compare two representations of a fish 
stock, a complex cohort (age-class) model and a simple aggregate (surplus growth) 
model. A key question is whether the potential model simplification is appropriate. The 
comparison is made with respect to the optimal fishing strategies that follow from each 
representation. That is, we ask if the two representations lead to similar or different 
policy recommendations. In case they differ, the choice of model representation is an 
important one. Second, we see the comparison as an example of an advanced sensitivity 
analysis, where we consider sensitivity in terms of policy rather than in terms of 
behavior. Since the ultimate aim of modeling is better policies, it seems that our choice is 
the better one. 
 
The next two sections present the two model representations of the fishery. The case is 
cod (Gadus Morhua) in the Barents Sea, for which case model parameters are found. 
Interestingly, the parameter estimates in the aggregate model are found to be sensitive to 
the historical fishing strategy. For those who do not want to read these two sections, 
Figures 1 and 2 give quick introductions to the biological parts of the two models. In the 
fourth section we discuss the optimization method. In short, this section explains a 
method to find optimal or near-to-optimal policies linking observations of fish biomass 
to harvesting decisions. In the fifth section we discuss our approach to sensitivity 



                               

analysis. In particular we consider under what conditions traditional behavior sensitivity 
is more appropriate and when policy sensitivity is to be prefered. Then we present the 
results. When important economic feedbacks are removed from the models, we find that 
the models lead to quite different policies (constant target escapement versus pulse 
fishing). However, when the economic feedbacks are in place, we can no longer be 
confident that the policy recommendations differ. 
 

2. The cohort model 

The Barents Sea cod fishery is managed by yearly quotas. Therefore we focus on a 
strategy for quota setting. The quota or harvest will be found as a function of total 
biomass. Cohort models used to find optimal fishing strategies, e.g. Mendelssohn 
(1978), Naqib and Stollery (1982), Spulber (1983), and Spulber (1985), typically limit 
themselves to rather simple representations since according to Mendelssohn: “The large 
increase in analytic complexity caused by the addition of even the simplest interaction 
term is cause for both consternation and challenge.” Since our method allows for greater 
model complexity, we introduce “interaction” terms to capture vital feedback 
mechanisms, e.g. recruitment and weight dynamics. On the other hand, we will, different 
from the above papers, make the simplifying assumption that harvesters do not target 
specific age-classes. This is largely consistent with current fishery policies, which do not 
change restrictions on gear and which do not make major changes in allocations between 
fishing grounds and vessel segments depending on stock size. 
 
We want to maximize the expected net present value  
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for the cod fishery in the Barents Sea. The discount factor is denoted by ρ, et is the 
applied fishing effort, and e0  reflects the fishing capacity. Price of fish is a linear 

function of harvest tH  with parameters p0 and p1. Unit variable costs equal c0 at zero 

effort, and they equal c1 when effort equals e0. Increasing marginal costs are ensured by 
assuming α>0. The per unit leasing cost of capacity is c2. We explicitly avoid maximizing 
a social welfare function for the fishing nation. Most of the harvest is exported and 
domestic prices reflect export prices. 
 
In the following we use capital letters to denote fish in biomass terms (million tons), 
while lower case letters are used to denote numbers (billion fish). Total effort  
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is derived from harvest using a standard instantaneous catch per unit effort relationship, 
h e X X= ( / )0

β , where X X= 0  is the biomass for which effort is defined equal to 



                               

harvest. The expression is found by solving the catch per unit effort relationship for e 
and by integrating over X from X Ht t−  to X t , see Clark (1985).1  
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Figure 1: Illustration of the biological part of the cohort model, not showing rates of natural mortality 
and harvest out of each age class. 

 
A cohort model is used to describe the biology of cod, see Figure 1. The number of fish 
in the different age classes are given by the following equations: 
 
 x S r r S r J v rt t t t r t s3 3 0 1 3 2, ,exp( )= + + + <− −   (3) 

  
 x x m v h m vi t i t i i t i t i i t+ + = − − −1 1 2, , , , ,exp( ) exp( / )            i=3,4,...,13 (4) 

 
 x x m v h m vt t t t t15 1 14 14 14 14 14 14 2, , , , ,exp( ) exp( / )+ = − − − +  

    x m v h m vt t t t15 15 15 15 15 15 2, , , ,exp( ) exp( / )− − −   (5) 

 
where x t3,  represents recruitment of three year old cod. S t−3  is the biomass of the 

spawning stock at the appropriate point in time, tJ  is a measure of cannibalistic cod 

juveniles, vr t, ~ N r( , )0 σ  represents random recruitment variability and rs  is the 

maximum recruitment. Yearclass harvest is denoted by hi t, , mi  is the natural mortality 

                                                
1  Ideally, there should have been a stochastic variable in this equation since the effort needed to 

catch a given quota is likely to vary from year to year. However, a test shows that such an extra 
random variable is of little importance for the optimal harvesting policy. The catch per unit effort 
relationship should also be expected to be related to the selectivity of the gear. This is no problem 
since we will keep the selectivity constant. However, in future studies it is important to reconsider 
the catch per unit effort relationship if selectivity is allowed to vary. 



                               

for yearclass i, and vi t, ~ N m( , )1 σ  represents random variations in natural mortality. 

Even though one might expect natural mortalities for age classes to be influenced by 
some of the same environmental forces, we disregard this possibility here and assume 
independence. Suitability matrices (based on stomach content analyses) indicate that 
there is a certain cannibalism on three year old cod. We ignore this direct relationship 
since the bulk of cannibalism is supposed to be captured by the recruitment function. 
 
Due to the choice of total harvest as the decision variable, it is most practical to use age-
class harvests and not fishing mortalities in these equations. To facilitate this, we have 
made use of Pope’s approximation, i.e. harvest is assumed to take place in the middle of 
the year. This approximation is thought to yield good results for cod2. Equation 5 shows 
that the survivors of age class 15 are re-entered into this age class. This is not a perfect 
way to represent fish older than 15 years of age since fish weight does not increase with 
further aging. With normal fishing activity, however, there are very few fish in the upper 
age classes such that this approximation should be of little concern. 
 
The spawning stock biomass is given by ogives oi , age class body weights wi t, , and age 

class numbers xi t, . 
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The total biomass of harvestable fish (3 years and older) is 
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Juveniles J t  represent a weighted average of biomass in lower age classes 
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The weights si  reflect suitability of pre-recruitment cod for these age groups. The 
harvest from each age class 
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is derived from the total harvest Ht , the policy variable. Here qi  represents the 
selectivity of the fishing gear. One can easily see that the sum of harvests from individual 
age classes equals in Ht  (multiply by tiw ,  on each side of the equation and sum over all 

                                                
2  Personal communication with Bjarte Bogstad at the Institute of Marine Research, IMR, Bergen. 



                               

i) .3 Based on observed patterns seen in VPA data, harvesting selectivities are given by a 
logistic function: 
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For older age classes, qi  tends towards 1.0, qh denotes the age at which qi  equals 0.5, 
and the exponent qe  influences the steepness of the function. Selectivities are also 
influenced by natural variation, uq t, ~ N q( , )0 σ . 

 
Nearly all model studies we have come across ignore the effect of intraspecies competi-
tion in terms of the effect of own stock biomass on own weight. One exception is Ault 
and Olson (1996). We assume that the weight of each age class is given by a reference 
weight for this age class wi ,0  times a weight index wt : 

 
 w w wi t i t, ,= 0     (11) 

 
where the weight index  
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depends on the cod biomass and a random variable vw t, ~ N w( , )0 σ . To avoid simul-

taneous equations, we have replaced the actual cod biomass X t  by an approximation 

based on the reference weights for each weight class, B w xt i i ti
=

=∑ , ,03

15
. This is not a 

problem because we need a measure of the food requirement, and not the actual 
biomass. Weight is assumed to stay below an upper limit ws  in case cod biomass 
becomes very low. Using one common weight index implies that we ignore possible 
differences between age classes. We also ignore time delays in the effect of intraspecies 
competition. It seems however that the delays are short and of little importance.  
 
Tables 1 and 2 give a summary of the parameter values used in the cohort model. The 
parameter values are found by a variety of methods, e.g. catch-at-age analysis, OLS and 
direct observation, see Moxnes (1999). 
 

                                                
3  When the selectivity varies over age classes, Equation 9 does not ensure that harvests will be less 

than population numbers in all of the age classes. This problem is most easily seen in the case that 

tt XH = . In this case all age classes should be harvested completely. However, harvests in age 

classess with higher than normal values of qi will be greater than the corresponding population 
numbers xi. The problem is caused by discretization in time. In a continuous world the qi ’s could 
stay constant while the population numbers gradually decrease. In turn the declining populations 
numbers would serve to limit harvests to what is available. Fortunately this is only a problem when 

Ht  is close to tX . Since any reasonable harvesting policy will keep a good distance, the 

weakness of the formulation usually presents no problem. 



                               

Table 1: Parameter values in cohort model. 
Parameter Symbol Value Unit 
Discount factor ρ 0.95  
Price at zero harvest p0 10.0 NOK/kg 
Price reduction with harvest p1 2.0  
Lower unit variable cost c0 3.7 NOK/kg 
Unit variable cost when e et = 0  c1 4.5 NOK/kg 

Leasing cost of capital c2 1.8 NOK/kg 
Exponent for variable costs α 2.0  
Biomass where effort equals harvest X0 1.0 Mill.tons 
Exponent for catch per unit effort β 0.6  
Recruitment, constant r0 0.85  
Recruitment, effect of spawning stock r1 0.7 per mill.tons 
Recruitment, effect of juveniles r2 -0.25 per mill.tons 
Recruitment, maximum rs  2.0 Billion 
Recruitment, standard deviation σ r  0.64  
Mortality m 0.2  
Mortality, standard deviation σ m  0.35  
Selectivity, half value qh  4.75  
Selectivity, exponent q e  6.25  
Selectivity, standard deviation σ q  0.25  

Weight, elasticity w.r.t. biomass ϕ -0.2  
Weight, standard deviation σ w  0.34  
Maximum weight index ws  1.3  

 
 
Table 2: Parameters that are distributed over age classes. 

 Reference  fish  Spawning stock  Juvenile Expected initial popu-
 weights  [kg] ogives distribution lations  [Billions] 

Age class wi ,0  oi  si  xi ,00  

3 0.8 0.00 0.30 0.500 
4 1.3 0.02 0.80 0.403 
5 1.9 0.08 1.00 0.305 
6 2.7 0.28 1.00 0.207 
7 3.8 0.57 1.00 0.129 
8 5.2 0.79 0.63 0.077 
9 6.8 0.90 0.26 0.045 
10 8.3 0.96 0.00 0.026 
11 9.8 1.00 0.00 0.015 
12 11.5 1.00 0.00 0.009 
13 12.7 1.00 0.00 0.005 
14 13.5 1.00 0.00 0.003 
15 16.8 1.00 0.00 0.002 

 



                               

3. The aggregate model 

A discrete version of the surplus growth model, Schaefer (1954), is used: 
 
 tttttttt HXbHXaHXX ξ+−+−=−−+

2
1 )()()(   (13) 

 
where X t  denotes total biomass and H t  is total harvest measured in biomass, i.e. 
similar notation to the one used in the cohort model. The surplus growth function is 
illustrated in Figure 2. The economic part is identical to the one for the cohort model, 
Equations 1 and 2. 
 
Parameter estimates for Equation 13, based on 50 year long historical time-series, are 
shown in Table 3, Moxnes (1999). As can be seen, estimates are obtained with large t-
ratios. 
 
As a preliminary test of the similarity of the models, we use the cohort model to produce 
synthetic time-series data, from which we estimate another set of aggregate model 
parameters. Actually, we produce two sets of synthetic data because it turns out that the 
estimates obtained are sensitive to the choice of fishing policy in the cohort model. 
Parameter estimates are shown in Table 3 for a historical policy ( H Xt t= 0 28. * ) and 
for the best possible proportional policy ( H Xt t= 0 21. * ). To get precise results we 
used 1000 years of synthetic data, which explains the very high t-ratios. Figure 2 shows 
the three surplus growth models. 
 
Table 3: OLS estimates for aggregate models (t-ratios in parentheses). 
Data used a b σA 
Historical data (51 years of VPA data from IMR) 0.89 -0.25 0.30 
(later referred to as aggregate-historical) (11.1) (-7.5)  
Cohort model output (1000 years, H Xt t= 0 28. * ) 0.94 -0.27 0.71 

 (26.1) (-18.9)  
Cohort model output (1000 years, H Xt t= 0 21. * ) 1.03 -0.23 1.08 

(later referred to as aggregate-simulated) (28.4) (-24.6)  

 
The model obtained from historical data (solid line) is nearly identical to the one 
obtained from synthetic data with the historical policy (dotted line). The close fit is 
somewhat arbitrary since we have observed that estimates of the surplus growth curve 
based on only 50 year long synthetic time-series move around quite a bit. The important 
point here is that the two curves are not statistically different. We do note however that 
the estimates of the residuals σA are significantly different (Chi square test). One 
possibility is that there is too much natural variation in the cohort model.4 Another 
possibility is that the cohort model produces data that are less consistent with the 

                                                
4  In the opposite direction we have underestimated the variation in the cohort model because we 

used a fixed policy when simulating the cohort model rather than a policy with a certain element 
of randomness (observations of historical policies always deviate from fixed one-dimensional 
policies). 



                               

surplus growth model than what the real system does. Both explanations indicate a 
certain improvement potential for the cohort model. 
 

-0.4

0.0

0.4

0.8

1.2

0 1 2 3 4 5

Surplus growth, Mt/y

Xt

 

Figure 2: Surplus growth: Historical data: solid line, simulated data with historical policy: dotted 
line, and simulated data with the best proportional policy: dashed line. 

 
Another interesting observation is that the estimates of the aggregate surplus growth 
model are sensitive to assumptions about the harvesting policy in the cohort model. The 
best possible proportional policy, which implies more careful harvesting and higher 
average fish stocks, leads to a higher estimate of the surplus growth curve (dashed line). 
This is an unfortunate feature of the aggregate model, at least when its parameters are 
based on data from historical periods with over- or underfishing compared to some 
optimal policy. Thus, in the remaining part of this paper we will consider both the 
aggregate model based on historical data, and the one based on synthetic data from the 
cohort model using the best possible proportional policy. Comparing optimal policies for 
these two models, we will get a sense of the importance of this estimation problem. 
 

4. Stochastic optimization in policy space, SOPS 

Cohort models are characterized by a large number of states. Hence, a direct application 
of stochastic dynamic programming, SDP, is ruled out by the ‘curse of dimensionality’. 
Some sort of model reduction would be needed to use SDP. While such simplifications 
are conceivable, they would lead to less transparent models, and to models that are not 
known in the decision making environment. To maintain familiarity and to ensure that 
important effects are captured by the model, we rely on a method termed ‘stochastic 
optimization in policy space’, SOPS. In this case it is primarily the policy that is simpli-
fied in order to obtain solutions, and not the model. 
 
Optimization in policy space has been proposed, used, and implemented in various 
settings, e.g. Walters (1986), Bertsekas and Tsitsiklis (1996),  Ermoliev and Wets 
(1988), and Polyak (1987) and can to some extent be performed by simulation programs 
like Powersim and Vensim. Here we rely on a practical adaptation to stochastic 
problems presented in Moxnes (forthcoming). 
 
In short the method transforms the problem of stochastic dynamic programming into a 
problem of non-linear static optimization. I.e. maximize  
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were W is an estimate of the expected net present value V (Equation 1), and where è  is 
a vector of policy parameters in a given type of fishing strategy 
 
 ( ) 0, ≥= ètt XfH    (15) 

 
where Xt represents the biomass of the fish. W is produced by M Monte Carlo simula-
tions of the respective models with the proposed fishing strategies implemented. The 
models are as described earlier except that the random variables with subscripts t, now 
appear with subscripts tmn, e.g. vr t,  becomes vr tmn, . Thus besides varying with time t, 

the random variables also vary over Monte Carlo runs m=1, 2, ..M and over n=1, 2, ..N 
separate searches for the policy parameters è . Each new parameter search starts with 
different initial policy parameters, n0,èè = , which are drawn from uniform distributions. 

Normally we use M=100 Monte Carlo runs, a time horizon of T=50 years, while N 
varies with the need for repetitions. 
 
For the cohort model each Monte Carlo run starts out with randomly chosen initial age 
class populations 
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where v x ,0 ~ N x( , )0 σ  and 4.0=xσ . Initial conditions vary similarly for the aggregate 

model. 
 

 0,
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where 0,Xv ~ ),0( XN σ  and 4.0=Xσ . 

 
To find the parameter vector è  that maximizes W, a hill-climbing search procedure is 
used (Fletcher-Powell variable metric). The search routine provides accurate parameter 
values judged by variations between repeated searches with different starting points for 
the parameter set 0è  (ignoring occasional solutions that are not close to the global opti-

mum). Naturally, accurate parameters are only found in subsets of the state space that 
are visited and where the policy is of importance for the criterion. 
 
Since we do not know what function characterizes the optimal solution, we rely on a 
flexible policy function, which does not restrict the solution very much. For the one 
dimensional policies to be used here a good numerical approximation can be obtained by 
interpolating between five grid points and extrapolating beyond the end grid points. The 
policy tH  is given by 

 



                               

 lttktkt XXkXXkH −≤−−−+−−=≤ + ))1(/)(()/)((0 1 δϕθδϕθ  (18) 

  
where ϕ is the location of the first grid point, δ is the distance between grid points, and 
the policy parameter kθ  denotes harvest at grid point k determined by 

 
 41)/)int((1 ≤+−=≤ δϕtXk    (19) 

 
Compared to the discrete representation in dynamic programming, we note that the fish 
stock tX  and the policy tH  are continuous variables. The grid points denote the kinks 

in the piecewise linearized policy. Moxnes (forthcoming) shows how linear interpolation 
can be extended into higher order policy surfaces.  
 
The more complex the model, the greater the need to seek simplifications of the policy. 
By restricting ourselves to infinite horizon problems, time is left out of the policy func-
tion.When all states are measured perfectly, the ideal optimal policy is a function of all 
states. Since the aggregate model has only one state, its policy will be one-dimensional. 
The cohort model has many states and the ideal policy is very complicated. However, as 
shown in Moxnes (1999), a one-dimensional policy gives a nearly perfect result com-
pared to higher order policies. The main reason for this is that the fishing selectivities are 
fixed. In models with targeted harvesting of all age classes, one dimensional policies 
would not suffice, Mendelssohn (1978) and Spulber (1983). 
 
By repeated searches and varying the initial policy parameters, we increase the probabi-
lity that a global rather than some local optimum is found. The fact that the method 
identifies correctly global solutions to problems with known solutions also increases our 
confidence in the method.  
 
Finally we note that SOPS is an interesting method also from a more practical point of 
view. The method allows for the use of simulation models and assumptions familiar to 
decision makers. This is an advantage to the extent that decision makers distrust overly 
simplified models, Gulland (1991). On the other hand, large models may require that 
policy functions are simplified. However, this may also be perceived as desirable. 
According to Walters (1986): “..we will have to find ways to visualize [policy] functions 
when there are many [state] variables, since it would be silly to expect any real decision 
maker or manager to blindly plug numbers into such a function and then follow its 
prescription”, p.243. SOPS could be used to find the best possible simplified and 
“visualizable” policies. This approach may also provide an attractive alternative to the 
intuitive blending of two or more exact results from simplified models to come up with a 
best possible policy for practical management. That this can be a complicated task is 
exemplified by the at times surprising effects of adding new nonlinearities, stochastic 
variables, and feedbacks to existing models. Empirical evidence of this difficulty is 
presented in Brekke and Moxnes (forthcoming). If decision makers are not able to 
untangle complexity, they are left with uncertainty about received results. Such uncer-
tainty is believed to be the major obstacle to diffusion of technologies and policies, 
Rogers (1995). In this regard, it may also be an advantage of the method that it does not 
require knowledge of more sophisticated techniques than simulation and search. 
 



                               

By pointing to potential advantages of the method, we do not claim that SOPS is a 
panacea. For instance, other methods are needed to guide efficient problem formulation, 
to judge the likelihood that proper solutions are obtained, and to help explain why 
policies turn out the way they do. In highly complex cases SOPS will only provide 
improvement, which is also the rationale behind various related methods to tackle highly 
complex problems, e.g. neuro-dynamic programming and reinforcement learning, 
Bertsekas and Tsitsiklis (1996). 
 

5.  Policy sensitivity analysis 

The traditional and frequently used form of sensitivity analysis has been to vary model 
parameters and to observe how behavior changes. This is a very useful procedure for 
model testing, learning, and validation. Using optimization models, one can in addition 
observe how the optimal policy changes due to variations in model parameters. This is 
what we do here, and what we refer to as policy sensitivity testing. Below we give a 
motivation for the use of policy sensitivity testing and we discuss limitations of the 
approach. 
 
The main purpose of modeling is problem solving. In the light of double-loop learning 
models, Argyris and Schön (1978), problem solving can take quite different forms. At 
one level, the main challenge is to convince managers, politicians or their electorate, that 
a problem exists and that improvements are possible. Once the problem is acknowledged 
and proper institutions are in place, the problem is often dealt with at another level 
where more detailed and advanced policy analysis may be appropriate.  
 
For these two modes of problem solving, different types of sensitivity analysis is needed. 
To convince that a problem exists, sensitivity analysis could be used to show that basic 
(problem) behavior modes are insensitive to large variations in model parameters. This is 
for instance the type of sensitivity analysis Jay W. Forrester refers to when discussing his 
world dynamics model, Senge (1973) p.5-18. The underlying assumption is that as long 
as the basic problem behaviors persist, proper policies stay approximately the same. 
 
At the level of more detailed and fine-tuned policy analysis, the assumption that policies 
stay the same becomes more questionable. The fact that model behavior is sensitive to 
parameter change, may or may not imply that appropriate (optimal) policies are sensitive 
to the same parameters. This can be a difficult question to answer because it may be just 
as hard to identify proper policies as it is to intuitively predict behavior in complex 
dynamic models. 
 
Two examples serve to illustrate these two situations. First one example where policy 
sensitivity is not likely to be very important. In Moxnes (1998) and Moxnes (2000)  
laboratory experiments show that decision makers misperceive the dynamics of reindeer 
pastures. The resulting mismanagement is likely to persist under a wide range of system 
parameters. This is illustrated by observations of similar modes of problem behavior in 
real management of differing reindeer pastures around the world, Moxnes et al. (2002). 
The same rough policy improvement is likely to lead to quite satisfactory management in 
all these cases. 



                               

 
The second example deals with policy analysis in a setting where management 
institutions have been in place for a long time. In Moxnes (forthcoming) the importance 
of errors in fish stock assessments is investigated. A traditional sensitivity analysis, 
keeping the harvesting policy constant, shows that the total payoff from the fishery is 
highly sensitive to the amount of assessment error. The apparent policy conclusion is 
that it is profitable to increase measurement or assessment accuracy at “any cost”. 
However, when using policy sensitivity analysis, it turns out that the optimal policy is 
sensitive to the error level. When the policy is allowed to vary with the error level, 
around ¾ of the earlier estimate of the value of accuracy disappears. Still accuracy is 
valuable, however, for a start, it is a cheaper option to change the harvesting policy. 
Furthermore, a pilot laboratory experiment indicates that optimization is truly needed for 
this type of analysis because the participants in the experiment were not very successful 
in adjusting policies to account for variations in assessment accuracy. 
 
As said, we use optimization to estimate the sensitivity of policies to model parameter 
changes. Using optimization, there will be no random element of judgment when 
comparing policies. Thus, the comparison will be “fair”, showing optimal policies for all 
parameter changes. Since this type of policy sensitivity test requires that optimal policies 
can be found, the direct application of the method breaks down in complex models. One 
possibility is to resort to near-to-optimal policies. Such policies will have an element of 
error since they represent simplifications. If this error component is not sensitive to the 
model parameter one is changing, policy simplification is of little concern. The 
approximate policy will change similar to the truly optimal policy. However, one will 
rarely know to what extent the policy error depends on the actual model parameter, and 
therefore this solution is of little help. On the other hand, if the simplified policy is the 
best one can do, and it is the policy one will use in practical management, parameter 
dependent errors are of less concern. Then the policy sensitivity will say how the 
practical policy varies with changes in model parameters. Still the comparison is fair and 
of practical value, while it is of less value from a more theoretical point of view. 
 
One can also think of types of policy sensitivity analysis where optimization is not 
needed by definition. An examples is presented in Andersen (1980). In two cases, 
policies resulting from two different models were compared. Andersen found that the 
policy conclusions were sensitive to the choice of modeling paradigm. When comparing 
the models, Andersen did not compare optimal policies. Rather, he took for granted the 
policies suggested by those who performed the original studies, implicitly assuming that 
the policy recommendations were representative for the different paradigms. Thus, 
comparing modeling paradigms it seems fair to include potential (if representative) 
shortcomings of the analysts. 
 
Our problem, comparing an aggregate and a cohort model, seems particularly well suited 
for policy sensitivity testing. Then we test if optimal policies are sensitive to not only a 
parameter change but an entire change in model concept. The two models are not easily 
compared by other means. Not only do the aggregate model collapse all the age classes, 
it also combines recruitment, growth, and mortality into one variable for surplus growth. 
Hence variables in one model are not easy to interpret relative to those in the other 
model, and it also seems difficult to conduct eigenvalue-based linear analysis, see 
Eberlein (1989). Our earlier comparison of parameter estimates for the aggregate model 



                               

based on historical and synthetic cohort model data provides an indication of similarity 
between the biological parts of the models. However, this comparison does not give 
strong indications about the policy sensitivity. Actually, we will see that the policy 
sensitivity is also shaped by the exact formulation of the (identical) economic parts of 
the two models.  
 

6.  Comparing optimal policies for the two models 

We use the optimization method (SOPS) described in section 3 to find policies for the 
two models, using linear interpolation. For both types of models we also search for the 
optimal fixed harvesting capacity e0, represented as a separate parameter in the policy 
parameter vector è . 
 
We compare the two models under two different conditions. First we maintain the 
assumptions in Equation 1 that fish price declines with increasing harvests (p1=2.0) and 
that unit costs increase with effort (α=2.0). Later we assume that price and unit costs are 
constant. We find policies for two versions of the aggregate model, one in which the 
parameters are based on historical data (aggregate-historical) and one in which the best 
possible proportional harvesting policy is used when generating synthetic data with the 
cohort model (aggregate-simulated), see Section 3. 
 
Figure 3 and Table 4 show the resulting policies. The thin solid line in the figure shows 
the optimal policy for aggregate-historical. This policy is very close to the one for 
aggregate-simulated (thin dashed line). Hence the fact that the aggregate model 
parameters depend on the historical fishing strategy has a limited effect on policies. Next 
and of key interest in this paper, the harvesting policy for the cohort model (thick line) is 
somewhat less aggressive than the policies for the aggregate model. However, the 
similarity is more striking than the difference. 
 

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6

Mill.tonnes/year

X t

 

Figure 3: Policies for models with variable price and unit costs. Thick line: Cohort model. Thin solid 
line: aggregate-historical. Thin dashed line: aggregate-simulated. 

 
What is the value of using the more complicated cohort model? Assuming that the 
cohort model is the correct one, we can find the expected net present value for this 
model with the policies derived from the aggregate models. Fist we note that the policy 



                               

for the cohort model yields an expected net present value of NOK 73.8 billion. Using the 
policy for aggregate-historical, the net present value is reduced by NOK 5.7 billion or 
7.7 percent. Using the policy for aggregate-simulated, the present value is reduced by 
NOK 3.9 billion or 5.3 percent. These numbers should not be taken too literally 
however. A priori we cannot rule out the possibility that the aggregate model is the 
better representation of reality. 
 
Table 4: One-dimensional policies for cohort and aggregate models (averages of 20 searches). 
Model/policy θ1 θ2 θ3 θ4 θ5 e0 W 
Variable price and unit costs       
Cohort -0.14 0.30 0.61 0.88 1.05 0.37 73.8 
Aggregate-historical -0.04 0.43 0.81 1.14 1.41 0.40 55.2 
Aggregate -simulated -0.34 0.34 0.76 1.13 1.40 0.46 70.5 
Constant price and unit costs       
Cohort* -2.00 -1.13 -1.17 0.04 1.49 0.5 91.4 
Aggregate -historical -0.84 0.20 1.20 2.19 3.18 0.5 48.3 
Aggregate -simulated -1.75 -0.39 0.59 1.58 2.59 0.5 90.8 
* Additional grid point, θ6=3.32. 
 
Optimal fishing capacities are higher for the aggregate models with their more 
aggressive harvests at high stock levels, see e0 in Table 4. Aggregate-simulated has a 
somewhat higher optimal capacity than aggregate-historical consistent with its higher 
surplus growth curve, see Figure 2. The capacity in aggregate-simulated is 24 percent 
higher than in the cohort model. Also note that the total value of the fishery, W in Table 
4, is quite close for the aggregate-simulated model and the cohort model. Aggregate-
historical has a considerably lower value consistent with its lower surplus growth curve. 
 
Then we turn to a similar comparison of policies when the fish price is set constant 
(p1=0) and where unit variable costs do not vary with capacity utilization (α=0). When 
α=0 it is no longer meaningful to search for the optimal fishing capacity, hence we 
simply set e0 equal to 0.5 million tons per year. The resulting policies are shown in 
Figure 4 and Table 4. 
 
Both aggregate models (thin lines) now show the well known constant target escape-
ment policy, Reed (1979). When biomass is above the target, harvest is set such that the 
biomass is reduced exactly to the target. The difference between the policies for 
aggregate-historical (thin solid) and aggregate-simulated (thin dashed) is more 
pronounced than when fish prices and unit costs were variable. The distance between the 
lines reflects the distance between the peaks for the respective surplus growth curves in 
Figure 2. 
 
The policy for the cohort model5 (thick line) portrays the “pulse-fishing” property found 
in studies of cohort models, Spulber (1983). No fishing takes place for biomasses below 
approximately 4 million tons. For higher biomasses, the harvest increases faster than the 

                                                
5  The pulse fishing strategy is determined with somewhat lower precision than the other policies 

since the policy becomes sensitive to the exact distribution of high fish stocks. However, all the 
standard deviations for average policy parameters over 20 policy searches (N=20) are less than 
0.12. 



                               

biomass, such that the harvest reduces the biomass to a level below 4 million tons. Then 
it is likely that a period with no fishing is needed before stocks again exceed 4 million 
tons and harvesting is again allowed. In this case the cohort model policy is very 
different from the aggregate model policies. 
 
Price elasticity and increasing marginal costs have similar effects. At low harvest rates, 
the fishery becomes more profitable, prices increase and unit costs decrease. At high 
harvest rates the opposite happens. This explains why the policies in Figure 3 are less 
steep than the policies in Figure 4. Hence, the feedback through price and unit costs are 
important for policies. 
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Figure 4: Policies for models with constant price and unit costs: Thick line: policy for cohort model. 
Thin solid line: policy for aggregate-historical. Thin dashed line: policy for aggregate-
simulated. 

 
Why is the effect of prices and unit costs different for the two models? A rather 
superficial, however simple answer is that the cohort policy is much more sensitive to 
the two feedbacks. There is almost no difference between the expected values W in 
Table 4 between the cohort policy and the aggregate -simulated policy. This gives a 
rough indication that there is little to gain by choosing a pulse-fishing strategy when 
there is no economic feedback. Consistent with this, the policy changes quickly as the 
feedback is introduced. 
 

7.  Conclusions 

We have compared a cohort model of a cod fishery to a more simple aggregate surplus 
growth model of the same fishery. We have argued that an appropriate comparison in 
this case should involve policy sensitivity analysis, both because policy is the ultimate 
purpose of the models and because alternative methods to judge model simplification 
seem less appropriate. To estimate the sensitivity of harvesting policies to model choice, 
we have used stochastic optimization in policy space (SOPS) to find policies. Without 
optimization the comparisons would have included an element of judgment because it is 
not trivial to find optimal policies. 
 
If price and unit costs are set constant in both models, harvesting policies are found to 
differ considerably. The apparent conclusion is that the choice of model is important. 



                               

However, even though the constant target escapement policy found for the aggregate 
model and the pulse-fishing strategy found for the cohort model have been analyzed in 
the economics literature, these solutions do not present themselves are very realistic due 
to the large variations they imply in fishing effort from year to year. Therefore, it is more 
interesting to focus on the comparison made of the two models when prices and unit 
costs are allowed to vary with effort and harvest. In this case the policies do not differ 
very much.  
 
If the cohort model is considered correct, a loss of about 5 percent would result if the 
policy from the aggregate model is used in the cohort model rather than the optimal 
policy. However, it is not obvious that the cohort model is the better one of the two. 
This implies that we cannot say for sure that there is a significant difference between the 
two policy recommendations. 
 
Considering the costs of developing large models and the reduced possibilities for 
learning and information diffusion using large models, the conclusion could be that the 
aggregate model is the best choice. The smaller and less significant the fish stock is 
economically, the more correct this conclusion will be. This conclusion may not carry 
over to multi-species models and to situations where fishing selectivities become part of 
the harvesting policy. There is also the possibility that the cohort model has a larger 
potential for improvement than the aggregate model. Further research is needed to 
answer these questions. However, until improved models become available for practical 
use, aggregate models may be preferable. 
 
If aggregate models are used for policy making (quota setting), a couple of adjustments 
may be appropriate. Since aggregate model parameters are sensitive to historical har-
vesting policies, parameter estimates should ideally be made from time periods with 
near-optimal policies in place. If one suspects historical over- or under-fishing, one may 
consider a certain adjustment of the parameters suggested by the detailed results of this 
study. Furthermore, if one thinks that the cohort model is the better model after all, one 
might also consider minor adjustments in policies derived from aggregate models in the 
direction of lower quotas at high fish stocks. 
 
In many cases formal policy sensitivity analysis is not likely to be a practical choice. 
Over time, better tools for policy optimization, be it SOPS or other methods, will make 
it more practical to perform this type of sensitivity analysis. Irrespective of technical 
difficulties, the qualitative insights from policy sensisitivity analysis can be useful for 
practical modeling. Keeping in mind that it is policy sensitivity that really matters, could 
help modelers throw out model details that are of little or no importance for final policy 
recommendations, even though these details may have some impact on model behavior. 
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