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Abstract 

Process concurrence provides a robust framework for modeling software processes and 
their constraint mechanisms.  It is general enough to characterize a broad spectrum of current and 
emerging methodologies in terms of work available to complete on a project.  It is more 
generally applicable than the Rayleigh curve, provides a detailed view of process dynamics and 
is meaningful for planning and improvement purposes.  With it one can derive optimal staffing 
profiles for different project types, and as a shared project model it serves to improve stakeholder 
communication.  

The software industry is continually introducing new processes, methodologies and tools. 
Many modern techniques serve to increase concurrence (and thus decrease cycle time) in several 
ways like increasing task parallelism or automating product elaboration.  Process concurrence 
can evaluate such strategies by modeling task interdependency constraints between and within 
phases. 

This paper will introduce process concurrence, show examples from the software 
development domain, compare concurrence relationships for typical development situations, run 
some simulation experiments, and present lessons for practitioners based on the modeling.  
Finally, the notions of process concurrence, Rayleigh curves and Brooks’s Law are integrated 
from the perspective of making work available. 
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Process Concurrence Overview 
 

Process concurrence is the degree to which work becomes available based on work already 
accomplished.  It describes interdependency constraints between tasks, both within and between 
project phases.  Concurrence relationships are crucial to understanding process dynamics.  
Internal process concurrence refers to available work constraints within a phase, while external 
process concurrence is used to describe available work constraints between development phases. 
A good treatment of process concurrence for general industry can be found in [Ford-Sterman 
97], and this work interprets and extends the concepts for software engineering. 

The availability of work described by process concurrence is a very important constraint 
on progress.  Otherwise, a model driven solely by resources and productivity will allow a project 
to complete in almost zero time with infinite resources.  Such is not the case with software 
processes where tasks are highly interdependent, since some tasks must be sequential and can't 
be done in parallel.   



Process concurrence relationships describe how much work becomes available for 
completion based on previous work accomplished.  These realistic bottlenecks on work 
availability should be considered during project planning and execution.  There is a limit to the 
amount of concurrent development due to interdependencies in software processes.  Concurrence 
relations can be sequential, parallel, partially concurrent, or other dependent relationships. 
Concurrence relationships can be elicited from process participants.  A protocol for the 
elicitation is described in [Ford-Sterman 98]. 

The definition of "task" in this context is an atomic unit of work that flows through a 
project, where the units may differ among project phases.  This is the same treatment of tasks 
used in the Abdel-Hamid model and many others.  Tasks are assumed to be interchangeable and 
uniform in size (e.g. the Abdel-Hamid task was equivalent to 60 lines of software).  A task then 
refers to product specification during project definition, and lines of code during code 
implementation.  The assumption becomes more valid as the size of task decreases. 

 

Trying to Accelerate Software Development 
 

It is instructive to understand some of the phenomena that impede software processes.  
Putnam likens the acceleration of software development to pouring water into a channel-
restricted funnel [Putnam 80].  The funnel does not allow the flow to be sped up very much, no 
matter how much one pours into the funnel.  This is like throwing a lot of software personnel at 
once into the development chute to accelerate things.  They won't be able to work independently 
in parallel, since certain tasks can only be done in sequence. 

Figure 1 shows the limited parallelism of software tasks using a funnel analogy alongside 
the corresponding system dynamics structure.  This concept is elaborated in the next Figure 2, 
which shows the constriction brought about by trying to parallelize sequential (or at least 
partially sequential) activities for a single thread of software. Tasks can only flow through in 
proper order.  This image is reminiscent of the Three Stooges getting stuck while trying to enter a 
single doorway at the same time. 
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Figure 1: Funnel View of Limited Task Parallelism and System Dynamics Corollary 

 
There are always sequential constraints independent of phase.  The elemental activities in any 

phase of software development include: 
• analysis and specification; one figures out what you're supposed to do and specifying how 

the parts fit together 
• development of something (architecture, design, code, test plan, etc.) that implements the 

specifications 
• assessment of what was developed; this may include verification, validation, review, or 

debugging 
• possible rework recycle of previous activities 
These activities can't be done totally in parallel with more applied people.  Different people can 
perform the different activities with limited parallelism, but downstream activities will always 
have to follow some of the upstream. 
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Figure 2: Trying to Parallelize Sequential Tasks in the Funnel 

 
In The Mythical Man-Month [Brooks 95], Brooks explains these restrictions from a 

partitioning perspective in his Brooks’s Law framework.  Sequential constraints imply tasks 
cannot be partitioned among different personnel resources.  Thus applying more people has no 
effect on schedule.  Men and months are interchangeable only when tasks can be partitioned with 
no communication among them.  Process concurrence is a natural vehicle for modeling these 
software process constraints. 

Internal Process Concurrence 
An internal process concurrence relationship shows how much work can be done based on 

the percent of work already done.  The relationships represent the degree of sequentiality or 
concurrence of the tasks aggregated within a phase.  They may include changes in the degree of 
concurrence as work progresses.  Figure 3 and Figure 4 demonstrate linear and non-linear 
internal process concurrence.  The bottom right half under the diagonal of the internal process 
concurrence is an infeasible region, since the percent available to complete can't be less than the 
amount already completed.   

The development of a single software task within a phase normally includes the sequences 
of construction, verification/validation and sometimes rework.  These can't all be simultaneously 
performed on an individual task.  There will always be an average duration of the sub-activities, 
regardless of the resources applied to them.  Additionally, the development of some tasks require 
the completion of other intra-phase tasks beforehand.  Thus, the process limits the availability of 
work to be completed based on the amount of already completed work.  

More concurrent processes are described by curves near the left axis, and less concurrent 
processes lie near the 45° line.  The linear relationship in Figure 3 could describe the sequential 
construction of a 10-story building.  When the first floor is complete, 10% of the project is done 
and the second floor is available to be completed, or 20% of the entire project is thus available to 



finish.  This pattern continues until all the floors are done.  This is sometimes called a “lockstep” 
relationship. 

The linear concurrence line starts above the 45 degree diagonal, since the y-axis includes 
work "available to complete".  The relationship has to start greater than zero.  Consider again a 
skyscraper being built.  At the very beginning, the first floor is available to be completed. 

A more typical non-linear relationship is shown in Figure 4.  For example, the overarching 
segments of software must be completed before other parts can begin.  Only the important 
portions (such as 20% of the whole for an architecture skeleton, interface definitions, common 
data, etc.) can be worked on in the beginning.  The other parts aren't available for completion 
until afterwards.  This typifies complex software development tasks are many tasks are 
dependent on each other.  Men and months are not interchangeable in this situation according to 
Brooks because the tasks cannot be partitioned without communication between them. 
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Figure 3: Linear Internal Process Concurrence 
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Figure 4: Non-linear Internal Process Concurrence 

 
Figure 5 shows internal concurrence for an extreme case of parallel work.  There is very 

high concurrency because the tasks are independent of each other.  Almost everything can be 
doled out as separate tasks in the beginning, such as a straightforward translation of an existing 
application from one language to another.  Each person simply gets an individual portion of code 
to convert, and that work can be done in parallel.  The last few percent of tasks for integrating all 
translated components have to wait until the different pieces are there first, so 100% can’t be 
completed until the translated pieces have been completed and released.  Brooks explains that 
many tasks in this situation can be partitioned with no communication between them, and men 
and months are largely interchangeable.   
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Figure 5: Nearly Parallel Internal Process Concurrence 

External Process Concurrence 
External process concurrence relationships describe constraints on amount of work that can 

be done in a downstream phase based on the percent of work released by an upstream phase.  
Examples of several external process concurrence relationships are shown in Table 1.  More 
concurrent processes have curves near the upper left axes, and less concurrent processes have 
curves near the lower and right axes. 
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Table 1: External Process Concurrence Relationships 

Relationship Characteristics 
No Inter-phase Relationship 
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• No dependencies between the phases. 
 
• The downstream phase can progress 

independently of the upstream phase. 
 
• The entire downstream work is 

available to be completed with none of 
the upstream work released. 

 

Sequential Inter-phase Relationship 
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• None of the downstream phase can 
occur until the upstream phase is 
totally complete. 

 
• Like a theoretical waterfall 

development process where no phase 
can start until the previous phase is 
completed and verified. 

 
• Same as a finish-stop relationship in a 

critical path network. 
 

Parallel Inter-phase Relationship 
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• The two phases can be implemented 
completely in parallel. 

 
• The downstream phase can be 

completed as soon as the upstream 
phase is started. 

Delayed Start Inter-phase Relationship • The downstream phase must wait until 
a major portion of the upstream phase 
is completed, then it can be completed 
in its entirety. 
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• Like a start-start relationship in a 

critical path network. 

Lockstep Relationship 
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• The downstream phase can progress at 
the same speed as the upstream phase; 
thus they are in lockstep with each 
other.   

 
• The downstream work availability is 

correlated linearly 1:1 to how much is 
released from the upstream.  For 
example, after 10% of system design 
is completed then 10% of 
implementation tasks is available to 
finish.   

 
• This relationship is not available in 

PERT/CPM. 

Delay with Partially Concurrent Inter-phase Relationship 
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• The downstream phase has to wait 
until a certain percentage of upstream 
tasks have been released, and then can 
proceed at varying degrees of 
concurrence per the graph. 

 
• This relationship is representative of 

complex software development with 
task interdepencies.  

 
• This type of relationship is not 

available with PERT/CPM methods 

Leveraged Concurrence Relationship • This relationship exhibits a high 
degree of parallelism and leverage 
between phases. 

 
• Typical of Commercial Off-The Shelf 

(COTS) products whereby one 
specifies the capabilities, and the 
system is quickly configured and 
instantiated.  Also applicable for 4th 
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general language (4GL) approaches. 

 
 

The partially concurrent inter-phase relationship is representative of much software 
development, where complexities impose task dependencies and thus inter-task communication 
is necessary.  For example, a critical mass of core requirements must be released before 
architecture and design can start.  Then the downstream phase availability rate increases in the 
middle region (e.g. much design work can take place), and then slows down as the final upstream 
tasks are released. 

External process concurrence relationships function like the precedence relationships in 
critical path and PERT methods to describe dependencies, but contain greater dynamic detail.  
For example, external concurrence relationships describe the phase dependencies for the entire 
durations.  PERT and critical path methods only use the stop and start dates.  They can also be 
nonlinear to show differences in the degree of concurrence, whereas PERT methods cannot.  
Lastly, process concurrence relationships are dynamic since the work completed could increase 
or reduce over time, but only static precedence relationships are used in critical path or PERT 
methods.  The lockstep and delay with partially concurrent inter-phase relationships are 
situations that cannot be described with PERT or critical path methods. 

 

Analysis of Different Software Methodologies 
We’ll examine different methodologies via process concurrence in terms of leverage 

between phases.  Leverage in software development refers to how much can be elaborated based 
on inputs from the previous phase.  Software development is essentially a transformational 
process whereby the product goes from concept to requirements to design and finally code.  A 
method with increased leverage means that the downstream product can be elaborated with less 
effort.  It is like a return-on-investment for a given effort, or can be likened to mechanical 
advantage. 

For example, a Fourth-Generation Language (4GL) that generates code from requirement 
statements has much higher leverage than new code development.  For about the same amount of 
effort expended on requirements, a great deal more of demonstrative software will be produced 
with advanced 4GL tools compared to starting from scratch in each phase.  Starting from scratch 
means there are no pre-existing software artifacts, and all development is new.  Virtually all 
modern approaches to software development are some attempt to increase leverage, so that 



machines or humans can efficiently instantiate software artifacts vs. more labor-intensive 
approaches.   

Commercial-Off-The-Shelf (COTS) software is another good example of high phase 
leverage, because functionality is easily created after identifying the COTS package.  If one 
specifies “use the existing SIRSI package for library operations”, then the functions of online 
searching, checkout, etc. are already defined and easily implemented after configuring the 
package locally. 

Process concurrence is a very useful means to contrast the leverage of different 
approaches, because the degree of concurrence is a function of the software methodology 
(among other things).  When developing or interpreting external process concurrence curves for 
software development strategies, it is helpful to think of tasks in terms of demonstrable 
functionality.  Thus tasks released or available to complete can be considered analogous to 
function points in their phase-native form (e.g. design or code).  With this in mind, it is easier to 
compare different strategies in terms of leverage in bringing functionality to bear. 

Typical examples are shown in Figure 6 to visualize the contrasts between some different 
situations.  More details are provided in the following examples explaining the curves.  
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Legend 
 
1 – a linear lockstep concurrence in the development 
of totally independent modules 
 
2 - S-shaped concurrence for new, complex 
development where an architecture core is needed 
first 
 
3 – highly leveraged instantiation like COTS with 
some glue code development  
 
4 - a slow design buildup between phases 
 

Figure 6: Examples of External Concurrence 

 
 
RAD Example of External Process Concurrence 
 

Increasing task parallelism is a primary opportunity to decrease cycle time in RAD.  
Process concurrence is ideally suited for evaluating RAD strategies in terms of work parallelism 
constraints between and within phases.  System dynamics is very attractive to analyze schedule 
time in this context vs. other methods, because it can model task interdependencies on the critical 
path.  Only those tasks on the critical path have influence on the overall schedule. 

One way to achieve RAD is by having base software architectures tuned to application 
domains available for instantiation, standard database connectors and reuse.  This example 
demonstrates how the strategy of having pre-defined and configurable architectures for a 



problem domain can increase the chance for concurrent development between inception and 
elaboration. 

 

Developing from Scratch 

Suppose the software job is to develop a Human Resources (HR) self-service portal.  It is 
web-based system for employees in a large organization to access and update all their personnel 
and benefits information.  It will have to tie into existing legacy databases and commercial 
software packages for different portions of the human resources records.  The final system will 
consist of the following: 

• 30% user interface (UI) front-end 
• 30% architecture and core processing logic 
• 40% database (DB) wrappers and vendor package interface logic (back-end processing). 

Table 2 describes an example concurrence relationship between inception and elaboration 
for this system, where inception is defining the system capabilities and elaboration is designing it 
for eventual construction. The overall percent of tasks ready to elaborate is a weighted average.  
There is no base architecture from which to start from. 
 

Table 2: Concurrence Worksheet for Developing HR Portal from Scratch 

 
Inception (System Definition) Elaboration (System Design) 
Requirements Released  % of Inception 

Tasks Released 
% of Components 
Ready to Elaborate 

Overall % of 
Tasks Ready to  
Elaborate 

About 25% of the core functionality for the 
self-service interface supported by 
prototype.  Only general database interface 
goals defined. 

30% 20% UI 
10% core 
5% DB 

11% 

About half of the basic functionality for the 
self-service interface supported by 
prototype.   

55% 40% UI 
20% core 
20% DB 

26% 

Interface specifications to Peoplesoft 
defined for internal personnel information. 

60% 40% UI 
30% core 
40% DB 

37% 

More functionality for benefits capabilities 
defined (80% of total front-end) 

75% 75% UI 
60% core 
40% DB 

57% 

Interface specification to JD Edwards and 
SAP systems for life insurance and 
retirement information. 

85% 75% UI 
80% core 
80% DB 

79% 

Rest of user interface defined (95% of 
total), except for final UI refinements after 
more prototype testing. 

95% 95% UI 
95% core 
80% DB 

89% 

Timecard interface to Oracle system 
defined. 

98% 95% UI 
95% core 
100% DB 

97% 

Last of UI refinements released. 100% 100% UI 
100% core 
100% DB 

100% 
 

 



Figure 8 shows a plot of the resulting external concurrence relationship from this worksheet. 
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Figure 7: External Process Concurrence for HR System from Scratch 

Developing With a Base Architecture 

 
Contrast the previous example with another situation whereby there exists a base 

architecture that has already been tuned for the Human Resources application domain of 
processes and employee service workflows.  It uses XML technology that ties to existing 
database formats and is ready for early elaboration by configuring the architecture.  It 
already has standard connectors for different vendor database packages.   

Figure 9 shows the corresponding process concurrence against the first example 
where an architecture had yet to be developed.  This relationship enables more parallelism 
between the inception and elaboration phases, and thus the possibility of reduced cycle 
time.  When about 60% of inception tasks are released, this approach allows 50% more 
elaboration tasks to be completed vs. the development from scratch. 
 

 



0

25

50

75

100

0 25 50 75 100
Inception Tasks Released (%)

E
la

b
o

ra
ti

o
n

 T
as

ks
 A

va
ila

b
le

 t
o

 
C

o
m

p
le

te
 (

%
)

no architecture base

with architecture base

 

Figure 8: External Process Concurrence Comparison with Base Architecture 

 
RAD Systems Engineering Staffing Considerations 

Staffing profiles are often dictated by the staff available, but careful tuning of the people 
dedicated to particular activities can have a major impact to overall schedule time.  Consider the 
problem early in a project when developers are “spinning their wheels” and wasting time while 
the requirements are being derived for them.  Typically the requirements come from someone 
with a systems engineering focus.  If those people aren’t producing at a rate fast enough for the 
software people to start elaborating on, then effort is wasted.  The staffing plan should account 
for this early lack of elaboration, so that implementers are phased in at just the right times when 
tasks become available to complete. 

Knowledge of process concurrence for a given project can be used to carefully optimize 
the project.  The right high-level analysts (normally a small number) have to be in place 
producing specifications before hordes of programmers come in to implement the specifications.  
This optimizing choreography requires fine coordination to have the right people at the right 
time. 

To optimize schedule on a complex project with partial inter-phase concurrency, the 
optimal systems engineering staffing is front-loaded vs. constant level-of-effort.  As shown by 
process concurrence, the downstream development is constrained by the specifications available.  
Figure 10 shows two situations of RAD awareness.  In the first case, there is a non-optimal 
constant staff level for systems engineering and overall progress is impeded.  If a curvilinear 
shape is used instead to match the software development resources, then cycle-time gains are 
possible because programming can complete faster. 
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Figure 9: Illustration of RAD Awareness to Systems Engineering Staffing 

 
External Concurrence Model and Experimentation 
 

A simple model of external process concurrence is shown in Figure 11 representing task 
specification and elaboration.  It models concurrence dynamics in the elaboration phase of a 
typical project, and will be used to experimentally derive staffing profiles for different 
combinations of specification inputs and concurrence types.  The specification personnel is a 
forcing function to the model, and is simply a graphical profile that can take on various staffing 
shapes. The specification input profile mimics how requirements are brought dynamically into a 
project.  The concurrence constraint is also a graphical function drawn to represent different 
process concurrence relationships to be studied.   
 

 
 

Figure 10: External Concurrence Model 

 
The time profile of tasks ready to elaborate will be considered proportional to an “ideal” 

staffing curve.  This follows from an important assumption used in the Rayleigh curve that that 
an optimal staffing is proportional to the number of problems ready for solution.  It is very 
important to note that this only considers the product view.  The real-world process of finding 
and bringing people on board may not be able to keep up with the hypothetical optimal curve.  



Thus the personnel perspective may trump the product one.  Much experience in the field points 
out that a highly peaked Rayleigh curve is often too aggressive to staff to. 

The model is used to experimentally derive optimal elaboration staffing profiles (from a 
product perspective) for different types of projects.  We will explore various combinations of 
specification profiles and concurrence between specification and elaboration to see their effect. 
The staffing inputs include 1) flat staffing, 2) a peaked Rayleigh-like staffing and 3) a COTS 
requirements pulse at the beginning followed by a smaller Rayleigh curve to mimic a combined 
COTS and new development.  In addition, we will vary the concurrence types as such: 1) linear 
lockstep concurrence, 2) a slow design buildup between phases, 3) leveraged instantiation to 
model COTS, and 4) S-shaped concurrence that models a wide swath of development.  COTS is 
a pulse-like input because the requirements are nearly instantly defined by the existing 
capabilities.   

Figure 12 shows outputs of the external concurrence model for a variety of situations.  It 
is clear that optimal staffing profiles can be far different than a standard Rayleigh curve, though 
some of the combinations describe projects that can be modeled with a Rayleigh curve. 
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Figure 11: Elaboration Availability Simulation Results 

 
Sample Lessons 
 
This experiment points out some lessons for practitioners.  Figure 13 shows some of the 
simulation results with appropriate lessons.  With a slow design buildup, it is clear that critical 
design delays will slow progress down the road since little is ready for elaboration.  Alternately, 
rapid development can occur in a leveraged instantiation situation with early stakeholder 
concurrence.  These both indicate that earlier architectural decisions and stakeholder agreements 
are important to shorten schedule.  Also note that “not applicable” is shown on the output for a 
slow design buildup with COTS, because it violates the principles of COTS that the system is 
very quickly elaborated. 
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Figure 12: Some Lessons Learned 

 
These simulation outputs don’t tell the entire story about staffing needs because some 

product parts are easier to develop than others, or even automatable.  To further use these results 
for planning a real project, the ideal staffing curves have be modulated by relative effort.  That is, 
implementing COTS or reused components generally require much less effort than new 
development.  If a reused component takes 20% of the effort compared to new, then the required 
staffing should be similarly reduced.  So the staffing curves need further adjustments for the 
relative effort of different approaches. 
 
Additional Considerations 

Process concurrence curves can be more precisely matched to the software system types.  
For example, COTS by definition should exhibit very high concurrence but an overall system 
can be a blend of approaches.  Mixed strategies produce combined concurrence relationships.  
Concurrence for COTS first then new development would be similar to that seen in Figure 14.  
The curve starts out with a leveraged instantiation shape, then transitions to a slow design 
buildup.  This type of concurrence would be better matched to the system developed with an 
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Critical customer decision delays  
slow progress 
  - e.g. can’t design until timing  
    performance specs are known 
 
 
Early stakeholder concurrence  
enables RAD 
  - e.g. decision on architectural  
    framework or COTS package  



initial COTS pulse followed by new software development, corresponding to the third column in 
Figure 12.  Many permutations of concurrence are possible for realistic situations. 
 

 
 

Figure 13: Sample Process Concurrence for Mixed Strategies



 
Rayleigh Manpower Distribution 
 
The Rayleigh curve (also called a Norden/Rayleigh curve) is a popular model of 
personnel loading that naturally lends itself to system dynamics modeling.  It serves as a 
simple generator of time-based staffing curves that is easily parameterized to enable a 
variety of shapes.  The Rayleigh curve is actually a special case of the Weibull 
distribution, and serves as a model for a number of phenomena in physics. 
 
After analyzing hardware research and development projects, Norden put forth a 
manpower model based on Rayleigh curves.  According to these staffing curves, only a 
small number of people are needed at the beginning of a project to carry out planning and 
specification.  As the project progresses and more detailed work is required, the number 
of staff builds up to a peak.  After implementation and testing, the number of staff 
required starts to fall until the product is delivered.  Putnam subsequently applied the 
Rayleigh curve to software development [Putnam 80], and it is used in several software 
cost models. 
 
One of the underlying assumptions is that the number of people working on a project is 
approximately proportional to the number of problems ready for solution at that time.  
Norden derived a Rayleigh curve that describes the rate of change of manpower effort per 
the following first order differential equation: 

 
where C(t) is the cumulative effort at time t, K is the total effort, and p(t) is a product 
learning function.  The time derivative of C(t) is the manpower rate of change, which 
represents the number of people involved in development at any time.  Operationally it is 
the staff size per time increment (traditionally the monthly headcount or staffing profile).  
The learning function is linear and can be represented by 

 
where a is a positive number.  The a parameter is an important determinant of the peak 
personnel loading called the manpower buildup parameter.  The second term [K – C(t)] 
represents the current work gap; it is the difference between the final and current effort 
that closes over time as work is accomplished. 

 
System Dynamics Implementation 
 
The Rayleigh curve and much of Putnam’s work is naturally suited to dynamic modeling.  
Quantities are expressed as first and second order differential equations; precisely the rate 
language of system dynamics.  Figure 14 and Figure 15 show a very simple model of the 
Rayleigh curve using an effort flow chain.  The formula for manpower rate of change 
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represents the project staffing profile.  It uses feedback from the cumulative effort (this 
feedback represents knowledge of completed work).   
 

cumulative effort

effort rate

estimated total effort

learning function

manpower buildup parameter  
 

Figure 14: Rayleigh Manpower Model 

 

Figure 15: Rayleigh Manpower Model Equations 

 
Figure 16 shows the components of the Rayleigh formula from the simulation model. The 
learning function increases monotonically while the work gap diminishes over time as 
problems are worked out, and the corresponding effort rate rises and falls in a Rayleigh 
shape. The two multiplicative terms, the learning function and the work gap, produce the 
Rayleigh effort curve when multiplied together.  They offset each other because the 
learning function rises and the work gap falls over time as a project progresses. 

 
The Rayleigh is an excellent example of a structure producing S-curve behavior for 
cumulative effort.  The learning function and work gap combine to cause the Rayleigh 
effort curve, which integrated over time as cumulative effort is sigmoidal.  The 
cumulative effort starts with a small slope (the learning function is near zero), increases 
in slope, and then levels out as the work gap starts nearing zero.   
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Figure 16: Rayleigh Curve Components 

 
The learning function is linear, and really represents the continued elaboration of product 
detail (e.g. specification to design to code), or increasing understanding about the product 
makeup.  A true learning curve has a different non-linear shape.  We prefer to call the 
term an “elaboration function” to better represent the true phenomena being modeled.  
This is also consistent with the assumption that the staff size is proportional to the 
number of problems (or amount of detail) ready to be implemented.  This is the 
difference between what has been specified (the elaboration function) and what is left to 
do (the work gap).  Other than this section that introduces traditional terminology for 
Rayleigh curves, we will use the term elaboration function in place of learning function. 
 
Figure 17 shows the output staffing profile for different values of a.  It is seen that the 
manpower buildup parameter a is an important determinant of the peak personnel 
loading.  The larger the value of a, the earlier the peak time and a corresponding steeper 
profile.  It is also called the manpower buildup parameter (MBP).  A large a denotes a 
responsive, nimble organization.  The qualitative effects of the MBP are shown in Table 
3. 
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Figure 17: Rayleigh Manpower Model Output for Varying Learning Functions 

Table 3: Effects of Manpower Buildup Parameter 

 
Manpower Buildup Parameter Effort 

Effect 
Schedule 
Effect 

Defect 
Effect 

Low (slow staff buildup) Lower Higher Lower 
Medium (moderate staff 
buildup) 

   

High (aggressive staff buildup) Higher Lower Higher 
 
 It has been observed that the staffing buildup rate is largely invariant within a 
particular organization due to a variety of factors.  Some organizations are much more 
responsive and nimble to changes than others.  Design instability is the primary cause for 
a slow buildup.  Top architects and senior designers must be available to produce a stable 
design.  Hiring delays and the inability to release top people from other projects will 
constrain the buildup to a large extent.  If there is concurrent hardware design in a 
system, instability and volatility of the hardware will limit the software design ready for 
programming solutions.  
 
The Rayleigh curve can be calibrated to static cost models and used to derive dynamic 
staffing profiles.  See the model file Rayleigh calibrated to COCOMO.itm for an example 
at the web site listed under Available Models.  
 
Rayleigh Curve vs. Flat Staffing 
 In contrast to a Rayleigh curve buildup, a level-of-effort staffing may be possible 
for well-known and precedented problems where problems are ready for solution.  An 
example would be a relatively simple porting between platforms of a software package 

 

a=2 

a=.125 

a=.5 

a=.25 



with experienced developers.  Since the problem has been solved by the people before, 
the task can be performed by an initial large staff.  The project can be planned with a 
nearly linear tradeoff between schedule and number of personnel (i.e. with a constant 
staff level, the porting will take about twice as long with one half of the staff).  Another 
example is an in-house organic project where many people can start a project compared 
to the slower Rayleigh buildup. 
 A high-peaked buildup curve and a constant level-of-effort staffing represent 
different types of software project staffing.  Most software development falls in between 
the two behaviors.   
 
Integrating Modeling Perspectives 
 

There are connections between process concurrence and Rayleigh-curve modeling 
that are useful for understanding the dynamics, and collectively provide a more robust 
framework for modeling processes.  In fact process concurrence can be used to show 
when and why the Rayleigh curve doesn’t apply.  Process concurrence provides a way to 
model the constraints on making work available in and between phases.  The work 
available to perform is the same dynamic that drives the Rayleigh curve, since the staff 
level is proportional to the problems (or specifications) currently available to implement.  
S-curves result for expended effort over time (the accumulation of the staffing curve) or 
cumulative progress when a Rayleigh staffing shape applies. 

However the Rayleigh curve was based on the initial study of hardware research 
and development projects that most resemble a traditional waterfall lifecycle for 
unprecedented software systems.  Now there are a great variety of situations that it 
doesn’t match so well. Rayleigh staffing assumptions don’t hold well for COTS, reuse, 
architecture-first design patterns, 4th generation languages or staff-constrained situations.   

The underlying assumption that an “ideal” staffing curve is proportional to the 
number of problems ready for solution (from a product perspective only) still carries 
weight.  With modern methods the dynamic profile of problems ready for solution can 
have far different shapes than was observed when the Rayleigh curve was first applied to 
software.  Experimentation with the external concurrence model in the previous section  
showed examples of this. 

Iterative processes with frequent cycles or incremental development projects 
generally have flatter staffing profiles.  Some would argue the flat profiles are the 
superposition of many sub-Rayleigh curves, but nevertheless the initial assumptions were 
based on sequential, one-pass projects.   

Other situations where the Rayleigh curve doesn’t apply too well are highly 
precedented systems for which early parallel work can take place and the project ends 
with a relatively flat profile, such as a heavy reuse or simple translation project, or any 
situation where a gradual buildup isn’t necessary.  Process concurrence can produce any 
number of dynamic profiles, and can thus be used to model more situations than the 
Rayleigh curve. 

Schedule-driven projects which implement timeboxing are another example where 
projects that can have more uniform staffing distributions.  These projects which are 
sometimes called Schedule As the Independent Variable (SAIV) projects since cost and 
quality float relative to the fixed schedule.  On such projects there is no staff tapering at 



the end, because the schedule goal is attained by keeping everyone busy until the very 
end.  Thus the staffing level remains nearly constant. 

We now have alternative methods of modeling the staffing curve.  A standard 
Rayleigh formula can be used or process concurrence can replace the elaboration function 
in it.  The first term in the Rayleigh equation that we call the elaboration function, p(t), 
represents the cumulative specifications available to be implemented.  The cumulative 
level of specifications available is the output of a process concurrence relationship that 
operates over time.   Thus we can substitute a process concurrence relationship in place 
of the elaboration function, and it will be a more general model for software processes 
since the Rayleigh curve doesn’t adequately model all development classes.  Process 
concurrence provides a more detailed view of the dynamics and is meaningful for 
planning and improvement purposes. 

Recall the Rayleigh staffing profile results from the multiplication over time of 
the elaboration function and the remaining work left, shown in Figure 18.  The 
elaboration function increases and the remaining work gap decreases as work is 
performed.  Figure 18 shows the idealized Rayleigh staffing components and the process 
concurrence analogy for the product elaboration function.  Internal and external 
concurrence relationships that can replace the Rayleigh formula for this are in Figure 19. 
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Figure 18: Rayleigh Curve Components and Process Concurrence Analogy 
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Figure 19: Process Concurrence Replacement for Rayleigh 

 
Table 4 summarizes the process dynamics of tasks and personnel on prototypical 

projects per different modeling viewpoints that have been presented.  The Rayleigh 
manpower buildup parameter a depends on the organizational environment and project 
type, so the relative differences in the table only address the effect of project type on staff 
buildup limits.  A more precise assessment of the buildup parameter for a specific 
situation would take more into account. 

               Time                                              Time                                                Time 
 
      problems ready for solution                     product elaboration                                 remaining work gap 

Rayleigh staffing profile ≈≈ problems ready for solution 
 

product elaboration ≈≈ tasks complete or available to complete (from process concurrence) 
 



Table 4: Task and Effort Dynamics Summary for Major Project Types 

Process Concurrence Project Type 
Internal Concurrence External Concurrence 
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1 The generalized buildup patterns shown assume that all else is held constant between these examples except for the project type.  Different organizations will 
exhibit different buildup patterns if they had to staff the same given projects.  Some organizations will always be more nimble for quick staff buildup due to their 
internal characteristics. 
2 There is often self-similarity observed in the different phases.  In many instances the concurrence between elaboration and construction will be similar. 
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COTS-based 
 
- most requirements 
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COTS capabilities 
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Available Models 
Some executable simulation models used in this work and provided to the public domain on the 
web at http://rcf.usc.edu/~madachy/spd are listed below. 
• Rayleigh – This models the components of the Rayleigh staffing curve over time to provide 

understanding of process dynamics. 
• External Concurrence – This models external process dynamics in the elaboration phase of a 

project and is used to derive optimal staffing profiles (from a product perspective) for 
different types of projects.  One can explore various combinations of specification input 
profiles and concurrence relationships between inception and elaboration to see their effect 
on optimal staffing.   

• Brooks Law – Brooks’s explanations are relevant because he describes how task 
interdependencies constrain parallel work.  This is a reference model of the Brooks’s Law 
mechanics.  

• MBASE Architecting - A detailed model of the MBASE architecting phase that includes 
internal and external concurrence between activities.  This was a student term project at USC. 

 
Summary and Conclusions 

In summary, process concurrence provides a robust framework for modeling software 
processes and their constraint mechanisms.  It is general enough to characterize a broad spectrum 
of current and emerging methodologies in terms of work available to complete on a project.  It 
can produce any number of dynamic profiles matching the different methodologies, and thus 
model more realistic situations than the traditional Rayleigh curve.  Process concurrence can in 
fact be used to show when and why the Rayleigh curve doesn’t apply in modern software 
development situations.  It provides a more detailed view of the process dynamics and is 
meaningful for planning and improvement purposes.  With it one can derive optimal staffing 
profiles for different project types, and as a shared project model it serves to improve stakeholder 
communication.  

The software industry is continually introducing new processes, methodologies and tools.  
Process concurrence modeling can help to evaluate these new directions.  Many modern 
techniques serve to increase concurrence in the software process in several ways.  When feasible, 
increasing task parallelism is one of the most effective methods for achieving cycle-time 
reductions in software development and evolution.  Leverage is also achieved by automating 
product elaboration.  Process concurrence is ideally suited for evaluating such strategies by 
modeling task interdependency constraints between and within phases, and can characterize 
different approaches in terms of their ability to parallelize or accelerate activities. 

The perspectives of process concurrence, Rayleigh curves and Brooks’s Law are all 
related.  Process concurrence models the constraints on making work available, and the work 
available to perform is the same dynamic that drives the Rayleigh curve since the staff level is 
proportional to the problems currently available to implement.  Process concurrence also 
quantitatively illustrates Brooks’s qualitative interpretation of task dependency effects.  
However, more empirical data is needed on concurrence relationships from the field for a variety 
of projects.  We hope to report on this analysis in future writings. 
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