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Abstract 

Causal loop diagrams are graphical aids for depicting hypotheses about causality and 
feedback mechanisms.  Though widely used, causal loop diagramming has significant 
limitations.  Causal loop diagrams can contain numerous untested assumptions about 
causality.   

This paper demonstrates how causal loop diagramming practice can be made more 
robust.  The proffered technique described in this paper suggests how we might improve 
the ways we contemplate cause and effect.  Applying the technique, and using the tool, 
offers new opportunities for testing assumptions about multi-factorial causal influences.  
The paper suggests that our first attempts at building remedial strategies for complex 
systemic problems might be completed without building quantitative stock and flow 
models.  The paper demonstrates how causal loop diagrams can be kept free of errors 
in logic.  It also raises a number of important issues regarding the ways we view 
combinations of potentially confounding causal influences, and identifies the need for 
further research in this area. 

  

  



 

Introduction 

The need for the tool described in this paper was identified during the conduct of 
research described in McLucas (2001).  Further to the analysis of feedback mechanisms, 
the tool mentioned and techniques described are intended to help us investigate the 
combining causal influences to produce an effect at a point in a causal loop diagram, 
whether they are expressed as ‘soft’ variables or a mix of ‘hard’ and ‘soft’ variables.  
They are also used to test the logic of the causal loop diagram.  The tool’s graphical 
user interface is not described in this paper. 

Prior to the development of the System Dynamics ‘Front End’ Tool, the depictions of 
cause and effect in cause maps, causal loop diagrams and influence diagrams were 
limited to simple linear relationships.  The recent work of Kim (2000), and Kwahk and 
Kim (1999), which only accommodated linear causal relationships, has been taken a 
most significant step forward with the development of this tool.  Systemic problems 
containing a wide range of continuous causal relationships can be subjected to ‘first 
pass’ analysis to give us insight into where we might apply our management effort.   
Relationships approximated by the SD ‘Front End’ Tool may be linear, sigmoid, 
exponential, hyperbolic, or polynomial with multiple extrema.  The significant 
constraints of depicting causal linkages as ‘+’ or ‘-’, ‘s’ or ‘o’1, or simply as linear 
increasing or decreasing in their causal influence, have been overcome.   

This paper describes a tool 2 that is directed to enhancing SD practice and the 
understanding decision-makers have of about system dynamics, through: 

a. exploiting knowledge of domain experts who may be available for a limited 
time, such as during meetings or workshops conducted for the purpose of 
addressing a particular problem; 

b. providing a vehicle for fostering dialogue, discourse and critical analysis; 

c. surfacing and testing assumptions that various stakeholders might have; 

d. rapidly building an understanding of dynamic behaviour underlying current 
difficulties, or which may impact on the development of business strategies;  

e. enabling first pass analysis of the dynamics when time may not be available to 
build quantitative system dynamics models; 

f. determining whether more detailed analysis through system dynamics 
modelling and simulation, is needed; 

g. undertaking preliminary analysis as the basis for creating a business case for the 
commitment of significant resources; and 

h. rapid prototyping and first pass testing, in a limited time frame, of a set of 

                                                 

1 These conventions for indicating polarity are commonly used in causal loop diagramming. 
2 The SD ‘Front End’ Tool mentioned in this paper is the subject of an Australian Innovation 
Patent. 

  



strategies for urgent implementation. 

Reliance on Causal Loop Diagrams in System Dynamics Practice 

Despite known limitations of causal loop diagramming, described by Richardson (1976; 
1985), it is very widely used in systems thinking and system dynamics modelling.  As 
an indication of the extent of this reliance on causal loop diagramming, Sterman (2000) 
uses over a hundred diagrams that are either causal loop diagrams or have the attributes 
of causal loop or influence diagrams, to explain causality.  The system thinking 
publications of Senge (1990), Senge et al. (1994), Kim (various) actively promote 
analysis based on causal loop diagrams.  

Often, causal loop diagram construction relies on a great deal already being known 
about the problem at hand.  If knowledge is limited or understanding is superficial, there 
can be significant risks to building meaningful diagrams. 

Whilst extreme, one well-respected SD practitioner in a recent personal communication 
wrote: “I would maintain that I can draw any causal loop diagram I want and justify any 
conclusion I want with a perfectly straight face that would be bullet proof to anyone 
with less gile than me.” 

Particularly in the early stages of finding out about a problem situation, or when system 
dynamics experience is limited, hypotheses need to be formulated and tested in ways 
that quickly get to the core of the problem.  

The tool and technique described in this paper go beyond simply achieving consensus 
about causality.  They facilitate surfacing and testing of hypotheses embodied in the 
diagram.   

To date, quantification of cognitive maps or causal loop diagrams has been limited to 
assigning simple polarity and strength of influence to the causal links.  Whilst reasons 
for generally limiting relationships to linear ones are not clearly enunciated in the 
literature, the following reasons are suggested: 

a. difficulty associated with setting initial values, particularly when causal 
linkages are non-linear; 

b. calculating a polynomial fit of a curve to available data can involve significant 
computational effort; 

c. confidence in curve fitting depends on how comprehensive the collected data 
sets are;  

d. curves fitted to sparse data can be imprecise; and 

e. conventional algebra provides limited opportunity to influence the fit of a 
particular curve through application of additional user defined rules such as … 
“the curve is asymptotic to a line y = ax + b for values of y above y1 ”. 

Getting the Most from Causal Loop Analysis 

Proceeding prematurely to building system dynamics models without first investigating 
the nature and scope of the problem in detail, can be counterproductive (McLucas and 
Linard, 2000; McLucas, 2001).  Equally, spending inordinate time and effort in problem 
conceptualisation can be wasteful. 

  



The tool and techniques described here enable problem conceptualisation, extensive 
qualitative analysis and limited quantitative analysis.  This preliminary analysis also 
helps reveal just which data sets need to be collected and to what degree of accuracy.  
Collection of data can commence even before the preliminary analysis is completed.  
This is important because data collection can be the rate determining activity.  Indeed, 
lack of data or lack of data in an appropriate form can preclude quantitative system 
dynamics modelling (McLucas, 2001: 304, 312). Given that the required data can be 
collected concurrent with the early stages of model building, products from quantitative 
modelling can flow more quickly.  This tool offers the opportunity to undertake the 
following: 

a. rapid preliminary analysis of dynamic behaviour, noting that often the 
opportunity to undertake such analysis might be restricted to a workshop or 
meeting attended by those with specialist domain knowledge; 

b. exploration of changes over time, previously possible only through the building 
of system dynamics models; 

c. identification of pressure points to which management effort might be applied; 

d. sensitivity analysis, that is, identification of significant sources of influence and 
the extent to which, singly or in combination, they produce change;  

e. identification of the causes of shifts in feedback loop dominance; and 

f. analysing the confounding correlation that can exist between a number of cause 
and effect relationships. 

Limitations of ‘SD’ Front End Tool  

It is not intended that the tool described here be a replacement for conventional system 
dynamics modelling and simulation.  It fills an identified gap between qualitative and 
quantitative analysis and serves as a precursor, and informant to the design and conduct 
of, quantitative modelling and simulation activities. 

In its current form, the tool does not have facility to handle delayed causality on a single 
link, or total delay in a feedback loop.  Whilst planned enhancements, McLucas (2001), 
will overcome particular limitations up to a point, enhancements to provide for time-
series inputs, such as sinusoidal waves, are not planned on the basis that models 
requiring this level of sophistication are best-built using conventional system dynamics 
modelling.   

Continuous Functions Only 

It is assumed that each function linking cause and effect is continuous.  Where functions 
might be discontinuous, quantitative SDM would be required. 

Even Experienced Modellers Easily Misled by Causal Loop Diagrams 

An important driver for the development of the SD ‘Front End’ tool is Sterman’s 
statement (Richardson, 1985: 158) that even experienced modellers are easily misled by 
causal loop diagrams.  If experienced modellers are easily misled, then inexperienced 
ones are at significant risk of making errors of interpretation during problem 
conceptualisation and preliminary analysis. 

  



Despite their limitations, it seems most unlikely, that causal loop diagrams will ever be 
replaced in any widespread sense by the more logically robust influence diagrams, such 
as are advocated by Coyle (1996).  

Improved Causal Loop Analysis 

If causal loop diagrams can be given greater utility to support the important activities of 
surfacing and testing assumptions about what underlies the observed reference modes of 
behaviour, system dynamics practice could be significantly improved.  The need for the 
SD ‘Front End’ tool derives from concerns raised by Coyle (2000), Ford and Sterman 
(1998), and Nuthmann (1994).  

A Tutorial in Causal Analysis – Availability and Use of Illicit Drugs 

The supply and use of illicit drugs creates innumerable, undesirable, side effects for 
society.  These include a drain on medical resources for treatment and rehabilitation, 
burglaries and a black market in stolen goods.  The product of a workshop to consider 
the ways of managing drug-related issues might look like Figure 1: 
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Figure 1:  Typical Problem: Illicit Drug Usage 3 4 5 

                                                 

3 This causal loop diagram is the product of research by Taber (1991: 83-87).   
4 Dummy nodes 8, 9, and 14 have been added to remove bi-directional arrows, which Taber 
used in his original version of the diagram.  This has no effect on the logic of the diagram and 
serves to make it easier to identify individual feedback loops.  This also avoids double arrows, 
which might have positive polarity in one direction and negative polarity in the other, found 
confusing by some.  For the software development team, it also made the sequence of 

  



Making Estimates of Causality 

Kwahk and Kim (1999) use ‘causal impact’ questionnaires to establish whether the 
relationship between cause and effect is increasing or decreasing, very strong, strong, or 
weak.  They apply simple weightings as a result.  Kosko (1993) uses a similar 
technique.  These approaches are limiting, if for no other reason than they necessarily 
suggest linear causal relationships.  Non-linear relationships are much more likely to 
occur: this is a persistent observation over nearly 40 years of system dynamics practice. 

Consider the following example of the relationship between 1. drug availability and 2. drug 
usage (usage of illicit drugs by existing users).  It is unlikely that hard data about either 
drug availability or drug usage or the relationship between the two, would exist. 

However, educated guesses may be made.  The following are likely to be known, or 
could be established. 

a. The number of drug busts affected by police and drug agencies. 

b. The quantities of drugs seized during raids. 

c. The number of drug overdoses attended by paramedics or handled by hospital 
emergency medical staff.  

d. The number of deaths attributed to drug overdoses. 

e. Size of the general population. 

f. Estimated size of the drug-using population.  For example, 1 in 1,000 of the 
general population may be estimated to be users of illicit drugs such as cocaine. 

The following might be reasonably deduced, or deduced from available information 
sources: 

a. Zero supply equates to zero usage: the 1. drug availabilty / 2. drug usage curve 
passes through the origin. 

b. Even when availability reaches glut proportions, only so many people will use 
drugs.  That is, the curve is asymptotic to a vertical line depicting the estimated 
maximum size of the drug-using population. This number might be taken as the 
totality of the estimated population, plus an arbitrary percentage, say 10%, for 
growth during the period over which this study is to be conducted.  In a city of 
300,000, it might be estimated that there is a maximum of 330 cocaine users 
(one in 1,000 plus 10%). 

c. It is estimated that the maximum 330 users consume y1 grams of cocaine per 
year.  Note that we are not interested in absolute numbers, per se, but the 
estimates are needed to enable normalisation of scales on the axes of each 
graph.  Maximum values on each axis are normalised to unity.  Rationale 

                                                                                                                                               

calculations easier to establish.  The familiar causal loop diagramming convention of using 
single arrows is, thus, retained. 
5 Kim (2000), Kosko (1993; 1997) and Kwahk and Kim (1999) all assume cause and effect 
relationships are linear.  In contrast, non-linear cause and effect relationships are assigned to the 
illicit drug problem described in this paper.   

  



behind estimations made and normalisation calculations must be recorded for 
future reference. 

Such reasoning enables the construction of basic relationship diagrams, such as Figure 
2, below.  A scattergram of estimates, combined with known data, might appear as 
shown. 

From such a graph, we are seeking to determine for each input, what the appropriate 
output value might be, noting that this may change as a result of each iterative 
calculation, as occurs when simulating changes over time.  Ford and Sterman (1998) 
describe, then demonstrate the application of a methodology, in a group setting, for 
aiding experts in the process of explicating their tacit knowledge.  This is directly 
applicable to the process, described above, of estimating and formalising causal 
relationships for further analysis using the SD ‘Front End’ Tool. 
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Figure 2: Basic Relationship Diagram 

Intialisation of the Causal Loop Diagram – A Critical Step 

Initialisation of the diagram is exceedingly important: 

a. Estimates made of nodal values are critical determinants of the viability of the 
diagram.  If these estimates are erroneous then initialisation will be difficult to 
achieve, or it will be meaningless. 

b. Careful consideration is needed in the creation of the causal relationship graphs.  
Making such estimates demands considerable rigour and discipline. Insight into 
how causal relationships produce observed modes of behaviour comes with 
experience in system dynamics.  This is an unfortunate reality for the novice who 
must take extra care in formulating hypotheses about the shape of the graphs and 
critically examining how those relationships contribute to the observed 
behaviour. 

  



c. Concurrent adjustments of estimates of nodal values and shape of causal 
relationship graphs may be needed.  It is essential that adjustments be made 
through an iterative process.  The aim is to create revisions resulting in nodal 
values and causal relationship curves that are consistent, that is, influences 
combining to produce the respective nodal state values. 

Initialisation of the Model – Iterative Re-alignment of Estimates Made and Mental 
Models 

The initialisation sequence is not intuitively obvious, and it is stressed that when using 
the software tool, the user is guided through the necessary steps and prompted for 
response as needed.  As initialisation of the model proceeds, there will be cycles of 
estimating, validating and adjusting.  This will produce change to both the estimates 
made to initialise the model, and the mental models of those making the estimates.  It 
may be necessary to make changes to the diagram to correct illogical structures.  
Illogical structures, such as logical omissions or incorrect polarity are frequently 
detected during initialisation.   

The process of initialisation can lead to confusion over which adjustments should be 
made first, adjustments to the estimates of nodal values or the form of causal 
relationships.  Estimates of nodal values should be among the first products of group 
modelling activities, nominal group technique or Delphi.  Achieving agreement about 
these must be the first priority.  Estimating the form of the causal relationships should 
be a secondary activity.  Estimates of the shape of the causal relationships may change 
numerous times during initialisation, and during the subsequent analysis.  

Setting Initial Values – Making Estimates of Nodal Values 

The first step is to establish estimates of the state values at each node.  Values are 
recorded along with explanations of why particular values were chosen.  See Table 1: 

  



Node No. and Node Value 6 Basis of Determining Estimated Value 

1. drug availability 0.5 Median value between best and worst observed 
over the past three years. 

2. drug usage 0.6 Based on records of recent treatment of 
overdoses by hospitals and paramedics. 

3. cocaine price 0.7 Based on estimate provided by Police drug 
squad. 

4. street gangs 0.5 Based on estimate provided by Police drug 
squad. 

5. acres coca 0.4 Drug Enforcement Agency (DEA) estimate 
provided through local Police. 

6. profits  0.6 Nominal group estimate. 

7. user economic hardship 0.3 Based on estimates provided by Health and 
Social Security. 

8. dummy 0.0 Not applicable. 

9. dummy 0.0 Not applicable. 

10. local police interdiction 0.4 Local Police activity reports. 

11. cartels 0.6 DEA estimate provided through local Police. 

12. international police 

      intervention 

0.45 Nominal group estimate, supported by DEA 
reports. 

13. corruption 0.3 Nominal group estimate, supported by DEA 
reports. 

14. dummy 0.00 Not applicable. 

Table 1: Estimated Values at Each Node 

 

Fundamentally, initialisation is a guided trial and error activity, following the scheme 
described below under the heading ‘Sequence of Calculation’, the results of which are 
at Tables 2 and 3, below.  The influences from each of the causal relationship curves are 
summed to produce calculated nodal values.  These are compared with the estimates at 
Table 1.  The causal relationships for every causal link must be estimated, following the 
process described above.  These causal relationships appear as at Figure 3, below. 

                                                 

6 Values are normalised on the basis of maximum expected values: see ‘Making Estimates of 
Causality’.  Maximum expected, or worst-case value is taken as 1.0. 
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Figure 3:  Sample Causal Relationship Curves for the Illicit Drug Use Problem  7 

These estimates become benchmarks for initialisation of the causal loop diagram 
wherein it is assumed that influences at a node are all taken into account by simple 
addition.  This is an important, and possibly erroneous assumption that requires further 
investigation (Coyle, 1999: 2000, McLucas, 2001; Nuthmann, 1994).  Depending upon 
results of future research, it is expected that a range of alternate combinatorial 
algorithms will be required. 

                                                 

7 Values on each axis are normalised.  1.0 corresponds to worst case or maximum observed 
historical value 

  



Discipline Needed in Defining Causal Relationships 

Estimating causal relationships may be done in real time, such as during a workshop, 
defining causal relationships requires considerable discipline.  In the absence of hard 
data, employing a nominal group, questionnaires as used by Kwahk and Kim (1999) or 
workbooks used by Vennix (1996: 114), or the methodology described by Ford and 
Sterman (1998) in group model building, are suggested as alternatives most likely to 
produce reliable estimates.  Rather than encouraging reliance on personal judgement 
and intuition in making estimates, the SD ‘Front End’ Tool forces assumptions about 
the form or each and every causal relationship, be made explicit.  This is important as 
the Illicit Drugs example evinces.  In this case, there are 23 causal relationships, and the 
number can increase rapidly as diagrams become more complex. 

The influences produced by these causal relationships must combine at the node to 
produce the values estimated at Table 1.  If they do not, each estimated nodal value and 
each causal relationship must be critically analysed.  Only when the inputs to each node 
sum to the estimated values, can the calculations be made for each loop in the diagram.  
Whilst not included in the SD ‘Front End’ Tool at this time, a scheme, which employs 
genetic algorithms to automate the calculation process, is proposed.  The sequence of 
calculations is described below. 

Creating Correct Sequence of Calculations 

The original causal loop diagram, Figure 1, is prepared showing only the nodal 
identifier numbers and the various feedback loops, and redrawn.  See Figure 4, below.   
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Figure 4:  Drugs Causal Loop Diagram Showing IDs and Feedback Loops 

  



Polarity is shown as ‘+’ or ‘-’ as appropriate, and only used as a reminder of the general 
shape of the curve.  All inputs to a node are added: polarity does not suggest addition or 
subtraction of influence at the node concerned.  In the absence of a sign, polarity is 
assumed to be positive. The assumption that influences at a node are additive will be 
discussed at the end of the paper.   

Where feedback loops are involved, the order in which calculations are made is critical: 

a. A focal node is selected.  This node becomes the start and finish for each cycle 
of calculations.  We might also consider selecting this node on the basis of its 
importance as an indicator of the effectiveness of any strategy we might 
develop.  In this case, the focal node chosen is 1. drug availability.  Any node can 
be the focal node.  Whilst points of interest may change during analysis, the 
focal node remains as initially defined.  However, a specific node is nominated 
to ensure the logic of setting up the order of calculation is correctly established 
and maintained, noting that the products of one cycle of calculations will need 
to be stored and used as the starting values for the next iteration. 

b. Identify the longest feedback path, that is, identify the longest (or equal longest) 
path, which leads back to the start.  It must be possible to track from beginning 
to end of this path without traversing any link more than once.  If there is an 
equally long path, from this point on, it is treated as a subordinate feedback 
loop. 

A clockwise convention is followed for the main (longest) loop.  This may require the 
diagram be re-drawn.  Redrawing of subordinate loops is a matter of personal choice.  If 
those loops are short, redrawing should be unnecessary.  The longest feedback loop is as 
depicted at Figure 5, with only the direct inputs shown.  
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Figure 5: Longest Feedback Loop Identified 

 

Subordinate loops are depicted at Figure 6, below. 
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Figure 6: Ancillary Feedback Loops 

Sequence of Calculations 

The same sequence of calculations must be followed both for initialisation and 
simulation.  Calculations are made in the specified sequence to ensure all influences are 
included and there is no double counting.  When calculations for side loops are carried 
out, the value to be input to the main loop is held until the next iteration.  This sequence 
is shown Table 2, where node (iteration) depicts the nodal value calculated during a 
particular iteration, and δ (iteration) n1,n2 depicts the influence (1) of 1 on 2.  In the 
special case of initialisation, adjustments are made until the value calculated for node 1 
at the end of the first iteration 1(1) is equal to the initial estimate, 1(0). 

As the main loop is navigated, only influences originating from ‘upstream’ nodes are 
included in the calculations.  For example, when at node 3, upstream nodes having an 
influence are nodes 1, 2 and 7.  Node 7 is not connected, except via node 2 and its 
influence has already been counted.  However, node 1 is upstream from node 10, which 
influences node 3.  So 1(0) is used to calculate 10(1) which, in turn, is used to calculate 
the influence (1) of node 10 on node 3.  Influences originating downstream from the 
node where current calculations terminate must be held for the next iteration. 

  



 

 

Inputs Combining of Influences Outputs 8 

1(0) ⇒ 

7(0) ⇒ 

3(0) ⇒ 

+δ(0)1,2 – influence (0) of 1 on 2 

+δ(0)7,2 – influence (0) of 7 on 2. 

+δ(0)3,2 – influence (0) of 3 on 2 

 

 

⇒ 2(1) 

2(1) ⇒ +δ(1)2,3 – influence (1) of 2 on 3 

+δ(1)10,3 – influence (1) of 10 on 3 

 

⇒ 3(1) 

10(1) ⇒ +δ(1)10,4 – influence (1) of 10 on 4 

+δ(1)3,4 – influence (1) of 3 on 4 

 

⇒ 4(1) 

3(1) ⇒ 

12(0) ⇒ 

+δ(1)3,11 – influence (1) of 3 on 11 

+δ(1)12,11 – influence (1) of 12 on 11 

 

⇒ 11(1) 

12(0) ⇒ +δ(0)12,5 – influence (0) of 12 on 5 

+δ(0)11,5 – influence (0) of 11 on 5 

 

⇒ 5(1) 

12(0) ⇒ +δ(0)12,13 – influence (0) of 12 on 13 ⇒ 13(1) 

12(0) ⇒ 

13(1) ⇒ 

+δ(0)12,6 – influence (0) of 12 on 6 

+δ(1)13,6 – influence (1) of 13 on 6 

+δ(1)1,6 – influence (1) of 1 on 6 

 

 

⇒ 6(1) 

12(0) ⇒ 

11(1) ⇒ 

6(1) ⇒ 

10(1) ⇒ 

4(1) ⇒ 

+δ(0)12,1 – influence (0) of 12 on 1 

+δ(1)13,1 – influence (1) of 13 on 1 

+δ(1)6,1 – influence (1) of 6 on 1 

+δ(1)10,1 – influence (1) of 10 on 1 

+δ(1)4,1 – influence (1) of 4 on 1 

 

 

 

 

⇒ 1(1) 

Table 2:  Sequence of Calculations 

                                                 

8 The output from one stage becomes in the input to the next, and subsequent, stages of the 
calculations.  The last output in this column becomes the starting value for the next iteration.  In 
the software tool, the sequence of calculations is established by a series of questions posed to 
the user via dialog boxes.  There is no need for the user to establish the sequence of calculations 
ab initio. 

  



 

Initialisation calculations from Table 2, in the form of an Excel ™ spreadsheet are 
shown at Tables 3 and 4, below. 

 

Input  Influences  Output  Comment 

1(0) 0.5 (0) 1 on 2 0.4   Drug Availability at start of 
iteration. Input permitted. 

7(0) 0.3 (0) 7 on 2 0.1   Input permitted 

3(0) 0.7 (0) 3 on 2 0.1 2(1) 0.6  

1(0) 0.5 (0)1 on #2 on 10 0.4 10(1) 0.4  

2(1) 0.6 (1) 2 on 3 0.6    

 0.4 (1) 10 on 3 0.1 3(1) 0.7  

10(1) 0.4 (1) 10 on 4 0.2    

3(1) 0.7 (1) 3 on 4 0.3 4(1) 0.5  

3(1) 0.7 (1) 3 on 11 0.4    

12(0) 0.45 (0) 12 on 11 0.2 11(1) 0.6 Input permitted 

12(0) 0.45 (0) 12 on 5 0.2    

  (0) 11 on 5 0.2 5(1) 0.4  

12(0) 0.45 (0) 12 on 13 0.3 13(1) 0.3  

12(0) 0.45 (0) 12 on 6 0.25    

13(1) 0.3 (1) 13 on 6 0.15    

  (1) 1 on 6 0.15 6(1) 0.55  

12(0) 0.45 (0) 12 on 1 0.05    

11(1) 0.6 (1) 13 on 1 0.1    

(6)1 0.55 (1) 6 on 1 0.15    

10(1) 0.4 (1) 10 on 1 0.1    

4(1) 0.5 (1) 4 on 1 0.1 1(1) 0.5 Drug Availability at end of 
iteration. 

Table 3: Initialisation Calculations Summary 

  



 

Link 1-2 (input 

1. Drug Availability) 

0.5 1 2 3 4 5 6 7 8 9 

Lower Limit  0 0.24 0.34 0.42 0.46 0.52 0.58 0.62 0.7 

Upper Limit  0.239 0.339 0.419 0.459 0.519 0.579 0.619 0.699 0.999

Value Returned  0.06 0.16 0.25 0.31 0.4 0.5 0.6 0.7 0.92 

Link 1-2 Influence 
Calculated 

0.4 0 0 0 0 0.4 0 0 0 0 

Link 7-2 (input 

7. User Ec Hardship) 

0.3 1 2 3 4 5 6 7 8 9 

Lower Limit  0 0.24 0.34 0.42 0.48 0.52 0.58 0.63 0.7 

Upper Limit  0.239 0.339 0.419 0.479 0.519 0.579 0.629 0.699 0.999

Value Returned  0.05 0.1 0.14 0.18 0.22 0.27 0.31 0.38 0.6 

Link 7-2 Influence 
Calculated 

0.1 0 0.1 0 0 0 0 0 0 0 

Links 3-14-2 (input 

3. Cocaine Price) 

0.7 1 2 3 4 5 6 7 8 9 

Lower Limit  0 0.12 0.14 0.23 0.32 0.38 0.48 0.52 0.62 

Upper Limit  0.119 0.139 0.229 0.319 0.379 0.479 0.519 0.619 0.999

Value Returned  0.7 0.54 0.42 0.34 0.26 0.2 0.16 0.12 0.1 

Links 3-14-2 Influence 
Calculated 

0.1 0 0 0 0 0 0 0 0 0.1 

Link 2-3 (input 

2. Drug Usage) 

0.6 1 2 3 4 5 6 7 8 9 

Lower Limit  0 0.24 0.34 0.42 0.46 0.52 0.58 0.62 0.7 

Upper Limit  0.239 0.339 0.419 0.459 0.519 0.579 0.619 0.699 0.999

Value Returned  0.34 0.4 0.44 0.5 0.54 0.57 0.6 0.66 0.78 

Link 2-3 Influence 
Calculated 

0.6 0 0 0 0 0 0 0.6 0 0 

Table 4:  Initialisation Calculations - Selected Causal Relationships 9 

The Initialised Illicit Drugs Diagram 

The initialised illicit drugs diagram is at Figure 7, below. 

                                                 

9 Columns marked ‘1’ through ‘9’ contain the input values, within selected input bands – between ‘Lower 
Limit’ and ‘Upper Limit’ to give the ‘Value Returned’, that is the corresponding output values on each of 
the selected curves.  This is shown as the ‘Link X-X Influence Calculated’ for the selected curve.   
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Figure 7: Initialised Illicit Drugs Causal Loop Diagram  10 11 

Stepping Through the Simulation 

The simulation to combat availability of drugs is run step-by-step.  Once the diagram 
has been initialised, a scenario is developed to reflect desired remedial strategy, for 
example: 

a. Increase international police intervention progressively, in a series of steps, 
from 0.45 to 0.60. 

b. Making a one-off change to the shape of the relationship 1⇒10 which reflects 
increasing local police surveillance and intelligence gathering capabilities. 

An example of the calculations is at Table 5, below, and graph of change of 1. drug 
availability as a result is at Figure 8. 

                                                 

10 Initial estimates of nodal values, taken from Table 1, are shown in bold with rectangular 
borders. 
11 Initial estimates of causal relationships are shown in bold italics.   

  



 

Input  Influences  Output Comment 

1(0) 0.47 (0) 1 on 2 0.4   Drug Availability at start 
of iteration. Input 
permitted. 

7(0) 0.3 (0) 7 on 2 0.1   Input permitted 

3(0) 0.7 (0) 3 on 2 0.1 2(1) 0.6  

1(0) 0.47 (0)1 on #2 on 10 0.4 10(1) 0.4  

  (0)1 on #2 on 10 0.49 10(1) 0.49  

1=yes; 0=no 1 (0)1 on #2 on 10 0.49 10(1) 0.49 Increased surveillance 
capability.  Input 
permitted 

2(1) 0.6 (1) 2 on 3 0.6    

 0.49 (1) 10 on 3 0.13 3(1) 0.73  

10(1) 0.49 (1) 10 on 4 0.1    

3(1) 0.73 (1) 3 on 4 0.3 4(1) 0.4  

3(1) 0.73 (1) 3 on 11 0.57    

12(0) 0.6 (0) 12 on 11 0.16 11(1) 0.73 Input permitted 

12(0) 0.6 (0) 12 on 5 0.18    

  (0) 11 on 5 0.44 5(1) 0.62  

12(0) 0.6 (0) 12 on 13 0.25 13(1) 0.25  

12(0) 0.6 (0) 12 on 6 0.21    

13(1) 0.25 (1) 13 on 6 0.15    

  (1) 1 on 6 0.1 6(1) 0.46  

12(0) 0.6 (0) 12 on 1 0.04    

11(1) 0.73 (1) 13 on 1 0.1    

(6)1 0.46 (1) 6 on 1 0.11    

10(1) 0.49 (1) 10 on 1 0.1    

4(1) 0.4 (1) 4 on 1 0.08 1(1) 0.43 Drug Availability at end 
of iteration. 

Table 5:  Simulation Calculations 

At line 6 in Table 5, there is a user selectable input for the increased level of local 
police surveillance and intelligence gathering capability.  This is selected at the start of 
the third iteration, or simulation step.  See Figure 8. 
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Figure 8: Simulated Impact of Strategies to Combat Illicit Drug Availability 

Analysis of Simulation Results 

International Police intervention produced an immediate reduction of drug availability 
from 0.5 to a level, which oscillated between 0.45 and 0.49.  When local Police 
interdiction increased as a result of greater awareness of drugs on the street, achieved 
through increased surveillance and intelligence gathering capability, 1. drug availability 
dropped further.  The light line in Figure 8 shows the level of 1. drug availability created 
by international police intervention alone.  Combined impact of 12. international police 
intervention and 10. local police interdiction is shown at simulation steps 4, 5, and 6. 

Sensitivity analysis revealed:  

a. No contribution to the reduction of 1. drug availability for values of  7. user economic 
hardship less than 0.30. 

b. Levels of 12. international police intervention, alone, above 0.60 had no effect. 

c. Increasing 10. local police interdiction through increased surveillance and 
intelligence gathering capabilities, which changed the shape of the cause and 
effect curve as shown at Figure 9, had the effect of creating greater levels of 
police activity for given levels of 1. drug availability. 
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Figure 9:  Improved Local Police Interdiction Capability 

SD ‘Front End’ Tool in Brief - a Critique 

The SD ‘Front End’ tool was designed to be used in conjunction with Iterative and 
Interactive Strategy Development (IISD) (McLucas, 1998), to provide support to rapid 
analysis of complex systemic problems, when the opportunity presents to bring together 
a number of people with domain expertise for a limited period.  It will work in any 
situation where causality is being investigated.  The main threat to achieving results 
described here is initialisation of the causal loop diagram.  This is considerably more 
difficult than might appear at first, for the following reasons: 

a. views about causality, such as strength of cause and effect relationships, can 
vary significantly between individuals; 

a. this process is computationally demanding, certainly if done manually – 
although, as suggested earlier, these calculations be accelerated by employing a 
scheme which, or example, uses genetic algorithms for calculation of a 
‘workable’ set of initial values; 

b. it assumes that influences combine at a node by simple addition – situations can 
arise where such addition gives a value at a node, which is greater than the state 
value estimated – to correct this requires: 

  



(1) artificially constraining the sum of influences at a node 12; 

(2) re-defining and re-drawing of causal relationships - which happens in 
routinely in quantitative SD, and is part of the iterative SD process, or  

(3) use of alternative combinatorial algorithms – the need for this suggests 
that the assumption that influences are combined by simple addition is 
questionable. 

Success is critically dependent upon on the selection of initial nodal values.  

Reliably estimating the causal relationships involves considerably greater risk for two 
reasons: 

a. potentially, there can be large numbers of causal relationships involved; and 

b. we are not very good at attributing observe effects to underlying causes. 

Poor choice in defining cause and effect relationships can mean that it becomes 
exceedingly difficult, or impossible, to initialise the diagram.  Whilst this might be 
interpreted as a potential weakness in the design of the tool, in reality it reveals a major 
strength: the diagram cannot be initialised unless two key criteria are met: 

a. the diagram is logical, and 

b. realistic estimates of cause and effect are made. 

This need for estimates of cause and effect compatible with estimates of nodal state 
values, forces repeated creation and testing of hypotheses about the cause and effect 
relationships.  It also forces mental models regarding cause and effect to be surfaced 
and tested.  In itself, this is a highly important outcome. 

The SD ‘Front End’ tool is not intended to be a replacement for quantitative system 
dynamics modelling and it should not be used to simulate more than a few iterations.  
Practical limits to its usefulness, as a simulation tool, have not been established, as yet.  
At this stage, it is more valuable as a research tool than a practical tool for use in a 
workshop or consulting situation. 

Overcoming Current Limitations of the SD ‘Front End’ Tool – Calculating 
Delayed Feedback 

To create a delayed feedback loop where accumulation occurs, the influence value is 
simply held for the appropriate number of iterations.  This involves the addition of a 
dummy loop, which includes a node where state values are held temporarily.  Graphical 
depictions of each of the relationships for each link are created as described in this 
paper.  Initial calculations are conducted as normal, but when simulations are conducted 
the influence value is held until required, a nominated number of iterations.  The 
calculated output values are held in a temporary register until needed for the appropriate 
iteration. 

                                                 

12 From a computational viewpoint, this is readily overcome by applying weightings to 
influences at a node; the sum of weightings being 1.0. 

  



Incorporation of a scheme, which used genetic algorithms to help in determining initial 
values, is proposed.  Incorporation of alternative combinatorial schemes, which 
themselves require detailed testing, is proposed. 

Summary 

In this paper, the rationale behind a tool for analysing causal loop diagrams was 
demonstrated.  It was shown that it is possible to analyse causal loop diagrams and 
produce our ‘first pass’ remedial strategies for complex, dynamic problems, as a result. 
The key limitation in the use of this tool lies with our own limited ability to make 
reliable, meaningful estimates of non-linear cause and effect.  Using this tool: 

a. forces the enunciation of hypotheses regarding the nature of causal 
relationships,  

b. does not artificially constrain causality to linear relationships, 

c. supports the testing of hypotheses regarding causality,  

d. enables analysis of the veracity of the assumption (Coyle, 2000; Nuthman 
1994) that causal influences at a node can be added, and 

e. will support future analysis of the confounding effect produced by the cross 
correlation between causes and effects. 

Whilst further development is required, this tool promises to help bridge the gap 
between qualitative and quantitative analysis of dynamic, systemic, complex problems.  
An unprecedented level of rigour has been added to the creation, analysis and 
interpretation of causal loop diagrams.  This has the potential to change the way 
problem conceptualisation and first pass problem analysis, are conducted.  It enables 
application of a level of rigour absent in such forms of influence diagramming, until 
now, with the exception of the form of influence diagramming espoused by Coyle 
(1996). 

This paper demonstrated that direct simulation of causal loop diagrams involving non-
linear relationships is possible.  Just how valid and practical this is requires further 
investigation. Whilst simulation capability is strictly limited, it is seen to be useful in 
helping to identify where to apply resources and management effort.  

The value of using this tool and techniques lies in the removal of primary reliance on 
judgment and intuition in the analysis of causal loop diagrams.  The result is capability 
to identify where to direct remedial strategies, the form of strategies that might be 
employed, and the first pass testing of those strategies through rudimentary simulation.  

This tool also provides a vehicle for testing assumptions regarding the additive 
combining of causal influences in a causal loop diagram.  
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