

Software Process Concurrence
Raymond J. Madachy, Ph.D.

USC Center for Software Engineering Cost Xpert Group, Inc.
Computer Science Department 2990 Jamacha Road, Suite 260

University of Southern California San Diego, CA 92019
Los Angeles, CA 90089-0781 619/670-6168

213/740-5703 madachyr@costxpert.com
madachy@usc.edu

Abstract

Process concurrence provides a robust framework for modeling software processes and
their constraint mechanisms. It is general enough to characterize a broad spectrum of current and
emerging methodologies in terms of work available to complete on a project. It is more
generally applicable than the Rayleigh curve, provides a detailed view of process dynamics and
is meaningful for planning and improvement purposes. With it one can derive optimal staffing
profiles for different project types, and as a shared project model it serves to improve stakeholder
communication.

The software industry is continually introducing new processes, methodologies and tools.
Many modern techniques serve to increase concurrence (and thus decrease cycle time) in several
ways like increasing task parallelism or automating product elaboration. Process concurrence
can evaluate such strategies by modeling task interdependency constraints between and within
phases.

This paper will introduce process concurrence, show examples from the software
development domain, compare concurrence relationships for typical development situations, run
some simulation experiments, and present lessons for practitioners based on the modeling.
Finally, the notions of process concurrence, Rayleigh curves and Brooks’s Law are integrated
from the perspective of making work available.

Keywords: process concurrence, software process dynamics, software process improvement,
Rayleigh curve, Rapid Application Development, COTS, software engineering, Brooks’s Law

Process Concurrence Overview

Process concurrence is the degree to which work becomes available based on work already
accomplished. It describes interdependency constraints between tasks, both within and between
project phases. Concurrence relationships are crucial to understanding process dynamics.
Internal process concurrence refers to available work constraints within a phase, while external
process concurrence is used to describe available work constraints between development phases.
A good treatment of process concurrence for general industry can be found in [Ford-Sterman
97], and this work interprets and extends the concepts for software engineering.

The availability of work described by process concurrence is a very important constraint
on progress. Otherwise, a model driven solely by resources and productivity will allow a project
to complete in almost zero time with infinite resources. Such is not the case with software
processes where tasks are highly interdependent, since some tasks must be sequential and can't
be done in parallel.

Process concurrence relationships describe how much work becomes available for
completion based on previous work accomplished. These realistic bottlenecks on work
availability should be considered during project planning and execution. There is a limit to the
amount of concurrent development due to interdependencies in software processes. Concurrence
relations can be sequential, parallel, partially concurrent, or other dependent relationships.
Concurrence relationships can be elicited from process participants. A protocol for the
elicitation is described in [Ford-Sterman 98].

The definition of "task" in this context is an atomic unit of work that flows through a
project, where the units may differ among project phases. This is the same treatment of tasks
used in the Abdel-Hamid model and many others. Tasks are assumed to be interchangeable and
uniform in size (e.g. the Abdel-Hamid task was equivalent to 60 lines of software). A task then
refers to product specification during project definition, and lines of code during code
implementation. The assumption becomes more valid as the size of task decreases.

Trying to Accelerate Software Development

It is instructive to understand some of the phenomena that impede software processes.
Putnam likens the acceleration of software development to pouring water into a channel-
restricted funnel [Putnam 80]. The funnel does not allow the flow to be sped up very much, no
matter how much one pours into the funnel. This is like throwing a lot of software personnel at
once into the development chute to accelerate things. They won't be able to work independently
in parallel, since certain tasks can only be done in sequence.

Figure 1 shows the limited parallelism of software tasks using a funnel analogy alongside
the corresponding system dynamics structure. This concept is elaborated in the next Figure 2,
which shows the constriction brought about by trying to parallelize sequential (or at least
partially sequential) activities for a single thread of software. Tasks can only flow through in
proper order. This image is reminiscent of the Three Stooges getting stuck while trying to enter a
single doorway at the same time.

development rate

software tasks

restricted channel flow

tasks to
develop

completed
tasks

personnel

(partially adapted from
Putnam 80)

Figure 1: Funnel View of Limited Task Parallelism and System Dynamics Corollary

There are always sequential constraints independent of phase. The elemental activities in any

phase of software development include:
• analysis and specification; one figures out what you're supposed to do and specifying how

the parts fit together
• development of something (architecture, design, code, test plan, etc.) that implements the

specifications
• assessment of what was developed; this may include verification, validation, review, or

debugging
• possible rework recycle of previous activities
These activities can't be done totally in parallel with more applied people. Different people can
perform the different activities with limited parallelism, but downstream activities will always
have to follow some of the upstream.

analysis

development

analysis development assessment rework

software tasks software tasks

assessment

constriction from parallelizing
sequential tasks

sequential tasks must f low
 in proper order

rework

Figure 2: Trying to Parallelize Sequential Tasks in the Funnel

In The Mythical Man-Month [Brooks 95], Brooks explains these restrictions from a

partitioning perspective in his Brooks’s Law framework. Sequential constraints imply tasks
cannot be partitioned among different personnel resources. Thus applying more people has no
effect on schedule. Men and months are interchangeable only when tasks can be partitioned with
no communication among them. Process concurrence is a natural vehicle for modeling these
software process constraints.

Internal Process Concurrence
An internal process concurrence relationship shows how much work can be done based on

the percent of work already done. The relationships represent the degree of sequentiality or
concurrence of the tasks aggregated within a phase. They may include changes in the degree of
concurrence as work progresses. Figure 3 and Figure 4 demonstrate linear and non-linear
internal process concurrence. The bottom right half under the diagonal of the internal process
concurrence is an infeasible region, since the percent available to complete can't be less than the
amount already completed.

The development of a single software task within a phase normally includes the sequences
of construction, verification/validation and sometimes rework. These can't all be simultaneously
performed on an individual task. There will always be an average duration of the sub-activities,
regardless of the resources applied to them. Additionally, the development of some tasks require
the completion of other intra-phase tasks beforehand. Thus, the process limits the availability of
work to be completed based on the amount of already completed work.

More concurrent processes are described by curves near the left axis, and less concurrent
processes lie near the 45° line. The linear relationship in Figure 3 could describe the sequential
construction of a 10-story building. When the first floor is complete, 10% of the project is done
and the second floor is available to be completed, or 20% of the entire project is thus available to

finish. This pattern continues until all the floors are done. This is sometimes called a “lockstep”
relationship.

The linear concurrence line starts above the 45 degree diagonal, since the y-axis includes
work "available to complete". The relationship has to start greater than zero. Consider again a
skyscraper being built. At the very beginning, the first floor is available to be completed.

A more typical non-linear relationship is shown in Figure 4. For example, the overarching
segments of software must be completed before other parts can begin. Only the important
portions (such as 20% of the whole for an architecture skeleton, interface definitions, common
data, etc.) can be worked on in the beginning. The other parts aren't available for completion
until afterwards. This typifies complex software development tasks are many tasks are
dependent on each other. Men and months are not interchangeable in this situation according to
Brooks because the tasks cannot be partitioned without communication between them.

0

25

50

75

100

0 25 50 75 100

Percent of Tasks Completed and Released

P
er

ce
nt

 o
f T

as
ks

 C
om

pl
et

e
or

 A
va

ila
bl

e
to

 C
om

pl
et

e

infeasible

Figure 3: Linear Internal Process Concurrence

0

25

50

75

100

0 25 50 75 100

Percent of Tasks Completed and Released

P
er

ce
nt

 o
f T

as
ks

 C
om

pl
et

e
or

 A
va

ila
bl

e
to

 C
om

pl
et

e

Figure 4: Non-linear Internal Process Concurrence

Figure 5 shows internal concurrence for an extreme case of parallel work. There is very

high concurrency because the tasks are independent of each other. Almost everything can be
doled out as separate tasks in the beginning, such as a straightforward translation of an existing
application from one language to another. Each person simply gets an individual portion of code
to convert, and that work can be done in parallel. The last few percent of tasks for integrating all
translated components have to wait until the different pieces are there first, so 100% can’t be
completed until the translated pieces have been completed and released. Brooks explains that
many tasks in this situation can be partitioned with no communication between them, and men
and months are largely interchangeable.

region of
parallel work

less parallel
integration

initial work on
important definitive
segments; other
segments have to wait
until these are done

0

25

50

75

100

0 25 50 75 100

Percent of Tasks Completed and Released

P
er

ce
nt

 o
f T

as
ks

 C
om

pl
et

e
or

 A
va

ila
bl

e
to

 C
om

pl
et

e

Figure 5: Nearly Parallel Internal Process Concurrence

External Process Concurrence
External process concurrence relationships describe constraints on amount of work that can

be done in a downstream phase based on the percent of work released by an upstream phase.
Examples of several external process concurrence relationships are shown in Table 1. More
concurrent processes have curves near the upper left axes, and less concurrent processes have
curves near the lower and right axes.

final integration
requires all
pieces to be
there first

individual pieces
can be done
independently in
parallel

Table 1: External Process Concurrence Relationships

Relationship Characteristics
No Inter-phase Relationship

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks

A
va

ila
b

le
 t

o
 C

o
m

p
le

te

• No dependencies between the phases.

• The downstream phase can progress

independently of the upstream phase.

• The entire downstream work is

available to be completed with none of
the upstream work released.

Sequential Inter-phase Relationship

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks
Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks

A
va

ila
b

le
 t

o
 C

o
m

p
le

te

• None of the downstream phase can
occur until the upstream phase is
totally complete.

• Like a theoretical waterfall

development process where no phase
can start until the previous phase is
completed and verified.

• Same as a finish-stop relationship in a

critical path network.

Parallel Inter-phase Relationship

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks

A
va

ila
b

le
 t

o
 C

o
m

p
le

te

• The two phases can be implemented
completely in parallel.

• The downstream phase can be

completed as soon as the upstream
phase is started.

Delayed Start Inter-phase Relationship • The downstream phase must wait until
a major portion of the upstream phase
is completed, then it can be completed
in its entirety.

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks

A
va

ila
b

le
 t

o
 C

o
m

p
le

te

• Like a start-start relationship in a

critical path network.

Lockstep Relationship

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks
Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks

A
va

ila
b

le
 t

o
 C

o
m

p
le

te

• The downstream phase can progress at
the same speed as the upstream phase;
thus they are in lockstep with each
other.

• The downstream work availability is

correlated linearly 1:1 to how much is
released from the upstream. For
example, after 10% of system design
is completed then 10% of
implementation tasks is available to
finish.

• This relationship is not available in

PERT/CPM.

Delay with Partially Concurrent Inter-phase Relationship

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks

A
va

ila
b

le
 t

o
 C

o
m

p
le

te

• The downstream phase has to wait
until a certain percentage of upstream
tasks have been released, and then can
proceed at varying degrees of
concurrence per the graph.

• This relationship is representative of

complex software development with
task interdepencies.

• This type of relationship is not

available with PERT/CPM methods

Leveraged Concurrence Relationship • This relationship exhibits a high
degree of parallelism and leverage
between phases.

• Typical of Commercial Off-The Shelf

(COTS) products whereby one
specifies the capabilities, and the
system is quickly configured and
instantiated. Also applicable for 4th

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks

A
va

ila
b

le
 t

o
 C

o
m

p
le

te

general language (4GL) approaches.

The partially concurrent inter-phase relationship is representative of much software
development, where complexities impose task dependencies and thus inter-task communication
is necessary. For example, a critical mass of core requirements must be released before
architecture and design can start. Then the downstream phase availability rate increases in the
middle region (e.g. much design work can take place), and then slows down as the final upstream
tasks are released.

External process concurrence relationships function like the precedence relationships in
critical path and PERT methods to describe dependencies, but contain greater dynamic detail.
For example, external concurrence relationships describe the phase dependencies for the entire
durations. PERT and critical path methods only use the stop and start dates. They can also be
nonlinear to show differences in the degree of concurrence, whereas PERT methods cannot.
Lastly, process concurrence relationships are dynamic since the work completed could increase
or reduce over time, but only static precedence relationships are used in critical path or PERT
methods. The lockstep and delay with partially concurrent inter-phase relationships are
situations that cannot be described with PERT or critical path methods.

Analysis of Different Software Methodologies
We’ll examine different methodologies via process concurrence in terms of leverage

between phases. Leverage in software development refers to how much can be elaborated based
on inputs from the previous phase. Software development is essentially a transformational
process whereby the product goes from concept to requirements to design and finally code. A
method with increased leverage means that the downstream product can be elaborated with less
effort. It is like a return-on-investment for a given effort, or can be likened to mechanical
advantage.

For example, a Fourth-Generation Language (4GL) that generates code from requirement
statements has much higher leverage than new code development. For about the same amount of
effort expended on requirements, a great deal more of demonstrative software will be produced
with advanced 4GL tools compared to starting from scratch in each phase. Starting from scratch
means there are no pre-existing software artifacts, and all development is new. Virtually all
modern approaches to software development are some attempt to increase leverage, so that

machines or humans can efficiently instantiate software artifacts vs. more labor-intensive
approaches.

Commercial-Off-The-Shelf (COTS) software is another good example of high phase
leverage, because functionality is easily created after identifying the COTS package. If one
specifies “use the existing SIRSI package for library operations”, then the functions of online
searching, checkout, etc. are already defined and easily implemented after configuring the
package locally.

Process concurrence is a very useful means to contrast the leverage of different
approaches, because the degree of concurrence is a function of the software methodology
(among other things). When developing or interpreting external process concurrence curves for
software development strategies, it is helpful to think of tasks in terms of demonstrable
functionality. Thus tasks released or available to complete can be considered analogous to
function points in their phase-native form (e.g. design or code). With this in mind, it is easier to
compare different strategies in terms of leverage in bringing functionality to bear.

Typical examples are shown in Figure 6 to visualize the contrasts between some different
situations. More details are provided in the following examples explaining the curves.

0

25

50

75

100

0 25 50 75 100

Percent of Inception Tasks Released

P
er

ce
n

t
o

f
E

la
b

o
ra

ti
o

n
 T

as
ks

 A
va

ila
b

le

to
 C

o
m

p
le

te

 3
 2

 1

 4

Legend

1 – a linear lockstep concurrence in the development
of totally independent modules

2 - S-shaped concurrence for new, complex
development where an architecture core is needed
first

3 – highly leveraged instantiation like COTS with
some glue code development

4 - a slow design buildup between phases

Figure 6: Examples of External Concurrence

RAD Example of External Process Concurrence

Increasing task parallelism is a primary opportunity to decrease cycle time in RAD.
Process concurrence is ideally suited for evaluating RAD strategies in terms of work parallelism
constraints between and within phases. System dynamics is very attractive to analyze schedule
time in this context vs. other methods, because it can model task interdependencies on the critical
path. Only those tasks on the critical path have influence on the overall schedule.

One way to achieve RAD is by having base software architectures tuned to application
domains available for instantiation, standard database connectors and reuse. This example
demonstrates how the strategy of having pre-defined and configurable architectures for a

problem domain can increase the chance for concurrent development between inception and
elaboration.

Developing from Scratch

Suppose the software job is to develop a Human Resources (HR) self-service portal. It is
web-based system for employees in a large organization to access and update all their personnel
and benefits information. It will have to tie into existing legacy databases and commercial
software packages for different portions of the human resources records. The final system will
consist of the following:

• 30% user interface (UI) front-end
• 30% architecture and core processing logic
• 40% database (DB) wrappers and vendor package interface logic (back-end processing).

Table 2 describes an example concurrence relationship between inception and elaboration
for this system, where inception is defining the system capabilities and elaboration is designing it
for eventual construction. The overall percent of tasks ready to elaborate is a weighted average.
There is no base architecture from which to start from.

Table 2: Concurrence Worksheet for Developing HR Portal from Scratch

Inception (System Definition) Elaboration (System Design)
Requirements Released % of Inception

Tasks Released
% of Components
Ready to Elaborate

Overall % of
Tasks Ready to
Elaborate

About 25% of the core functionality for the
self-service interface supported by
prototype. Only general database interface
goals defined.

30% 20% UI
10% core
5% DB

11%

About half of the basic functionality for the
self-service interface supported by
prototype.

55% 40% UI
20% core
20% DB

26%

Interface specifications to Peoplesoft
defined for internal personnel information.

60% 40% UI
30% core
40% DB

37%

More functionality for benefits capabilities
defined (80% of total front-end)

75% 75% UI
60% core
40% DB

57%

Interface specification to JD Edwards and
SAP systems for life insurance and
retirement information.

85% 75% UI
80% core
80% DB

79%

Rest of user interface defined (95% of
total), except for final UI refinements after
more prototype testing.

95% 95% UI
95% core
80% DB

89%

Timecard interface to Oracle system
defined.

98% 95% UI
95% core
100% DB

97%

Last of UI refinements released. 100% 100% UI
100% core
100% DB

100%

Figure 8 shows a plot of the resulting external concurrence relationship from this worksheet.

0

25

50

75

100

0 25 50 75 100

Percent of Inception Tasks Released

P
er

ce
n

t
o

f
E

la
b

o
ra

ti
o

n
 T

as
ks

 A
va

ila
b

le

to
 C

o
m

p
le

te

Figure 7: External Process Concurrence for HR System from Scratch

Developing With a Base Architecture

Contrast the previous example with another situation whereby there exists a base

architecture that has already been tuned for the Human Resources application domain of
processes and employee service workflows. It uses XML technology that ties to existing
database formats and is ready for early elaboration by configuring the architecture. It
already has standard connectors for different vendor database packages.

Figure 9 shows the corresponding process concurrence against the first example
where an architecture had yet to be developed. This relationship enables more parallelism
between the inception and elaboration phases, and thus the possibility of reduced cycle
time. When about 60% of inception tasks are released, this approach allows 50% more
elaboration tasks to be completed vs. the development from scratch.

0

25

50

75

100

0 25 50 75 100
Inception Tasks Released (%)

E
la

b
o

ra
ti

o
n

 T
as

ks
 A

va
ila

b
le

 t
o

C

o
m

p
le

te
 (

%
)

no architecture base

with architecture base

Figure 8: External Process Concurrence Comparison with Base Architecture

RAD Systems Engineering Staffing Considerations

Staffing profiles are often dictated by the staff available, but careful tuning of the people
dedicated to particular activities can have a major impact to overall schedule time. Consider the
problem early in a project when developers are “spinning their wheels” and wasting time while
the requirements are being derived for them. Typically the requirements come from someone
with a systems engineering focus. If those people aren’t producing at a rate fast enough for the
software people to start elaborating on, then effort is wasted. The staffing plan should account
for this early lack of elaboration, so that implementers are phased in at just the right times when
tasks become available to complete.

Knowledge of process concurrence for a given project can be used to carefully optimize
the project. The right high-level analysts (normally a small number) have to be in place
producing specifications before hordes of programmers come in to implement the specifications.
This optimizing choreography requires fine coordination to have the right people at the right
time.

To optimize schedule on a complex project with partial inter-phase concurrency, the
optimal systems engineering staffing is front-loaded vs. constant level-of-effort. As shown by
process concurrence, the downstream development is constrained by the specifications available.
Figure 10 shows two situations of RAD awareness. In the first case, there is a non-optimal
constant staff level for systems engineering and overall progress is impeded. If a curvilinear
shape is used instead to match the software development resources, then cycle-time gains are
possible because programming can complete faster.

opportunity
for increased task
parallelism and
quicker
elaboration

 systems
 engineering
 staff

progress

Case 1: not RAD aware Case 2: RAD aware

Figure 9: Illustration of RAD Awareness to Systems Engineering Staffing

External Concurrence Model and Experimentation

A simple model of external process concurrence is shown in Figure 11 representing task
specification and elaboration. It models concurrence dynamics in the elaboration phase of a
typical project, and will be used to experimentally derive staffing profiles for different
combinations of specification inputs and concurrence types. The specification personnel is a
forcing function to the model, and is simply a graphical profile that can take on various staffing
shapes. The specification input profile mimics how requirements are brought dynamically into a
project. The concurrence constraint is also a graphical function drawn to represent different
process concurrence relationships to be studied.

Figure 10: External Concurrence Model

The time profile of tasks ready to elaborate will be considered proportional to an “ideal”

staffing curve. This follows from an important assumption used in the Rayleigh curve that that
an optimal staffing is proportional to the number of problems ready for solution. It is very
important to note that this only considers the product view. The real-world process of finding
and bringing people on board may not be able to keep up with the hypothetical optimal curve.

Thus the personnel perspective may trump the product one. Much experience in the field points
out that a highly peaked Rayleigh curve is often too aggressive to staff to.

The model is used to experimentally derive optimal elaboration staffing profiles (from a
product perspective) for different types of projects. We will explore various combinations of
specification profiles and concurrence between specification and elaboration to see their effect.
The staffing inputs include 1) flat staffing, 2) a peaked Rayleigh-like staffing and 3) a COTS
requirements pulse at the beginning followed by a smaller Rayleigh curve to mimic a combined
COTS and new development. In addition, we will vary the concurrence types as such: 1) linear
lockstep concurrence, 2) a slow design buildup between phases, 3) leveraged instantiation to
model COTS, and 4) S-shaped concurrence that models a wide swath of development. COTS is
a pulse-like input because the requirements are nearly instantly defined by the existing
capabilities.

Figure 12 shows outputs of the external concurrence model for a variety of situations. It
is clear that optimal staffing profiles can be far different than a standard Rayleigh curve, though
some of the combinations describe projects that can be modeled with a Rayleigh curve.

 Specifications Input Profile

Concurrence Type

Untitled

0.00 5.00 10.00
Months

0

10

20
1: specification rate

1 1

1
0.00 5.00 10.00

Months

0

10

20
1: specification rate

1

1

1

Untitled

0.00 5.00 10.00
Months

0

20

40
1: specification rate

1

1

1

Linear
concurrence

0.00 5.00 10.00
Months

0

10

20
1: elaboration availability rate

1 1

1
0.00 5.00 10.00

Months

0

10

20
elaboration availability rate: 1 -

1

1

1
0.00 5.00 10.00

Months

0

20

40
elaboration availability rate: 1 -

1

1

1

Slow design
buildup

slow

0.00 5.00 10.00
Months

0

15

30
1: elaboration availability rate

1

1

1
0.00 5.00 10.00

Months

0

15

30
elaboration availability rate: 1 -

1

1

1

slow design buildup

0.00 5.00 10.00
Months

0

15

30
1: elaboration availability rate

1

1

1

Leveraged
instantiation

0.00 5.00 10.00
Months

0

15

30

1: elaboration availability rate

1

1

1 0.00 5.00 10.00
Months

0

15

30
elaboration availability rate: 1 -

1

1

1
0.00 5.00 10.00

Months

0

50

100
1: elaboration availability rate

1

1
1

S-shaped
concurrence

s

0.00 5.00 10.00
Months

0

20

40
1: elaboration availability rate

1

1

1

0.00 5.00 10.00
Months

0

25

50
elaboration availability rate: 1 -

1

1

1 0.00 5.00 10.00
Months

0

20

40
1: elaboration availability rate

1

1

1

flat staffing Rayleigh COTS pulse
 at front

Figure 11: Elaboration Availability Simulation Results

Sample Lessons

This experiment points out some lessons for practitioners. Figure 13 shows some of the
simulation results with appropriate lessons. With a slow design buildup, it is clear that critical
design delays will slow progress down the road since little is ready for elaboration. Alternately,
rapid development can occur in a leveraged instantiation situation with early stakeholder
concurrence. These both indicate that earlier architectural decisions and stakeholder agreements
are important to shorten schedule. Also note that “not applicable” is shown on the output for a
slow design buildup with COTS, because it violates the principles of COTS that the system is
very quickly elaborated.

0.00 5.00 10.00
Months

0.00 5.00 10.00
Months

0.00 5.00 10.00
Months

slow

0.00 5.00 10.00
Months

0

15

30
1: elaboration availability rate

1

1

1
0.00 5.00 10.00

Months

0

15

30
elaboration availability rate: 1 -

1

1

1

slow design buildup

0.00 5.00 10.00
Months

0

15

30
1: elaboration availability rate

1

1

1

0.00 5.00 10.00
Months

0

15

30

1: elaboration availability rate

1

1

1 0.00 5.00 10.00
Months

0

15

30
elaboration availability rate: 1 -

1

1

1
0.00 5.00 10.00

Months

0

50

100
1: elaboration availability rate

1

1
1

1: elaboration availability rate elaboration availability rate: 1 - 1: elaboration availability rate

Figure 12: Some Lessons Learned

These simulation outputs don’t tell the entire story about staffing needs because some

product parts are easier to develop than others, or even automatable. To further use these results
for planning a real project, the ideal staffing curves have be modulated by relative effort. That is,
implementing COTS or reused components generally require much less effort than new
development. If a reused component takes 20% of the effort compared to new, then the required
staffing should be similarly reduced. So the staffing curves need further adjustments for the
relative effort of different approaches.

Additional Considerations

Process concurrence curves can be more precisely matched to the software system types.
For example, COTS by definition should exhibit very high concurrence but an overall system
can be a blend of approaches. Mixed strategies produce combined concurrence relationships.
Concurrence for COTS first then new development would be similar to that seen in Figure 14.
The curve starts out with a leveraged instantiation shape, then transitions to a slow design
buildup. This type of concurrence would be better matched to the system developed with an

N/A

Critical customer decision delays
slow progress
 - e.g. can’t design until timing
 performance specs are known

Early stakeholder concurrence
enables RAD
 - e.g. decision on architectural
 framework or COTS package

initial COTS pulse followed by new software development, corresponding to the third column in
Figure 12. Many permutations of concurrence are possible for realistic situations.

Figure 13: Sample Process Concurrence for Mixed Strategies

Rayleigh Manpower Distribution

The Rayleigh curve (also called a Norden/Rayleigh curve) is a popular model of
personnel loading that naturally lends itself to system dynamics modeling. It serves as a
simple generator of time-based staffing curves that is easily parameterized to enable a
variety of shapes. The Rayleigh curve is actually a special case of the Weibull
distribution, and serves as a model for a number of phenomena in physics.

After analyzing hardware research and development projects, Norden put forth a
manpower model based on Rayleigh curves. According to these staffing curves, only a
small number of people are needed at the beginning of a project to carry out planning and
specification. As the project progresses and more detailed work is required, the number
of staff builds up to a peak. After implementation and testing, the number of staff
required starts to fall until the product is delivered. Putnam subsequently applied the
Rayleigh curve to software development [Putnam 80], and it is used in several software
cost models.

One of the underlying assumptions is that the number of people working on a project is
approximately proportional to the number of problems ready for solution at that time.
Norden derived a Rayleigh curve that describes the rate of change of manpower effort per
the following first order differential equation:

where C(t) is the cumulative effort at time t, K is the total effort, and p(t) is a product
learning function. The time derivative of C(t) is the manpower rate of change, which
represents the number of people involved in development at any time. Operationally it is
the staff size per time increment (traditionally the monthly headcount or staffing profile).
The learning function is linear and can be represented by

where a is a positive number. The a parameter is an important determinant of the peak
personnel loading called the manpower buildup parameter. The second term [K – C(t)]
represents the current work gap; it is the difference between the final and current effort
that closes over time as work is accomplished.

System Dynamics Implementation

The Rayleigh curve and much of Putnam’s work is naturally suited to dynamic modeling.
Quantities are expressed as first and second order differential equations; precisely the rate
language of system dynamics. Figure 14 and Figure 15 show a very simple model of the
Rayleigh curve using an effort flow chain. The formula for manpower rate of change

)]()[(
)(

tCKtp
dt

tdC
−=

attp 2)(=

represents the project staffing profile. It uses feedback from the cumulative effort (this
feedback represents knowledge of completed work).

cumulative effort

effort rate

estimated total effort

learning function

manpower buildup parameter

Figure 14: Rayleigh Manpower Model

Figure 15: Rayleigh Manpower Model Equations

Figure 16 shows the components of the Rayleigh formula from the simulation model. The
learning function increases monotonically while the work gap diminishes over time as
problems are worked out, and the corresponding effort rate rises and falls in a Rayleigh
shape. The two multiplicative terms, the learning function and the work gap, produce the
Rayleigh effort curve when multiplied together. They offset each other because the
learning function rises and the work gap falls over time as a project progresses.

The Rayleigh is an excellent example of a structure producing S-curve behavior for
cumulative effort. The learning function and work gap combine to cause the Rayleigh
effort curve, which integrated over time as cumulative effort is sigmoidal. The
cumulative effort starts with a small slope (the learning function is near zero), increases
in slope, and then levels out as the work gap starts nearing zero.

10:45 AM Mon, Oct 25, 1999

0.00 2.50 5.00 7.50 10.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

0.00

2.12

4.23

0.00

7.50

15.00

0.00

1.00

2.00

0.00

7.50

15.00

1: effort rate 2: cumulative effort 3: learning function 4: work gap

1

1

1

12

2

2
2

3

3

3

3

4

4

4 4

Graph 2 (Untitled)

Figure 16: Rayleigh Curve Components

The learning function is linear, and really represents the continued elaboration of product
detail (e.g. specification to design to code), or increasing understanding about the product
makeup. A true learning curve has a different non-linear shape. We prefer to call the
term an “elaboration function” to better represent the true phenomena being modeled.
This is also consistent with the assumption that the staff size is proportional to the
number of problems (or amount of detail) ready to be implemented. This is the
difference between what has been specified (the elaboration function) and what is left to
do (the work gap). Other than this section that introduces traditional terminology for
Rayleigh curves, we will use the term elaboration function in place of learning function.

Figure 17 shows the output staffing profile for different values of a. It is seen that the
manpower buildup parameter a is an important determinant of the peak personnel
loading. The larger the value of a, the earlier the peak time and a corresponding steeper
profile. It is also called the manpower buildup parameter (MBP). A large a denotes a
responsive, nimble organization. The qualitative effects of the MBP are shown in Table
3.

5:57 PM Thu, Sep 24, 1998

0.00 2.50 5.00 7.50 10.00

Months

0.00

10.00

20.00

1: effort rate 2: effort rate 3: effort rate 4: effort rate

1

1 1 1

2

2

2 2

3
3

3 3

4 4

4
4

Graph 1: p2 (Untitled)

Figure 17: Rayleigh Manpower Model Output for Varying Learning Functions

Table 3: Effects of Manpower Buildup Parameter

Manpower Buildup Parameter Effort

Effect
Schedule
Effect

Defect
Effect

Low (slow staff buildup) Lower Higher Lower
Medium (moderate staff
buildup)

High (aggressive staff buildup) Higher Lower Higher

 It has been observed that the staffing buildup rate is largely invariant within a
particular organization due to a variety of factors. Some organizations are much more
responsive and nimble to changes than others. Design instability is the primary cause for
a slow buildup. Top architects and senior designers must be available to produce a stable
design. Hiring delays and the inability to release top people from other projects will
constrain the buildup to a large extent. If there is concurrent hardware design in a
system, instability and volatility of the hardware will limit the software design ready for
programming solutions.

The Rayleigh curve can be calibrated to static cost models and used to derive dynamic
staffing profiles. See the model file Rayleigh calibrated to COCOMO.itm for an example
at the web site listed under Available Models.

Rayleigh Curve vs. Flat Staffing
 In contrast to a Rayleigh curve buildup, a level-of-effort staffing may be possible
for well-known and precedented problems where problems are ready for solution. An
example would be a relatively simple porting between platforms of a software package

a=2

a=.125

a=.5

a=.25

with experienced developers. Since the problem has been solved by the people before,
the task can be performed by an initial large staff. The project can be planned with a
nearly linear tradeoff between schedule and number of personnel (i.e. with a constant
staff level, the porting will take about twice as long with one half of the staff). Another
example is an in-house organic project where many people can start a project compared
to the slower Rayleigh buildup.
 A high-peaked buildup curve and a constant level-of-effort staffing represent
different types of software project staffing. Most software development falls in between
the two behaviors.

Integrating Modeling Perspectives

There are connections between process concurrence and Rayleigh-curve modeling
that are useful for understanding the dynamics, and collectively provide a more robust
framework for modeling processes. In fact process concurrence can be used to show
when and why the Rayleigh curve doesn’t apply. Process concurrence provides a way to
model the constraints on making work available in and between phases. The work
available to perform is the same dynamic that drives the Rayleigh curve, since the staff
level is proportional to the problems (or specifications) currently available to implement.
S-curves result for expended effort over time (the accumulation of the staffing curve) or
cumulative progress when a Rayleigh staffing shape applies.

However the Rayleigh curve was based on the initial study of hardware research
and development projects that most resemble a traditional waterfall lifecycle for
unprecedented software systems. Now there are a great variety of situations that it
doesn’t match so well. Rayleigh staffing assumptions don’t hold well for COTS, reuse,
architecture-first design patterns, 4th generation languages or staff-constrained situations.

The underlying assumption that an “ideal” staffing curve is proportional to the
number of problems ready for solution (from a product perspective only) still carries
weight. With modern methods the dynamic profile of problems ready for solution can
have far different shapes than was observed when the Rayleigh curve was first applied to
software. Experimentation with the external concurrence model in the previous section
showed examples of this.

Iterative processes with frequent cycles or incremental development projects
generally have flatter staffing profiles. Some would argue the flat profiles are the
superposition of many sub-Rayleigh curves, but nevertheless the initial assumptions were
based on sequential, one-pass projects.

Other situations where the Rayleigh curve doesn’t apply too well are highly
precedented systems for which early parallel work can take place and the project ends
with a relatively flat profile, such as a heavy reuse or simple translation project, or any
situation where a gradual buildup isn’t necessary. Process concurrence can produce any
number of dynamic profiles, and can thus be used to model more situations than the
Rayleigh curve.

Schedule-driven projects which implement timeboxing are another example where
projects that can have more uniform staffing distributions. These projects which are
sometimes called Schedule As the Independent Variable (SAIV) projects since cost and
quality float relative to the fixed schedule. On such projects there is no staff tapering at

the end, because the schedule goal is attained by keeping everyone busy until the very
end. Thus the staffing level remains nearly constant.

We now have alternative methods of modeling the staffing curve. A standard
Rayleigh formula can be used or process concurrence can replace the elaboration function
in it. The first term in the Rayleigh equation that we call the elaboration function, p(t),
represents the cumulative specifications available to be implemented. The cumulative
level of specifications available is the output of a process concurrence relationship that
operates over time. Thus we can substitute a process concurrence relationship in place
of the elaboration function, and it will be a more general model for software processes
since the Rayleigh curve doesn’t adequately model all development classes. Process
concurrence provides a more detailed view of the dynamics and is meaningful for
planning and improvement purposes.

Recall the Rayleigh staffing profile results from the multiplication over time of
the elaboration function and the remaining work left, shown in Figure 18. The
elaboration function increases and the remaining work gap decreases as work is
performed. Figure 18 shows the idealized Rayleigh staffing components and the process
concurrence analogy for the product elaboration function. Internal and external
concurrence relationships that can replace the Rayleigh formula for this are in Figure 19.

 = *

Figure 18: Rayleigh Curve Components and Process Concurrence Analogy

0

25

50

75

100

0 25 50 75 100

Percent of Tasks Completed and Released

P
er

ce
n

t
o

f
T

as
ks

 C
o

m
p

le
te

 o
r

A
va

ila
b

le
 t

o

C
o

m
p

le
te

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Re leased

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks
 A

va
ila

b
le

 t
o

 C
o

m
p

le
te

Figure 19: Process Concurrence Replacement for Rayleigh

Table 4 summarizes the process dynamics of tasks and personnel on prototypical

projects per different modeling viewpoints that have been presented. The Rayleigh
manpower buildup parameter a depends on the organizational environment and project
type, so the relative differences in the table only address the effect of project type on staff
buildup limits. A more precise assessment of the buildup parameter for a specific
situation would take more into account.

 Time Time Time

 problems ready for solution product elaboration remaining work gap

Rayleigh staffing profile ≈≈ problems ready for solution

product elaboration ≈≈ tasks complete or available to complete (from process concurrence)

Table 4: Task and Effort Dynamics Summary for Major Project Types

Process Concurrence Project Type
Internal Concurrence External Concurrence

(inception to elaboration
only)2

Rayleigh Curve Modeling1

(a = manpower buildup parameter)

Brooks’s Interpretation

New development of
unprecedented
system

0

25

50

75

100

0 25 50 75 100

Percent of Tasks Completed and Released

P
er

ce
n

t
o

f
T

as
ks

 C
o

m
p

le
te

 o
r

A
va

ila
b

le
 t

o
 C

o
m

p
le

te

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks
 A

va
ila

b
le

 t
o

 C
o

m
p

le
te

initial architecture
development retards
design, more complete
definition enables parallel
development, then last
pieces cause slowdown

a = small

12:23 PM Mon, Jun 25, 2001

0.00 2.50 5.00 7.50 10.00

Months

1:

1:

1:

0.00

3.00

6.00

1: effort rate

1

1

1

1

Graph 1: p6 (.1)

Interdependent tasks
impose sequentiality, so
many tasks cannot be
partitioned for parallel
development

∴ men and months are
not interchangeable

1 The generalized buildup patterns shown assume that all else is held constant between these examples except for the project type. Different organizations will
exhibit different buildup patterns if they had to staff the same given projects. Some organizations will always be more nimble for quick staff buildup due to their
internal characteristics.
2 There is often self-similarity observed in the different phases. In many instances the concurrence between elaboration and construction will be similar.

New development of
precedented system

- internal knowledge
of existing domain
architectures

0

25

50

75

100

0 25 50 75 100

Percent of Tasks Completed and Released

P
er

ce
n

t
o

f
T

as
ks

 C
o

m
p

le
te

 o
r

A
va

ila
b

le
 t

o
 C

o
m

p
le

te

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks
 A

va
ila

b
le

 t
o

 C
o

m
p

le
te

curve will vary with
degree of concurrence

a = small or medium depending on
organization

12:18 PM Mon, Jun 25, 2001

0.00 2.50 5.00 7.50 10.00

Months

1:

1:

1:

0.00

3.00

6.00

1: effort rate

1

1

1

1

Graph 1: p2 (.2)

A mix of independent
and interdependent tasks.

∴ men and months are
partially interchangeable

Reuse and new
development

-bottom-up reuse
provides some initial
components

0

25

50

75

100

0 25 50 75 100

Percent of Tasks Completed and Released

P
er

ce
n

t
o

f
T

as
ks

 C
o

m
p

le
te

 o
r

A
va

ila
b

le
 t

o

C
o

m
p

le
te

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks
 A

va
ila

b
le

 t
o

 C
o

m
p

le
te

curve will vary with
degree of concurrence

a = medium - large

12:19 PM Mon, Jun 25, 2001

0.00 2.50 5.00 7.50 10.00

Months

1:

1:

1:

0.00

3.00

6.00

1: effort rate

1

1

1 1

Graph 1: p5 (.4)

A mix of independent
and interdependent tasks.

∴ men and months are
partially interchangeable

COTS-based

- most requirements
pre-defined by
COTS capabilities

- some glue code
development
necessary

0

25

50

75

100

0 25 50 75

Percent of Tasks Completed and Released

P
er

ce
nt

 o
f T

as
ks

 C
om

pl
et

e
or

 A
va

ila
bl

e
to

 C
om

pl
et

e

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks
 A

va
ila

b
le

 t
o

 C
o

m
p

le
te

leveraged process
instantiates software from
defined COTS capabilities

a = large

- not a good fit for steady-state portions
of rectangular staffing (but models
extreme ramping up/down portions)

A mix of independent
and interdependent tasks.

∴ men and months are
partially interchangeable

Translation of
existing application

- pieces can proceed
in parallel until final
integration testing

0

25

50

75

100

0 25 50 75 100

Percent of Tasks Completed and Released

P
er

ce
n

t
o

f
T

as
ks

 C
o

m
p

le
te

 o
r

A
va

ila
b

le
 t

o

C
o

m
p

le
te

0

25

50

75

100

0 25 50 75 100

Percent of Upstream Tasks Released

P
er

ce
n

t
o

f
D

o
w

n
st

re
am

 T
as

ks
 A

va
ila

b
le

 t
o

 C
o

m
p

le
te

elaboration pieces
proceed at same rate as
inception

a = large

- not a good fit for steady-state portions
of rectangular staffing (but models
extreme ramping up/down portions)

Tasks can mostly be
partitioned with no
communication between
them

∴ men and months are
largely interchangeable

Available Models
Some executable simulation models used in this work and provided to the public domain on the
web at http://rcf.usc.edu/~madachy/spd are listed below.
• Rayleigh – This models the components of the Rayleigh staffing curve over time to provide

understanding of process dynamics.
• External Concurrence – This models external process dynamics in the elaboration phase of a

project and is used to derive optimal staffing profiles (from a product perspective) for
different types of projects. One can explore various combinations of specification input
profiles and concurrence relationships between inception and elaboration to see their effect
on optimal staffing.

• Brooks Law – Brooks’s explanations are relevant because he describes how task
interdependencies constrain parallel work. This is a reference model of the Brooks’s Law
mechanics.

• MBASE Architecting - A detailed model of the MBASE architecting phase that includes
internal and external concurrence between activities. This was a student term project at USC.

Summary and Conclusions

In summary, process concurrence provides a robust framework for modeling software
processes and their constraint mechanisms. It is general enough to characterize a broad spectrum
of current and emerging methodologies in terms of work available to complete on a project. It
can produce any number of dynamic profiles matching the different methodologies, and thus
model more realistic situations than the traditional Rayleigh curve. Process concurrence can in
fact be used to show when and why the Rayleigh curve doesn’t apply in modern software
development situations. It provides a more detailed view of the process dynamics and is
meaningful for planning and improvement purposes. With it one can derive optimal staffing
profiles for different project types, and as a shared project model it serves to improve stakeholder
communication.

The software industry is continually introducing new processes, methodologies and tools.
Process concurrence modeling can help to evaluate these new directions. Many modern
techniques serve to increase concurrence in the software process in several ways. When feasible,
increasing task parallelism is one of the most effective methods for achieving cycle-time
reductions in software development and evolution. Leverage is also achieved by automating
product elaboration. Process concurrence is ideally suited for evaluating such strategies by
modeling task interdependency constraints between and within phases, and can characterize
different approaches in terms of their ability to parallelize or accelerate activities.

The perspectives of process concurrence, Rayleigh curves and Brooks’s Law are all
related. Process concurrence models the constraints on making work available, and the work
available to perform is the same dynamic that drives the Rayleigh curve since the staff level is
proportional to the problems currently available to implement. Process concurrence also
quantitatively illustrates Brooks’s qualitative interpretation of task dependency effects.
However, more empirical data is needed on concurrence relationships from the field for a variety
of projects. We hope to report on this analysis in future writings.

Bibliography

Brooks F, The Mythical Man-Month, Addison-Wesley, 1975 (also reprinted and updated in
1995)

Ford D, Sterman J, Dynamic modeling of product development processes, MIT D-4672, 1997

Ford D, Sterman J, Expert knowledge elicitation to improve formal and mental models, System
Dynamics Review, Vol. 14, No. 4, 1998

Madachy R, Boehm, Software Process Dynamics, IEEE Computer Society, 2002 (to be
published)

Putnam L, Tutorial: Software Cost Estimating and Life-Cycle Control: Getting the Software
Numbers, IEEE Computer Society Press, New York, NY, 1980

	Table of Contents:
	Abstracts:
	back to the top:

