
Key Words—Stock-Flow Diagrams, System Dynamics methodology, Kinetic Modelling, Bond Graphs

ABSTRACT : This paper presents a new graphical modelling language extending the stock-flow (SF) diagrams used in
System Dynamics (SD). It introduces a new kind of graphs, the «Kinetic Process Graphs or KPGs». A KPG groups in
a single flow-process some mechanisms representing flows modelled separately in a SF diagram but cognitively linked in
our mental models as belonging to a single process using and providing material resources of different kinds. KPGs
contain SF-diagrams as special cases and every KPG may be transformed in a SF equivalent. However for many
processes in which several material-like resources are transformed into and/or transform each other (e.g. systems in
business dynamics, environment, biology…), a KPG is usually more parsimonious in arrows and thus less visually
complex than its corresponding SF diagram. It is also closer to our cognitive or mental models and thus more intuitive.
In consequence, for this class of problems, KPG models are often easier to obtain, explain and maintain than SF
diagrams and frequently suggest new vistas on a given problem. Section II discusses the current tools of SD (causal loop
and stock-flow diagrams) and surveys quotations by leading SD scientists suggesting that these tools need some basic
improvements. The rest of the paper presents KPGs which generalise the tank-pipe metaphor underlying SD by using a
chemical reaction metaphor allowing a more natural representation of resource transformation. KPGs import some ideas
from the method of Bond Graphs used in engineering to represent energy-based systems. Since SD is basically a kinetic
theory, these BG concepts have nevertheless to be strongly modified. We briefly discuss the implementation of KPGs in
the library KPG-LIB for the bond graph modelling and simulation software 20-SIM, (see footnote 1). Finally, we present
very briefly three advanced aspects of KPGs : array-based KPGs, fuzzy processes and adaptive graphs and we list some
significant examples developed in our consultancy work in business dynamics, socio-economy and biology. We conclude
by showing where exactly KPGs belong in the family of modelling languages and by discussing our current research.

I. INTRODUCTION

Since 1990, I have used System Dynamics (SD) in scientific research, in academic teaching and in a consultancy
business. During that period, I have developed mid and large scale SD models in biochemistry, physiology, regional
development, governmental policy analysis and business dynamics. Like many SD users, I often had the feeling that the
graphical representation of SD models was not as intuitive and parsimonious as it should have been. This was most
obvious in biochemistry, a field in which I was using two methods: SD to develop kinetic models of metabolic pathways
and another graphical methodology from engineering, the Bond Graphs (BG) [1,2] to build energetic models of the
same pathways. Despite their greater level of detail, the structure of the BGs was easier to explain to biochemists than
the Stock-Flow (SF) diagrams of their SD cousins. It was therefore tempting to ask if a purely kinetic method merging
the main ideas of SD with some features of BG would not provide SD models with appreciable gains in simplicity and
intuition. However, SD is a kinetic theory and BG are based on energy conservation. Direct integration of both methods
is thus impossible and many adaptations are needed. Would the resulting method still present intuitiveness and
simplicity ? This paper presents the results of the work started in 1995 to answer these questions. Its result is a new SF
graphical modelling tool called « Kinetic Process Graphs (KPG) » implemented in the library KPG-LIB for the software
20-SIM.

1 This paper mentions the following trademarks : KPG-LIB (from IDEA.SIM, Harrow, UK), ,20-SIM (from ControLLab, Enschedde, NL),
STELLA (from HPS-Hannover, NH, USA), Powersim (from POWERSIM, Bergen, Norway) and Vensim (from Ventana – Harvard,
MA,USA).

Kinetic Process Graphs : Building Intuitive and Parsimonious Material
Stock-Flow Diagrams with Modified Bond Graph Notations

Jacques LeFèvre
1,2,3

1 Equipe de Recherche en Génie Industriel, Ecole Centrale de Lille, France
 2 IDEA.SIM LTD, Harrow, UK

3 Centre for Measurement and Information in Medicine, City University, London, UK

Mail Address : Ecole Centrale de Lille, BP 48, Villeneuve d’Ascq, F59651 France
Phone : 00 33 3 20 33 54 46 (Secret. 54 00), Fax : 00 33 3 20 33 54 18 - Email : lefevrej@libertysurf.fr

Until now, KPGs have been presented only to audiences specialising in simulation methodology [3,4] and
engineering modelling [5] and the goal pursued here is to submit their main concepts to the SD community
for discussion. KPGs extend the stock-flow diagrams of SD by replacing the classical tank-pipe metaphor by
a generalised chemical reaction called a «(N,M)-process » which admits the tank-pipe metaphor as a
particular case for N=M=1. To change, even partially, the metaphor on which a whole research community
is thriving is certainly a high risk business which has to be strongly justified. Therefore section 2 briefly
reviews the existing SD methods and discusses quotations from leading SD authors suggesting that some
improvements are needed2. Our new (N,M)-process metaphor is then introduced and I suggest that its use
may give significant benefits in simplicity and parsimony of the models for many SD applications ranging
from biochemistry to socio-economy and business dynamics. Section 3 uses then simple biochemical
examples to introduce heuristically the main KPG notions and to show how they complement the current
SD methodology. The rest of the paper is devoted to a more complete presentation of KPG, introducing
successively its main concepts and notations, some advanced concepts needed in the development of large
scale models and my current research directions. Finally the conclusion discusses how KPGs relate to other
modelling methods: graphical continuous methods like block diagrams, bond graphs and classical System
Dynamics, object oriented equation-based continuous methods and discrete event methods.

2. WHY DO WE NEED TO MODIFY THE STOCK-FLOW NOTATION OF SYSTEM DYNAMICS?

The two main graphical modelling tools of System Dynamics (SD) are « Causal Loop or CL» diagrams and
« Stock-Flow or SF » diagrams. They emerged almost fully defined from the seminal work of J.W. Forrester
[6-9]. Over the years impressive progresses have been made in their application methodology (e.g. mental
model elicitation and refinement, group modelling, policy modelling, validation, micro-worlds…) and
obviously in their supporting software. However, their basics have remained almost unchanged (see their
original definitions in chapter 8 of [6] for SF and in p.257 of [9] for CL). Despite and perhaps because of
this longevity, the use of CL and SF diagrams in real world modelling is not without its problems, repeatedly
discussed in the SD literature and briefly surveyed hereafter.

Let us see first what current authors think about CL diagrams (see [7] for a brief history). Initially Forrester
did not use them (there is no CL-diagrams in [6-8]). Then he started to use them sparingly and only as
explanatory aids (see for instance [7], p.257). Soon their apparent (deceptive ?) simplicity led many people
to use them also as pre-modelling tools for interdisciplinary works in which SF diagrams were seen as too
technical3. However, from the beginning, many people recognised the limitations of CL diagrams for
modelling. To mention a goldsmith’s opinion, let us give here a quotation from Forrester [11]:

« Causal loops do not provide the discipline for thinking imposed by level and rate diagrams in SD. I do not use
them as the beginning point for modelling. Instead I start from identifying the system levels and later develops the
flow rates that cause those levels to change. Sometimes I use CL-diagrams for explanation after a model has been
created and studied. For a brief presentation to people who will not try to understand the real sources of dynamic
behavior, CL diagrams may be a useful vehicle for creating a general impression of the subject. »

Similar opinions have been expressed by many experts ([1], [11-17]). Although not accepted by all, the
lesson emerging from their papers is that the use of CL diagrams for modelling is not conducive to good SD
practice. Therefore it seems that, in their current form, they should only be used in the early phases of a
project as tools for the elicitation of simple aspects of the underlying mental models and, at the simulation
stage, to help in introducing some general aspects of the observed dynamics. In both roles they may and
should be improved and automated by using for instance artificial intelligence methods like semantic
attributes, fuzzy cognitive maps and qualitative simulation. However, due to the uncertainty generated by
this kind of methods for high dimensional problems, we conjecture that the usefulness of CL diagrams will
not scale up well. Their improvement, although much needed, is therefore not my priority.

2 All the quotations made n this paper are a bit shortened. However, I think that their messages are true to the originals.
3 We focus here on System Dynamics and thus computer modelling and simulation are crucial. We will thus not discuss the
qualitative use of CL diagrams and archetypes by the « System Thinking movement ».

On the contrary, it is what Richmond calls operational thinking or «Thinking Physics» [14], i.e. getting a
clear view of the structure of the stock and flows of a system which is the «Key Step» in building a good SD
model [14] and it is often impeded by the use of CL diagrams. In this perspective, SF-diagrams become thus
the main SD tools. Initially, stock-flow models were built directly in code (e.g. Dynamo). With the advent
of graphical programming, it was realised that a code-based approach was limiting drastically the
communication with domain specialists and model users. Thus many current SD packages (e.g. Stella,
Ithink, Powersim, Vensim, see footnote 1) implement stock-flow models graphically, i.e. as SF-diagrams.
This notation has been quite stable over the years having got only some additions (conveyors, queues, ovens,
co-flows, sectors) since the early seventies. It has thus acquired the status of a de-facto paradigm and almost
every system dynamicist takes it for granted. However, a disturbing voice may be heard from B. Richmond,
the very father of Stella and Ithink. In a 1994 paper, he wrote an assessment of the SF graphical language
[14]. Putting together and shortening some of his sentences, his message reads:

« Operational thinking represents the essence of SD… one does it when one gets at the core SF (stock-flow)
infrastructure... We must thus focus on understanding the impediments to internalising the SF language… The first
is the abyss between a mental model and the associated SFD. The second is the visual complexity of SFDs which
often look like a spaghetti of stocks, flows, converters and connectors… We must find ways of parsing them out into
more bite-sized chunks... We must squarely face up to the challenges inherent in bringing about a major paradigm
shift and in improving our language. » (Note : underlining by the author of the current paper)

We find a message hinting also at a lack of intuitiveness in a recent text from Forrester [13] : «The level-rate-
feedback structure in SD is the fundamental structure of real social and physical systems…The process of SD
modelling must still be baffling to those who are new to the subject…. There is still much room for very constructive
research on the process of converting information from the real world into SD models. »

Supported by Richmond’s view but being more radical, we claim that, for mid to large scale systems, SD-
diagrams are often too complex to be of much help in interdisciplinary model formulation, understanding and
modification (we call this « the visual complexity trap »). We also claim that the difficulties felt by many
users to draw even simple SD diagrams show that these diagrams do not correspond sufficiently well to our
cognitive representations of the systems modelled (this is « the mental abyss »). Clearly, improving the SF
notation to decrease these two problems must be our first priority.

To better understand what is wrong with SF diagrams, let us discuss first the visual complexity trap.
Richmond’s drastic opinion is confirmed by a brief examination of the SD papers describing large models.
Often, their authors present only the global structure of their models. This is clearly inadequate since then
the reader cannot really understand and check the work presented. Other, specially with very large models,
revert to equation-oriented languages and, in some cases, do not even mention their links with SD. Again
this is unsatisfactory. Finally, a few papers present the SF diagram completely but then fall in the complexity
trap. In all cases, the result is «cognitive overload » which, for the reader, leads to misunderstanding and
rejection and, for the modeller, to oversimplification or a very difficult life.

Obviously, the more complex a model is, the more we feel this complexity trap. A possible answer to that
problem is thus to limit our use of SD to simple models. This has been a trend in some recent SD works
focusing almost exclusively on very simple models well suited for general insights or introductory teaching
but often too oversimplified for more realistic applications. Excessive focus on such simple models give to
outsiders and would-be users and customers the wrong feeling that SD may only be used for elementary
modelling. It creates thus an attitude of rejection in some professional circles (e.g. among many engineers or
hard scientists). On the other hand excessively detailed models miss the point of good system thinking : to
see at the same time both the forest and the trees by adopting what Richmond calls the « intermediate
vantage point between specificity and breadth ». Thus we have to focus on models of « intermediate
complexity » and, as Forrester tells us, the definition of what this means clearly depends on the goals and
intended uses of the model [18]: « For interacting with mental models, small models have clear advantages over
large ones. However, the appropriate size of a model depends on the amount of time and effort available to study it.
In a half day, all we can do is to consider a few variables. For a detailed study, with months available, models can
be of a far wider scope.»

Thus we need both simple models used as sources of metaphorical, preliminary or general insight and mid or
even large scale models for more comprehensive prospective work. These more complex models are
obviously subject to the full complexity trap. Their maze-like SF diagrams are difficult to use. Even the
model builders themselves have troubles when, after a few months spent on other projects, they need to
modify a large model. Similarly, it is quite difficult to use a complex SF diagram to understand the
underlying model from scratch and to see its assumptions and its structure. Finally using a SF diagram to
explain a complex system to non specialists (students, managers, customers, general public) is just asking for
trouble. Array variables, modularisation and hierarchical structures have been introduced and go a long way
to improve communicability. However, if we use them too much, we end up with another form of the
complexity trap : in trying to get a global view of a strongly modular and hierarchical complex model, we
need to shift so frequently from one level to another that, again, the global view fades away and remains out
of focus. Obviously, nobody expects a faithful graphical model of a truly complex system to be simple.
However, our methods should not make this representation more complex than strictly needed. Since SF
diagrams should be communication vehicles between people, there is clearly room for improvement.

Richmond’s first impediment, the mental abyss separating our mental models and SF diagrams is more subtle
to perceive. As this author explains in [14], this abyss does not appear exclusively in large models but even
in small ones since the difficulty starts with the first stocks and flows drawn on a piece of paper when
starting a study. To isolate the problem, let us consider a typical small model, the classical prey-predator
« PopDynam » model used in the « Getting Started » brochure of Stella [19]. Due to its educational role,
this SF diagram has probably been chosen for its intuitiveness, good compromise between simplicity and
complexity and intrinsic interest. However, let us ask ourselves if we can use it directly as our main
communication tool to explain basic ecology to complete newcomers to SD and ecology. Let us consider for
instance Fig.1 which gives a slightly modified version of a figure found in this brochure [29].

Fig.1 : A SF diagram modified from an introductory SD text [19]

This SF diagram looks crystal clear to every system dynamicist worth his or her salt. However, I tried to use
it and similar models with newcomers to ecology (students in secondary education, medical students,
average citizens) to introduce them to simple notions like exponential and limited population growth,
dynamic carrying capacity, links between nutrition, metabolism and reproduction, prey-predators… Then I
asked them to express their feelings about the diagrams themselves. In general, they found them acceptable.
Indeed, to avoid the complexity trap, I presented only simple and classical ecological models like the one
above and Volterra-like models. However, they also felt a bit puzzled by their structure, saying things like :

A 13 year old student pointing to source A (Fig.1): « What is the source of deers ? »

A biology student showing the signal B (Fig.1): « You told us that dark lines are signals and do not transport
materials. But then look: eating plants is a signal. This is strange. Deers eat plants, they do not receive signals from
them. To come to that, they do not receive signals from plants to die (point C)… I understand what you mean but…»

A biologist : « Ok, I can use your diagrams, this is not a big deal but to me, they are just another way to describe the
equations. For instance, they do not fully capture what I mean when I speak about material flows in metabolism...»

To avoid a bias due to the particular model considered, I did similar interviews for two other models : a
model of a Michaelis-Menten enzymatic process [20] and the CCRS model of human resource management
in business dynamics [21]. Although expressed differently, the reactions were quite similar.

Let us now make some remarks :

- In SD we are always told to look at the endogenous causes of a behaviour. It is thus interesting to note
that the first naï ve comment points at an exogenous source. We all know that its presence is just a
notational trick… but it is indeed the artificial nature of this element which creates a problem for the student.
Such dummy sources are endemic in SD diagrams. It seems that they are sources… of confusion and should
be eliminated when possible. Obviously, this cannot be done without basic changes to the SF method.

- The two other « gut reactions » are interesting too : these people express what they perceive as unnatural
in the SF notation : the representation of material flows (e.g. plants enter into deers) by signals linking
entities of different natures. Again modifying that point needs basic changes to the SF method.

At first sight, these two remarks seem anecdotal and we might just ignore them. However, I claim that they
reveal something important since they point towards areas of confusion which, if taken seriously, forces us
to a complete revision of the basics of SF-diagrams. Indeed, what they really mean is that, if we delete all the
auxiliary signal links from a SD diagram, to focus only on stocks and flows, we get a few rather simple
disconnected networks having each the form of a tree and usually showing dummy sources (Fig.2).

Fig.2 : Simple disconnected trees showing the usual structure of stock-flow networks when the networks
of auxiliary signals are ignored.

This is due to the fact that all the entities flowing in a connected set of stocks and flows must have the same
nature or in other words, that a flow process may have only one input stock and one output stock. Indeed, in
[6] (p.70), Forrester gives what I call the principle of « material network consistency » which is the basis if
the tank-pipe metaphor:

It should be noted that flow rates transport the contents of one level to another. Therefore the levels within one
network must all have the same kind of content. Inflows and outflows connecting to a level must transport the same
kind of items that are stored in the level. Items of one type must not flow into levels that store another type.

This assumption seems totally sound and belongs to the very core of SD. However, I will suggest in the
next section, that it often gives a decomposition of the networks of stocks and flows which is mathematically
correct but too detailed and too close to the equations representing the system to really express the structure
of our mental models. I will also suggest that, as far as flow rates and stocks are concerned, this is the basic
source of the mental abyss. The following sections will then present the theory underlying a modified
notation for SF diagrams eliminating this problem and allowing us to build what we call «cognitively
justified models». We will also see that this new notation gives much simpler and « parsimonious » diagrams
and is thus a partial solution to the complexity trap problem.

3. (N,M)-PROCESSES : A NEW METAPHOR FOR MATERIAL STOCK-FLOW DIAGRAMS

Before to proceed, we must make some remarks limiting the scope of our claims which otherwise could
appear overly ambitious.

First, our new graphs will be compatible with the existing SD framework which has proven its worth time
and again. This compatibility requirement has two consequences :

- We keep the basic pillars of Forrester’s thinking : flows, stocks, intertwined causes and effects, delays
and feedback loops remain central to determine the dynamic behaviour of a system and we still focus on
endogenous reasons for this behaviour before to suppose that it comes from exogenous factors.

- The new method does not extend the scope of SD. Its goal is only to provide clearer models for the
same class of systems. It is easy to show that SF-diagrams are generic for systems described by delay-
differential or even functional equations. Any model developed with the new graphs will thus have a SF
equivalent and the translation of the new model to a SF model will be algorithmic. Finally, it exists many
cases in which the current SF-diagrams are perfectly satisfactory. In these cases, our new method will
reduce naturally to classical SF-diagrams.

Secondly, the extent of our modifications is limited. SF-diagrams interconnect what Forrester calls physical
networks and information networks [6]. Physical networks deal with flows of matter-like quantities like
people, money, goods or species which satisfy a conservation principle. Hereafter we will call them
« generalised matter or GM-networks ». Information networks represent signals. They have thus no
conservation property. We will call them « generalised information or GI-networks »4. Stocks (called levels
by Forrester) exist not only in GM-networks but also in GI-networks. Indeed as soon as it is dynamic, i.e.
has a memory, a GI-network contains integral operators which are equivalent to stocks. For instance entities
like awareness level, motivation or knowledge may be represented by accumulations and thus by stocks.
However GM and GI-stocks are different, a fact which has important consequences for our work :

- We distinguish carefully between both kinds of accumulation by using different names and symbols for
GM-networks (stocks) and GI-networks (levels). Although making this distinction clearly in its principles,
standard SD does not distinguish sufficiently between both at the level of its notations. This fact, in
addition to creating some confusion for non specialists, may be one of the reasons why the representation
of GM-networks has remained a bit under-developed in modern SD.

- Our representation of GI-networks will be very similar to the one used in SD. Indeed, considering the
huge variety of SD applications ranging from biochemistry to biology and management, I do not think that
there is much to gain in trying to find a set of totally general structuring principles for GI-networks5.

- The thrust of the effort reported here is to find such a set of general structuring principles for GM-
networks by focusing on matter conservation which is valid not only in SD but also in physics and
chemistry. The question is thus to see if we can benefit from the more structured approaches to modelling
used in these fields. They have two conservation principles (matter and energy) and a method like bond
graphs implements them directly in its structure. We, in SD, cannot use energy conservation as a general
concept. Indeed, energy, although existing in all systems, is not a useful concept for most applications of
SD which, to use a physical terminology, are purely kinetic. We have therefore to abandon all the physical
modelling concepts representing energy-based aspects. It remains then a core of physical modelling ideas
dealing with matter conservation. Until now, they have not been interwoven in the fabrics of SD. We
claim that there is much to gain by doing so and, taking really and deeply Richmond’s advice on the need
for « Thinking Physics ». This is exactly what the remaining parts of this paper do.

4 The term « generalised » is needed for both networks. It is only from the aggregated viewpoint of our models that people or
animals may be considered strictly as matter. Similarly, the information network contains entities like a degree of motivation or
an anxiety level which are seen as information in our models but are probably much more complex than that.
5 Although, as shown by Morecroft, that may very well be possible and fruitful in specific fields of applications like business
dynamics in which management and decision theories may for instance provide some general background to policy modelling.

Biochemical kinetics seems to be the proper field in which to go shopping for new ideas to improve the
representation of SF-diagrams by focusing on matter conservation. Indeed, biochemists spend their working
life in analysing complicated set of reactions which they see as networks in which matter flows and is
transformed. The first task on our agenda is thus to compare their descriptive tools with SF-diagrams6.

We start by remarking that the kinetics of a simple mono-molecular reaction is naturally described by a a SF-
diagram. This is shown in Fig.3-A where we see, in panel A, a reaction R> from A to B with a rate given by
the kinetic equation dB/dt = -dA/dt = F(A,B,y), y being an external signal like for instance the temperature
or PH level. Its SF-diagram is given in panel B and proves our point. We can go further : every set of mono-
molecular reactions may be represented by a SF-diagram as demonstrated in panel C which shows the GM-
network of the system of reactions A→B, B→C, B→D, C→A, A→E, E→F with provision of A from
outside and loss of D and F to the environment (auxiliary signals not represented).

Fig.3 : Representation of mono-molecular reactions by SF-diagrams.

The cycle ABCA, the competition of reactions for using A and B and the organisation or structure of the reactions are
obvious at first glance in the SF-diagram but need attention to be remarked in the above list of reactions. This is a minor
advantage for such a simple system but it is very important for large sets of reactions with many cycles, branching points,
recombination points and disconnected reactions. In fact, to support their discussions, biochemists who routinely study
sets of hundreds of reactions with hundreds of chemicals use a specific informal representation called a « metabolic
map » which uses symbols like those of panel A to represent their networks of reactions [17]. The metabolic map of the
example of panel C is given in its inset. It has obviously the same structure than the SF-diagram. It should thus be clear
by now that, for sets of mono-molecular reactions, SF-diagrams are just the fleshing out of metabolic maps with all the
details needed to get fully fledged models but with the same high level of simplicity and intuitiveness. If biochemists find
mono-molecular metabolic maps useful for qualitative discussions, they will of course accept SF-diagrams very well
since they bring dynamics, i.e. life to metabolic maps.
However, mono-molecular reactions are quite trivial. The situation changes drastically when we consider
more complex cases like the general bi-molecular reaction nA +mB →pC + qD in which n moles of species
A and m moles of B combine to produce p moles of C and q moles of D7. Its metabolic map (Fig.4-A) uses
the same symbols than in Fig. 3-A plus two additional nodes called J and S. It clearly shows that the material
flows of A and B get together at point J (join) in a reaction R> which produces and separates at point S
(separate) the material flows of C and D. The most salient point in this map is that material flows of different
entities A and B join in given stoechiometric ratios at point J and that the reaction separates its products in
given stoechiometric ratios into flows of different entities C and D at point S.

6 Our heuristic basis is chemical. Thus we cannot avoid here the presentation of some elementary chemical kinetics. If the
chemical knowledge of some readers is too rusty to accept comfortably the arguments presented here, they should not despair.
They should indeed be able to follow the gist of the argument. Moreover, later sections will redefine these notions without
further references to chemistry. They will also present applications to management.
7 The « stoechiometric coefficients » n, m, p, q define the atomic proportions of A, B, C, D needed and produced in the
reaction.

This is directly in contradiction with the SD principle of « material network consistency » recalled in section
2. In fact, SD has no « direct » means to represent points like J and S for junction and separation of material
flows of different natures. Consequently, the SF-diagram must use a trick to represent them (Fig.4-B). It is
made of 4 trivial and disconnected GM-networks, one for each species. Reactants are represented by stocks
flowing into sinks and products by stocks filled by sources. The reaction rate (flow) is computed by an
auxiliary block R receiving the appropriate signals and imposing it through blocks imposing stoechiometric
constraints to all the flow-defining taps. In contrast with its metabolic map (panel A), this diagram presents
the flaws discussed before for Fig.1 and 2:

- The material flows are connected only by signals and the GM-network contains dummy sources.
- Conservation is imposed artificially by abstract signals which do not exist in reality.
- It is much more complex (i.e. contains more arrows and symbols) than the metabolic map.

Fig.4 : Representation of a pluri-molecular reaction by a metabolic map and a SF-diagram.

Like in our ecological example, if we try to use the SF-diagram to explain this basic reaction to a student or
if we try to convince a professional chemist that it is a description as intuitive as the metabolic map, we will
run into trouble. SF-diagrams lack the notions and notations J and S needed for a parsimonious and intuitive
representation of a general, i.e. non mono-molecular, chemical reaction with an arbitrary stoechiometry.
Some tricks are needed and they do not result in a parsimonious and cognitively justified diagram. For a
single reaction, this is still acceptable. We can certainly find our way around the SF-diagram of Fig.4-B.
However, for a network of reactions, the SF-diagram becomes a nice example of Richmond’s complexity
trap. Consider for instance the following biochemical reaction scheme depicting an enzymatic system:

S→P1, S+E↔C, C→P2+E, E+I→EI, EI→EXT
Although a bit more complex, it is very similar to a SD example presented in [20]. Its metabolic map,
obtained by combining the maps of each reaction, is given in Fig. 5-A. We will now give an introductory
description of this system and we invite the reader to follow it directly on Fig.5-A to realise that this map is
indeed a good vehicle for communicating the main aspects of this system. We see a reactant S (substrate)
provided from the environment by an input process PI>. It may then follow two reaction pathways R1> and
R2> in competition for its use: R1> transforms it in a product P1 and alternatively, <R2> combines it with an
enzyme E to produce reversibly (arrows on the two sides of <R2>) an intermediate product C (complex)
which then is decomposed irreversibly by a reaction R3> into a product P2 while recycling the enzyme E.
This enzyme E may thus cycle repeatedly along the path just described, taking at each cycle a molecule of S
and producing a molecule of P2. The number of molecules of E cycling and thus the production of P2 may be
decreased by a reaction R4> binding E to a molecule I (inhibitor) to give an ineffective enzyme EI eliminated
into the external environment EXT by an output process PO>. This map shows clearly the fate of the various
species, the cycle, the two competitions between reactions for S and for E. It is thus a good tool to discuss
qualitatively the dynamics of this reaction scheme and I used it many times to teach basic enzymatic kinetics
to complete beginners. They always considered it as very intuitive and useful.

The corresponding SF-diagram is given in Fig.5-B. In an effort to make it more palatable, I have drawn it
with the same spatial arrangement of the stocks than the one used in panel A. Despite this, if you try to
follow the previous description directly on the SF-diagram, you will experience problems due to the fact that
it presents the previously described pathologies to an extent making its use difficult for what should be
simple discussions. Since the diagram is not very complex, the problem is not its complexity but its lack of
intuitiveness. It seems to most users that the metabolic map captures well our mental model of the structure
of a reaction network and that a SF-diagram does not do it well. This is exactly Richmond’s mental abyss8.

Remark that, compared to the sophistication of real biochemical networks, this example is elementary. It has
only a few reactions and does not use stoechiometric coefficients. If we were using more complex networks
with these two features, we would see that the metabolic map scales up well and remains usable and even
mandatory for any serious understanding [22]. However, SF-diagrams would become almost useless. We
would experience then the full force of the complexity trap. Like Forrester said (see previous quotation),
building or using SD models may indeed appear sometimes quite daunting.

 Fig.5 : Representation of an enzymatic reaction scheme by a metabolic map and a SF-diagram

As far as chemistry is concerned, the way forward is obvious, we want our SF-diagrams to be as simple and
intuitive as metabolic maps but also to be able to present unambiguously all the details needed to fully define
the underlying model and its simulation program. We will show in the next section that this may be done by
re-defining taps and by adding to the current concepts of SF-diagrams special symbols dealing with the
operations denoted in Fig.4-A by the « Join » and « Separate » points and by the stoechiometric coefficients.
However, there is more to SD than just chemistry… and it is now time to look further to other applications.
Our goal is to make SD more powerful and not only to get better chemical kinetic models. Will the
modifications just suggested be sufficiently generic to cover the whole range of SD applications?

8 For instance, you may try, as I did years ago, to convince a biochemist that Fig.5-B is at least as intuitive as Fig.5-A and you
will loose some hardly gained credibility. This is in fact what motivated me to develop the Kinetic Process Graphs.

This question may be answered positively by defining what we call a (N,M)-process. It is an (eventually
abstract) operation taking at each time stoechiometrically defined flows of N input GM-quantities and acting
on them to produce stoechiometrically defined flows of M resulting output GM-materials. Like it is done for
flows in SD, the rate of a (N-M)-process is defined in steps per unit time by a formula or algorithm
dependent on different variables communicated to the process by auxiliary signals. However, in opposition
to SD flows, a (N,M)-process acts on N species and produces M species at each time. The entering and
exiting flows of each species are deduced from the rate by multiplication by the stoechiometric coefficients.

(N,M)-processes are similar to but more general than chemical reactions since their rate laws may be much
more general than those used in chemical kinetics and since their stoechiometric coefficients, instead of being
constants like in chemistry, may depend on all sorts of auxiliary variables. This similarity is made obvious by
Fig.6. Panel A defines a (N,M)-process by a chemical-like equation. We call A1,…,AN its input GM-stocks
and B1,…,BM its output GM-stocks. The process occurs at a rate R(X,U,t) expressed in number of steps per
unit time and dependent in general on several variables : a vector X of variables measuring the contents of
stocks in the model (i.e. of the stocks participating as inputs or outputs to the model as well as of any other
stocks), a vector U of external time-dependent signals, and sometimes explicitly of time. At each time, the
process computes its rate R and takes flows computed stoechiometrically (see defining equations) from its
input stocks to deliver stoechiometrically computed flows to its output components. Stoechiometric
coefficients, instead of being constants like in chemistry may be controlled like the rates.

Fig.6: Defining a (N,M)-process by a chemical-like equation (A), a «Process map » (B) and a SF-diagram (C).

The equations of the rates and stoechiometric coefficients are not restricted to simple algebraic forms but
may be arbitrary functionals of their arguments. Panel B shows the corresponding generalised metabolic map
which we call now the « Process Map PM » and which is quite simple. Its stoechiometric coefficients and
the symbols J and S have still to be defined mathematically but we will see later that this does not modify the
complexity of the map. Panel C gives the SF-diagram which, as expected, is more complex. It remains to
show that (N,M) processes do occur naturally in SD applications and to define more exactly the symbols of
their «Process Maps» given in Fig.6-B but if these two points are dealt with, it seems obvious that SF-
diagrams incorporating (N,M)-processes represented as simply as in Fig.6-B will go a long way to fulfil our
goals of parsimony and intuitiveness.

Firstly, let us see what exactly is the scope of (N,M)-processes. Can we use them « naturally » in discussing
non-chemical systems like those studied in SD ? To see this, let us consider the following list of application
domains and chemical-like equations describing very informally some (N,M)-processes denoted by P> 9:

a) Bio-technology : bacteria+glucose P>→ more bacteria+useful products+toxins
b) Ecology : foxes+rabbits P>→ more foxes+biomass
c) Population biology: people+food+water P>→ more people+pollution+toxins
d) Epidemiology : uninfected people+infected people P>→ more infected people
e) Management : equipment+materials+resources+people P>→ products+equipment+people+pollution
f) Management : products+orders+resourcesP>→ more resources+provided customers
g) Management : resources+trainees+trainers P>→more trained staff
h) Management : doctors+patients+resources P>→ cured patients+ doctors

Admittedly, the views expressed in these processes are too simple to be really useful. However, they are not
much more simplified than the ideas which we use generally as starting point for SD models and we can
understand their meaning intuitively without further explanations. We can even see directly how naï ve they
are and how we would modify them or add supplementary processes to go further and get much less naï ve
models in the form of networks of processes representing our mental models. Despite their simplistic
character, we may use them as communication vehicles in our discussions about the systems concerned. For
instance if, in interviews conducted to build SD models, we ask people to « Think Physics », i.e. to describe
the flows of « generalised materials » in their systems, we usually collect sentences like the following:

- (1) An Australian civil servant : « In our country, foxes do not predominantly hunt rabbits anymore, they have
started to feed on small Australian mammals and they just thrive on them. »

- (2) An executive from a food company : «We tried hard to decrease the dependence of production on human
resources but then quality went down because people were demotivated»

- (3) A biochemist : « In the production cycle of this substrate, the enzyme is clearly not rate limiting. It is the co-
factors which control the production rate. »

We might translate them into normal SF-diagrams. However, we can also see them as resulting from an
hypothetical underlying « universal cognitive structure» presented by our mental models and centred around
(N,M)-process. Indeed, we can re-word these sentences as follows:

- (1) « Foxes and rabbits interact in a hunting process which produces more foxes. Foxes also interact with small
Australian mammals in a currently emerging hunting process which again produces more foxes.»

- (2) « Human resources, equipment and materials interact in a food production process. Decreasing human
resources lead to an increased proportion of low quality products. »

- (3) « Enzyme substrate and co-factors enter a reaction process rate-limited by co-factors.»

It is now clear that we may represent them as (N,M)-processes. To see more clearly the cognitive nature of
this representation, let us denote a stock of a quantity Q by [Q] and a unidirectional process P by P>, we
may then represent a (2,2)-process by the notation:

 n[A] & m[B] →P(rP(I1,…,In))>→ p[C] & q[D]
In which n,m,p,q are the stoechiometric coefficients. This is just a rule similar to those used in artificial
intelligence and considered by many cognitive theories as basic building blocks for our mental symbolic
structures [23,24]. Its semantics is simple. The process P> has a rate rP of transformation of input resources
to output resources; rP is computed by an algorithm from given « influence signals » I1 to In . The process
P> transforms packs of input resources in packs of output resources. At each time t, it computes its rate rP in
number of packs transformed per unit time and transfers these packs from its input to its output. An input
pack is made of m units of A and n units of B. An output pack is made of p units of C and q units of D. In
the following, we will rename the stoechiometric coefficients and call them by the more domain-independent
names « packing and/or unpacking coefficients ». The As and Bs needed are taken from [A] and [B]. The
Cs and Ds produced are sent to [C] and [D].

9 These definitions are illustrative and informal. Their stoechiometry is specified very incompletely by words like several, more,
less… and their rates R are left unspecified. In reality, the rates should be defined by eventually complex algorithms dependent
on auxiliary signals and possessing frequently a dynamics and a memory of their own. All these points will be dealt with later.

Using this notation, we can model one of the processes in the ecology example (1) by :

1 [F] & 1 [R] →P-Hunting>→ (1+n) [F]
with F = Foxes, R = Rabbits and n>0. In that representation, the rate equation r= r(I1,…,In) is left
unspecified. Remark that [F] appears on both sides : a fox entering P-Hunting> produces 1+n foxes. This is
just a slightly more accurate version of the informal ecology process given above.

 In the same way, for the production process (2), the result would be :

h [H] & e[E] & m[M] →P-Production>→ fH[HF] & fL[LF] & [H] & [E]
with H = human resources, E = equipment, M = materials. HF and LF are high and low quality food. The
packing coefficients fH and fL sum to 1 and may be variable to express the changing proportion of low and
high quality food. Again H and E appear on both sides since their units are recycled after each production
cycle. Compare with the informal rule (2).

Finally, the chemical example becomes :

[E]+[S]+[CF] →P-Reaction mechanism>→ [P]+[E]+[CF]
These rules or processes are obviously similar to a chemical reaction nA+mB→pC+qD but the kinetic
algorithm of P> is usually more complex than the chemical laws and the packing and unpacking coefficients
n,m,p,q may be modified by various influences.

With this notation, we have thus established a bridge with the modern theories of cognitive psychology
which use similar production rules in much more general settings. Since improving our knowledge on the
nature of the mental models with which we perceive our systems is an important objective for SD, it seems
that the connection just mentioned should be profitably pursued. However, we cannot really use the rule
notation as a basis for SD. Indeed, we would end up with a representation of the model by a large collection
of lines like (1) and we would be as confused as before. Due to the multiple appearances of resources in the
left and right sides of several lines, it would indeed be very difficult to get a feeling for the global behaviour
of the system. This kind of rules may well be used as unconscious or partial building blocks for our mental
models but we are also visual animals. What our conscious cognition needs to reach a global understanding
of a system is not a set of rules but a diagram summarising them. This is just what the informal metabolic
maps described before achieve by connecting together the representations of each reaction. These maps are
to reactions what semantic or cognitive maps are to rules in artificial intelligence.

This end up our qualitative discussion of the motivations and basic hypotheses underlying Kinetic Process
Graphs (KPG). The next section will now present them more accurately. We will proceed in two steps :

- Our first step will be to define what we call «Structural Process Maps or PM». We will begin by
defining the components of an elementary process map like the one shown in Fig.6-B and then we will see
how we may interconnect elementary process maps to get the PM of a system. The PM generalises and
makes quantitative the metabolic maps discussed above. It allows the representation of the relations
between the various stocks and flows of a system and the computation of all the flows entering or leaving
the stocks once the external inputs and the rates of its various processes are determined. We use the word
« structural » to characterise this map since it summarises all the properties of the system which depends
only on its GM or “physical” structure (defined as the interconnections between its stocks, processes and
packing/unpacking coefficients) and not on the functions modulating the packing/unpacking coefficients
and the specific rate laws or kinetics used to compute the process rates themselves. We will see that, if, at
each time, we know the rates of each process and the values of the packing and unpacking coefficients, we
can compute the flows everywhere in the PM and thus obtain its state equations.

- Then in a second step, we will show how to compute the process rates and values of packing/unpacking
coefficients needed by the PM defined in the first step. This will be done by defining a signal network
transmitting to these elements the signals needed to compute their values. We will call these signals
« Influences »; their network will thus be called a « GI-network ». By interconnecting the PM defined in
the first step and the GI-network we will get a full KPG.

 .
4. STRUCTURAL PROCESS MAPS : DETERMINING GM-FLOWS FROM PROCESS RATES

Most of the elementary components of our PMs have already been introduced informally in the preceding
pages. Table 1 completes their definitions10,11:

TABLE 1 : BASIC ELEMENTS OF STRUCTURAL PROCESS MAPS

10 For advanced applications, we have also defined other elements (multi-bonds and array elements, time varying connectors,
external product elements, or-junctions, modular elements) to be described elsewhere.
11 The reader familiar with bond graphs (BG) will notice that these elements are obtained by neglecting some BG elements (R,I,
Se, GY) and stripping the other (Sf, C,0,1,TF) from every property related to power and effort variables. From a BG perspective,
the result may, at first sight, look trivial and BG afficionados may wonder if anything useful may be achieved with it? The
answer is a definite YES: the whole class of kinetic models and thus of SD models may be represented easily and intuitively.

Flow is positive in the direction of the semi
arrow and negative in the other direction.

It indicates which side of the bond receive
the information on the flow value.

Q=Q0+INT(sum of flowsin –sum of flowsout).
Must receive causal markers on each bond.

May have both flow causality; Q is constant
independently of the flow given or received

Defines a rate RP and imposes the flow f=RP in
its input and output bonds. In P>, RP is always
positive, In <P>>, it is positive in the
direction >> and negative otherwise.

Same behaviour than preceding element but
finput = RP(t) and foutput= RP(t-τ) with a delay
τ. Thus some GM-quantity is stored inside
(in the process internal store [Q]).

Provides to the left side a flow f=r(t) taken
from the constant store.

Delivers to the constant store a flow f=r(t)
taken from its left side.

1) Receive an information on the value of fleft
and imposes to its right side frigh t= n * fleft.
2) Same definition but fleft = n * fright.

Receives from one of its bonds an
information on a flow value (marker near e)
and imposes this value to the other bonds.

Receives information on flow values from all
its bonds minus one. Impose on this last bond
a flow=algebraic sum of flows on other

Receives information on the flow value f
(marker near r) and determines other flows
by : f1=m*f and f2=(1-m)*f with m≤1.

Let us now describe the symbolic representation and the meaning of these elements :

Flow bond : The transportation of a GM-flow between elements is represented by a « flow bond » denoted
by a semi-arrow12. A positive flow is considered to travel in the direction of the arrow and a negative flow
travels in the reverse direction. When needed, the name of the flow travelling in the bond is indicated close
to the bond on the side opposite to the semi-arrow.

Flow Causality Marker : Consider a bond with its origin connected to a sub-model A and its end (arrow
side) connected to a sub-model B i.e. A B. The value of the flow in the bond may only be computed by
A or B, not by both since then they could compute different values and the bond would be over-determined.
Consider the case in which A has an equation computing the flow value. This flow value may be positive in
which case the flow, in addition of being determined by A, physically flows from A to B. On the other hand,
the flow determined by A may be negative and then physically flows from B to A. In the first case, A
determines the value of flow it is delivering and in the second case, it computes the value of flow it is
receiving. In both cases, B has just to comply and physically receive the flow if f is positive or physically give
it if f is negative. B therefore cannot use one of its defining equations to compute f. It is given the
information on the value of f by A and may use it as a variable in the right terms of its equations to compute
some other variable. In other words, B sees the flow value as a cause received from outside , i.e. from A, to
determine its behaviour, i.e. what it will compute from it.

We indicate the side which has to comply, i.e. which receives the cause by putting a small circle called a
«flow causality marker » on the side of the bond connected to it. Thus in the case just analysed, the notation
becomes A B. Obviously, since physical flow directions and causality sending are unrelated, the flow
might as well be determined by B while flowing physically either from A to B or from B to A. In that case, A
would have to comply by giving or receiving the computed flow. The notation would then be
.. . . These causality markers are useful to determine at first sight if a PM is well constructed or
not. Indeed, every element will have a defining condition on its flow causality markers. If a model is well
constructed, all these conditions have to be satisfied otherwise it contains an invalid connection of elements

GM-stock : Like a stock in SD, this element stores a GM-quantity Q. We denote it by [Q]. It is connected
to an arbitrary number of bonds which may be directed towards it or which may point to it. A bond pointing
to a store transports a flow which, if positive, will enter the store or will leave it if negative. A bond pointing
from the store does just the reverse. At each time t, the store determines its value of Q by computing the
flow balance : Q=Q0 + integral from 0 to t of the algebraic sum of all its flows (Q0 = initial value). All the
flows in the bonds connected to the store must be determined outside the store, i.e. in the model parts
connected to the other side of the bonds connected to the store. Causally, the store must thus receive the
values of all its entering or leaving flows. This is indicated by the fact that all its bonds, pointing to it or from
it, must have causality markers on their side connected to the bond.

Constant stock : This is a special stock used like in SD to represent boundary conditions from the
environment. It is denoted by the SD cloud symbol but we consider it to have a given constant value of the
GM which it provides or receive. A constant stock has one or several bonds connected to it. They may point
towards the stock or not but in both cases, each bond must have a causality marker close to the constant
stock. In other words, it gives or receive flows which have their values determined elsewhere.

Process rate block: This is the cousin of the SD taps. It is connected to an input bond and an output bond.
A process rate block has an equation which allows it to determine at each time the rate RP of the process
from information signals received from other places in the model. In this section, we do not discuss this
equation nor the representation of the signals needed for its computation. This will be done in the next

12 The KPG notations used from now on will be quite different from those used in SD even for the elements having an identical
meaning in both methods. The reason of this choice is that I want to emphasize the kinship of KPGs with bond graphs in order
to be able to minimize the adaptations needed to implement KPGs with a bond graph modelling package.

A B

section. For now, we just suppose that the value of RP may be computed at each time. The process rate
block imposes then the values of the flows in its input and output bonds by the equations fIN=fOUT=RP. It has
thus the causality indicated in table 1. We distinguish uni-directional processes P> and bi-directional
processes <P>>. The equation of a uni-directional process is such that its flow is always positive. The flow
occurs thus from « In » to « Out ». This rate process block requires then at all times the value of f from the
element connected on its « In » side and delivers f to the element connected on its « Out » side. For bi-
directional processes, the flow equation may compute positive or negative flows. The direction of positive
flow is indicated by the double arrow >>. If f is positive, the flow occurs from « In » where it is required to
« Out » where it is delivered. If the value of the flow is negative, the situation is the opposite.

Process rate block with delay: This element verifies the same rules than the simple process rate block.
However, its flow conditions are fIn=RP(t) and fOut= RP(t-τ) where τ is a discrete delay. It has thus the
memory of its flow on a horizon τ. The integral of the flow stored during the delay period may be considered
as an internal stock of the GM transported in the process. This element is thus partially a process and
partially a stock. This is indicated by its symbol which contains both the notation P> and the notation [Q].
Instead of a discrete delay we may use special continuous delays enforcing GM-conservation.

Source and Sink : They are composite elements obtained by connecting a constant stock and a uni-
directional process rate block. The source delivers a flow given by f=RP and the sink receives a flow given by
f=RP (cf. causalities). By connecting a constant block to a bi-directional process, we obtain an element which
may work as a source or sink dependent on the sign of R (not illustrated).

Modifiers : They correspond to the packing/unpacking coefficients discussed before. A modifier is linked to
an « In » and an “Out” bond. It has a parameter n called its ratio and makes between its input and output
flow a transformation with two cases. In case 1 (see Table), it receives an information on the value of its
input flow and then computes fOut = n*fIn. In case 2, it does the opposite , receiving an information on the
value of the output flow, it computes fIn = n*FOut. As we have mentioned previously, n may be variable and
may depend in eventually complex ways on signals received from elsewhere. Again, we will not discuss this
point here but leave it for the next section. For now we will just suppose that n is known at all times.

The interpretation of the equations given above depends on the notion of packing/unpacking. We have seen
that a process works at a rate of RP steps per unit time and at each time takes packs of various resources to
combine them into packs of various products (see Fig.6-A). Let us thus consider such a process taking at
each step nA units of A to give nB units of B. We represent it by the PM :

The process P computes its rate and imposes a flow f=RP of packs to its input and output bonds. On the
input side, the modifier (M :nA) is in the causality situation 2. We have therefore fA=nA*f. On the output side,
the modifier (M :nB) is in the causality situation 1 and therefore fB=nB*f. These equations represent the
packing in the input side and the unpacking in the output side. We can consider the flow f as made of packs
of As on one side and Bs on the other side while fA and fB are made of separate units of As and Bs. Packing
is made by a modifier with a case-2 causality and unpacking by a modifier with a case 1 causality.

Equality junction : it represents the nodes which we have called previously J (join) and S (separate). An e-junction (e
for equality) may be connected to an arbitrary number of bonds with arbitrary orientations. One and only one of its bonds
must have its flow causality marker near the e-junction. This bond, called the commanding bond (see the little  in the
table) imposes thus its value of flow to the junction. This value may be positive or negative and the commanding bond
may point toward the e-junction or depart from it. Then the e-junction imposes to all the other bonds to have a flow
value equal to the one imposed by the commanding bond. These other bonds, receiving the information on their flow
value, have thus the causality indicated in the table (marker on the side distant from the e-junction) and impose this value
of flow to the elements connected to them. We will see later that e-junctions are used mainly in direct connection with
(N,M)-processes with N,M>1 where they give us the packing and unpacking points needed for each participating GM.

Balance junction : This is the dual of the e-junction. It may be connected to an arbitrary number of bonds
with arbitrary orientations. All its bonds except one must have their flow causality marker near the b-junction
(b for balance). The junction receives thus the flow values in all these bonds. It computes their algebraic
sum, i.e. their balance and imposes the result as the flow value in the remaining bond which is called the
commanded bond (see the little ) and has thus a flow marker on the side distant to the junction. This
junction is mainly used to compute explicitly the balance of flows for a stock participating to several
processes (see later).

Repartitor : This is a composite element (cf. left side of the repartitor box in Table 1) made of an e-junction
connected to modifiers with ratios summing to 1. The e-junction receives a flow f and transmits it to its
output bonds. The modifiers, receiving each an input flow f, compute their output flows respectively equal to
mf and (1-m)f. The flow is thus divided in a given ratio between the branches. In practice, we use the
notation given on the right side of the repartitor box (table 1). It is an input repartitor. We may reverse the
direction of each bond (but not the causal markers) and we obtain an output repartitor requiring a flow f
from two directions. We use also repartitors with more complex conditions than simple equality to 1.

This ends up the first description of our elements. We will see later that each of them has additional features
to deal with signal propagation. Right now, to gain some insight on how these elements combine together,
we will present a few simple PMs (Fig .7).

Fig.7 : Process maps of the simple examples used in the text

Our first example is the elementary process mA+nB → pC+qD (see also fig.6-B) . We see what we call the
« Donor stocks » A and B and the « Acceptor stocks » C and D. We also see the process P> connected on its
input and output sides to e-junctions. Modifiers implement the packing coefficients n, m, p, q and are linked
by bonds to the stocks and to the e-junctions. The units of A and B needed by P> flow from their stocks to
the packing coefficients which packs them into groups (packs) of respectively m units for A and n units for
B. These packs flow to the input e-junction where they unite to form combined packs. Each pack entering
the process P> is made of a pack of A having m units and a pack of B having n units. This process
transforms the input packs in output packs at a rate RP per unit time. The output packs separate in packs of
C and D in the output e-junction and these separated packs flow to their unpacking modifiers where they
unpack respectively into p units of C and q units of D. The Cs and Ds flow then into their respective stores.
Computation proceeds at each time t by computing first RP (see next section). Then the flow RP of packs
computed is required from the input e-junction by f=RP. This e-junction transmits an equal requirement of RP
= f packs to each of its input sides for A and B. The packing coefficients then transfers a requirement for
fA= n*f units of A and m*f units of B to the input stores.

Remark that once RP and eventually, n, m, p, q are computed, this PM is a full computational model of the
process. It is thus equivalent to the SF-diagram of Fig.6-C but has still the same simplicity and intuitive
character than the simple metabolic map of Fig.4-A. Admittedly, the auxiliary signals needed to define the
rate are still missing from the PM which is therefore not strictly comparable to the SF-diagram. However,
we will see later that, due to the bond graph-like notations explained in the next section, their inclusion
leaves the simplicity and the intuitiveness of the PM unchanged.

Panel B gives the PM of the system of foxes [F], rabbits [R] and small Australian mammals [A] described
before (see the interview of an Australian civil servant). The foxes [F] may participate to two processes.
First they « get together » with rabbits [R] in the packing e-junction eRF to enter the classical predation
process PPr>. Due to the modifier in the output side of this process, each fox entering the process generates
1+n1 foxes which go back in their stock. The population of foxes grows if n1>1. The foxes may also enter a
second emerging process PPr-E> in which, instead of rabbits, they predate the Australian mammals [A] and
grow if n2>1. Remark (1) that each process acts on different resources, (2) that the graph contain loops since
the two processes deliver a resource F also used in their input, (3) that a competition is obvious between the
processes since foxes F participate to one or the other and finally (4) that the model does not contain dummy
sources like a « source of foxes » (see Fig.1). On these accounts, the PM given here looks more intuitive and
simpler than the SF-diagram. Of course auxiliary signals are still missing from it but, like in the previous
example, we will soon see that their addition does not change our conclusions.

Panel C gives the PM of the food production process of section 3 (sentence from a food company
executive). Equipment [E], human resources [H] and raw materials [M] are packed together at an e-junction
e1 to enter a food production process FP> . The resulting output packs of this process first separate in three
GM-flows at the output e-junction e2. Flows of equipment and human resources go back to their stock from
which they can be used again and again to transform raw materials into food. The third flow exiting from e2
is a flow of food products which separates in two in a repartitor R. A fraction m of the food produced (m<1)
goes into a store of high quality food [HQF] and the remaining fraction (1-m) goes into the stock of low
quality food [LQF]. By modifying the value of m, the ratio of low to high quality production changes. Again,
the map is simple and may be directly used with the managers of the plant to discuss their problem.

As seen in the above story, this problem is that the value of [H] has two effects. First, it influences directly
RP since the more people we have, the more we will be able to run them around the production cycle.
However, it also mentions that the ratio m depends on [H] probably due to a low morale or efficiency effect
if [H] decreases too much. To represent these two effects we need to add two signals to the PM used until
now (full arrows represented with interrupted lines). The first one goes from [H] to PF> and represents the
dependency of RP on [H]. The second one, from [H] to the repartitor R modifies m for the low morale or
efficiency effect. We will deal with signals in the next section. However in preparation for this section, I
have added them on panel C using notations similar to those used in SD. If we have to add many such
signals, we will again get a diagram with the spaghetti-like aspect familiar to SD practitioners. The goal of
the next section will thus be to find a way of adding signals while minimising the trouble they create.

Finally, panel D presents the PM of the enzyme system discussed in section 2 (the biochemist’s sentence).
Substrate [S], enzyme [E] and cofactors [CF] get together in a first reaction P1> forming a complex [C]
which is transformed by a second process P2> to give a product [PR] and recycle the enzyme. The more
enzyme we have to cycle in the production loop, the higher is the production of [PR]. The product [PR] is
then used by a third process P3> which sends it into the environment. Since the cofactor [CF] was attached
to [S] and [E] by P1>, it is present in [C]. Since it is not liberated by P2>, it is still attached in some form to
the product [PR]. We see this by the fact that once P3> uses [PR], it recycles the co-factor [CF]. Thus if the
process P3> does not work i.e. if the product is not used, the cofactor accumulates in a form linked to [PR].
If this occurs, the [CF] stock is empty and no co-factor is available to attach to [E] and [S] in P1>.
Consequently P1> stops and is rate limited by [CF]. The whole process is strongly reminiscent of a JIT
process. Indeed, [PR] is not produced if it is not used in P3> and the cofactor plays the role of the Kan Ban
which is just a tag playing not a physical but an informational role in production. It is attached to the product
and liberated only if the product is used. The kan ban is then recycled to control the production from its end-
use point. Remark that the PM itself is a critical tool in the preceding discussion, a fact which provides a
strong argument for our thesis that PMs are excellent tools for SD modelling.13

13 The PM suggests thus a deep analogy between enzymatic processes and production management. Co-factors were evolved by
Nature a million years ago and Kan Ban by Toyota several decades ago. The fact that KPGs suggests this analogy is a strong
argument for their intuitiveness. However, we can go further : applied to biochemistry, KPGs show graphically many deep
control mechanisms. Co-factors are just one of them. Considering that our body has evolved to be reasonably efficient, could we
use biochemistry as a source of metaphors for production management ?

A PM is not only intuitively appealing, it is also a good theoretical tool. Indeed, its state equations are given
by the following “GM- structural flow matrix equation”:14

with Q an array listing all the contents of the stocks of the model and r a vector listing all the rates of the various
processes. S is the packing/unpacking connection matrix with rows corresponding to the stocks and columns
corresponding to the rates. The element Sij of this matrix is defined by:

 Sij = + n if process j produces n units in stock i.
 = - n if process j consumes n units from stock i.
 = 0 if process j do not produce or consume units of stock i.

If a process is recycling or auto-catalytic, i.e. if it consumes and produces units of the same stock, the corresponding
element of S is the sum of two terms, one for consumption and one for production. Formally, we may define the model
“GM-structure“ as given either by its PM or by S. Any information related to the definition of the rate vector i.e. of the
functions determining the dependence of r on stocks and other auxiliary variables values is not GM-structural but kinetic.
In chemistry, S is a constant matrix and formal kinetics study structural properties independently of the kinetic equations
(conservation invariants, steady states, cycles, zero-deficiency). However, our coefficients may be modulated, i.e.
dependent on the content of the stores and of external variables and we have :

 with r = r (Q, U, t)T

This equation is much more complex and, in general, the study of its global properties may only be done by
simulation. However, for local analysis around a given operating point, we may consider S as « locally
constant » and then, the link with chemical kinetics made by PMs makes all the concepts of formal kinetics
available for the mathematical analysis of SD models by distinguishing three levels of properties:

-Strictly GM-structural: valid for any equations and values of the coefficients and of the rates.
-Weakly GM-structural: valid only for specific equation forms or values of the variable coefficients.
-Kinetic: considering all the information (structural + kinetic).

As explained before and as the preceding two equations make obvious, the full definition of a model by its
PM needs a preliminary step : the determination of its rate vector r and of its packing/unpacking coefficients
i.e. of the elements of the matrix S. This is done by specifying the equations :
 r= r(Q,U,t) and S = S(Q,U,t)
Where r and S may contain arbitrary functionals. Graphically, specifying these equations is equivalent to
drawing the previously defined GI-network. A adding it to the PM fully defines a model which we call then a
« Kinetic Process Graph ». Since Q is known at each time t (initially by initial conditions and later by
integration), the simulation of a KPG is then done by following at each time t a two step procedure :

- Compute U(t) and use it with the GI network to compute r and S
- Use r and S to compute dQ/dt and integrate to get the value of Q for the next time t of integration.

At this stage, the only step remaining to define a KPG is thus to specify its GI-network. We will do this by using, like in
SD, auxiliary signals linking the variables in Q and U to the various rates and modifiers. However, we have seen that the
GI-network is responsible for the visual complexity of the SD models. We will thus have to introduce some new
concepts to obtain maximally simple GI-networks and we will see that again the theory of bond graphs will give us the
tools required. This will be explained in section 6 but there is a last point to discuss regarding PMs : all the examples
discussed until now have indeed be very simple and, from the point of view of standard SD practice, a bit exotic
(chemistry, ecology). Will we observe the same parsimony and intuitiveness in more complex examples chosen in
mainstream SD i.e. in Business Dynamics ? As we said before, models of complex models have to be complex but not
more than needed. Can we use PMs of mid to large complexity with the same ease than simple PMs ? Our next section
answer this question.

14 The reader will notice that we use the word « structure » to indicate the physical arrangement of stocks and flows. This is
different from the usual SD practice which uses the word « structure » to denote the arrangement of causal loops.

TrS
dt

Qd
=

TrtUQS
dt

Qd
),,(=

5. SCALING UP PROPERTIES OF PROCESS MAPS

To investigate the scaling properties of PMs regarding parsimony and intuitiveness, let us discuss a more
extensive example in Business Dynamics15, 16. Its size is probably typical of many studies of mid range in
complexity. We will present first a verbal description of the system to model and then show that it may be
expressed naturally by a PM.

Problem Description : HOTSTUFF LTD makes high quality « model Ts » better than the « model Xs » of
their rival company PLAINSTUFF. HOTSTUFF sells its Ts but can also use them in steps of their own
production (e.g. a software company producing OO-development systems or a mechanical engineering
company producing lathes used in the production of some of their own critical parts). HOTSTUFF must
obviously prime its production by using the Xs of PLAINSTUFF but hopes to gain a competitive advantage
by replacing most Xs by Ts to depend less on PLAINSTUFF and to reach leaner production and higher
quality. Here are excerpts of HOTSTUFF’s CEO’s last talk to the board (annotated for further reference):

« As you know, the new production plant for our model Ts is almost fully operational and we have already started production at
60% of our capacity (d). We expect to be at full speed in about 6 months (e). We are thus busy to progressively re-assign to the
management of this plant most of the specialists from corporate and other divisions who are now supervising its development and
test. Unavoidably, we will loose some people but we hope to keep most of the best ones. Indeed, our investment in development will
soon decrease and we will re-invest a major portion of the funds liberated to support plant operation (f). This should allow us to
give attractive conditions to these people. A second critical factor for the success of our new venture will be the cumulative
boosting of our quality level and the increased productivity due to the smooth but massive introduction in our production lines of
our new « model T » tools. This will decrease drastically our production costs since we will not need PLAINSTUFF"s model Xs
anymore (a) and since we will be able to stop paying their expensive maintenance contract (b). In addition, this will also allow us
to re-engineer our lines and get a leaner, more efficient production process (c). Our vision is to reach a dominant position during
the second financial year after kick-off. We have thus already started to build up our sales force which should start being
operational in 8 months. Its progressive strengthening will generate enough income to break even in about two years, a time at
which we expect the whole plant to become self-supported.»

Starting from this text, we can certainly produce a classical SD model but, instead, we give in Fig.7 a PM
representing the main processes deduced from the CEO’s talk. We see a decomposition in sectors
(Procurement, Production, Sales and Marketing, Training and Plant Development) which, to stay in
reasonable limits, are all represented by extremely simplified PMs. Let us start with the procurement sector.
It shows a feature which has not yet been described. Indeed, all its elements are drawn with unfilled symbols.
They denote not scalar elements like those described previously but vectorial or array elements manipulating
not single GM-quantities and flows but arrays of such entities. We will explain this notation later. For now,
let us just say that P-procurement> computes two flows of resources : a flow of model Xs bought from
PLAINSTUFF and a flow of various aggregated resources including raw materials. These flows separate at
a junction which we meet for the first time, a U-junction from which model Xs and resources go in their
respective stocks. The procurement process needs an input from outside (the cloud) and an input of money
from a store [$ ] where  indicates that it is a « repeat-stock », i.e ; a « conceptually » unique stock with
phantoms drawn at several places just to get a nicer drawing. In this case, the real stock [$] is defined on the
right side of the figure in the Sales and Marketing sector. The symbol D in this stock tells us that it is its
defining place and that it is repeated elsewhere. The procurement process is related to the sentences marked
a, b, c in the CEO’s talk : a and b are obvious, c expresses that model Ts are more efficient than model Xs.
Obviously, the procurement rates and the number of money units used by the process have to be controlled
in time to represent the « progressive switching » of procurement from model Xs to model Ts but these
signals are not drawn on the PM, they should be added at a later stage when building the full KPG.

15 We need also to know if the primitive concepts of table 1 are sufficient. In fact, to tackle more complex cases, I have had to
complement them with a few other elements (array elements, time-varying connectors, conditional stocks, conditional
switches….) However, until now, I have developed more than 100 PMs in various fields and the set of primitives needed has
remained quite small and does not seem to expand anymore. It is thus probably close to be generic.
16 In order to cope with space limitations, this example is just a caricature but it is sufficient to make the argument cogent.

Coming now to production, we represent it by a single process which has a significant delay (indicated by D) and thus
some “work in process” represented by the internal store [WIP]. It uses various inputs : a -stock of money, the various
entities aggregated in [resources], and trained people from the b-junction. Two points needs mentioning. First the
repartitor RI expresses the fact that we may use either Ts or Xs as tools for production. The repartition coefficient
expresses the proportion in which these two stocks are used and may be modified by a policy signal (non illustrated).
Secondly, the flow of manpower from [Trained people] is represented by an interrupted bond. This is a shortcut notation
for «an enzyme stock» i.e. a resource which is both an input and an output of a process with equal packing coefficients.
It participates in the production and is a factor in the computation of its process rate but is not used by it. Remark that
the stock [WIP] immobilises some trained people for a while. The model Ts produced go either in a stock [model Ts for
sales] or in the stock [model Ts for production]. The proportion affected to each of these two stocks is defined by the
repartitor R which is also modulated in time by a policy signal (non illustrated).

Fig.8 : an example of PM of intermediate complexity.

The production sector just described gives us the GM-structures needed to translate the sentences marked d, e and f in
the CEO’s talk by adding signals (non illustrated in Fig.8) to modify its various coefficients. A signal from Plant
Development should be added at a later stage to allow a progressive increase in capacity of production and a signal from
the same origin should modify the packing coefficient of money used in production to express a freeing of funds. The
other sectors may be described similarly. The sales and Marketing sector shows a customer recruitment process needing
trained people (sales force) and obviously money and producing orders and loss of customers. The orders are combined
with the Ts to produce money spent everywhere in various proportions. The training sector hires and trains people to
distribute them to various processes through the b-junction. Finally, the plant development sector computes the
operational capacity reached. As said before, we should now add signals controlling all these processes and creating
many feedback loops. Remark nevertheless that, in contrast with a SF-diagram the PM which describes just the basic
« Think Physics » infra-structure of the model shows already many loops, a fact decreasing the complexity of the signal
network which should now be added.

6. KINETIC PROCESS GRAPHS : ADDING CONTROL SIGNALS TO A PM

To define the GI-network, we have thus to represent graphically the computations of the rates and modifier
coefficients. As shown in Fig.6-A, they are in general, functions of several kinds of variables: contents of
stocks, external inputs and auxiliary variables. Indeed, let us consider again the general process equation :

X is the vector of stocks on which the process depends. U is a vector of input signals and t is time. The Ai
are the donor stocks and the Bi the acceptor stocks. The nA,i are the donor modifier coefficients and the nB,i
are the acceptor modifier coefficients. Finally, R(…) is an operator defining the process rate. We can
partition X in two subvectors :

X=(Xc,Xd)
where Xc (close stocks) contains the donors Ai and acceptors Bi appearing in R and Xd (distant stocks)
contains stocks appearing in R but which are not donors or acceptors of R. In chemistry, R is given by an
algebraic formula and nA,i and nB,i are constant. However, in our case, they may be much more complex,
including for instance their own state variables, time delays, functionals, expert systems, fuzzy rules, neural
networks or even human interactions. We call « influences on R » the variables appearing as arguments in R.
We may distinguish two classes of influences according to their level of proximity to the flow:

- “The class of close influences”: the dependencies on Xc i.e. on the donors or acceptors of the process.
In many models, a large, often major, part of the influences belongs to that class. Most processes depend
indeed on their donors. For instance, if they are not available, the process cannot take place and often
their level of availability influences the rate in subtle ways. Moreover, quite often, at least in controlled
processes, the level of acceptors is also a controlling factor through laws like «The more products I
have, the less I want to produce them » making R an inverse function of its acceptors. We have already
given an example of close influence (see box C in Fig. 7-C)

- “The class of distant or indirect influences » which contains all the other variables appearing in R:

- Distant stocks Xd : stocks are the most important variables in a model. It is therefore obvious that
many finely tuned processes must depend from stocks which, being not direct donors of acceptors ,
are more distant in the graph but nevertheless influence its rate through some control mechanism. An
example is the final product of a production chain , the availability of which should influence all the
steps by controlling the rate of the chain of processes.

- Input signals, i.e. time functions U1(t),…,Um(t) representing influence dependencies (different from
sources or sinks) from the non-modelled environment.

- The time variable t itself (which may always be assimilated to an input signal y=t).

- Auxiliary variables defined from the above close and distant variables and used either in the
computations (e.g. the monthly average of a flow of orders controlling a production rate 17) or as
intermediates in the computations.

Some models have only a few distant influences. However, in many socio-economic models, they are
encountered much more frequently creating thus the well known dizzying feeling that everything depends on
everything. Moreover, some distant influences may act on many processes (e.g. in a socio-economic model,
an auxiliary block computing an estimate of the economic conjuncture would influence most processes).

It is the explicit representation of all these influences by signal arrows which creates the maze characteristic
of large SD-models. We need thus to find different ways of representing them. Our first effort must bear on
close influences which are, by far, the most frequently encountered.

17 Algebraic loops and incompatibilities may result from defining flows as functions of other flows. In general, we cannot exclude these possibilities. However,
frequently, a flow-dependency occurs through an intermediate operation like averaging and uses only the past values of the flow in a given horizon window.

To represent close influences as parsimoniously as possible, we will adapt to KPGs a notion of effort-
causality imported from the theory of bond graphs and which in our case will become an « influence
causality ». To introduce it, let us consider a simple process :

nA + mB →R(fDO(fA(A), fB(B)) , fAC(fC(C), fD(D)))→ pC + qD

in which the modifier coefficients are constant and the rate depends on all the donors and acceptors. We
have represented the rate function in a general manner emphasising its various levels of dependencies. A first
function fDO expresses the interaction between the influences of its donor stores. These influences themselves
are expressed individually by the functions fA and fB. The same kind of representation is used for the
acceptors. A global function fAC expresses their interaction and each of their participation to fAC comes
through individual functions fC and fD.

Fig.9-A represents a possible notation for the KPG of this process. Its PM is reproduced from Fig.7-A. It is
transformed into a full KPG by adding a GI-network (full arrows and circles in grey) with four operations.
First it measures the values of the stocks and sends them to auxiliary blocks computing fA, fB, fC, fD. Then
these blocks compute the four individual influences. The third operation is to send these influences to the
blocks fDO and fAC which compute their interactions. Finally, the results of these two blocks are sent to P>
This representation is equivalent to the SD representation of a tap dependent on four stores. For a single
process , this representation is acceptable but, if we have many processes in a network, each dependent on
its donors and acceptors, the resulting graph will soon become cluttered with signal arrows.

The panel B of Fig.9-B is equivalent to the panel A but we redraw the information links in parallel with the
bonds. We also places the individual functions fA, fB, fC , fD near the modifiers and the blocks fDO and fAC near
the e-junctions. Apparently not much is gained. However, let us focus our attention on the parts indicated by
grey filled circles. Each circle encloses an element (respectively a stock, a modifier and an e-junction)
coupled to an operation on influences (respectively a measurement of influence in the stock, a function fA of
one argument A near A and a function fDO of two arguments fA(A) and fB(B) near the e-junction. Let us
remark also that each bond is now in parallel with a signal link going either in the same direction than the
bond in the donor side or in the reverse direction on the acceptor side.

We may then redefine our basic elements like in panel C by putting, in an element itself, the operation on an
influence placed close to it in the grey circles of panel B. With these new definitions, each element has two
functions, one on a GM-quantity and one on an influence. The functions on GM-quantities have been defined
before (table 1) and do not change. We will now describe the functions on influences.

- A stock (panel C-a) is now denoted [Q, IQ]. Like before, it stores a GM-quantity Q but now , in
addition, it also generates an influence IQ(Q). Often we have just IQ=Q and we may drop the
indication of IQ getting back the former notation [Q]. Remark that Q being a GM entity is
conserved : if it flows through a bond, its value changes necessarily. On the other hand, IQ is a signal
and thus sending its value somewhere else in a signal link does not modify it.

- A modifier (panel C-b) is now denoted by (M: n,f). Like before, it transforms a GM-flow by
multiplying it by its coefficient n but in addition, it receives an influence I, transforms it by the
function f(I) and send the result outside. We need to distinguish two cases (panel 9-C-b). A modifier
in the donor side of a process has a GM-flow and an influence running in the same direction (left side
. In a modifier placed in the acceptor side of a process, the directions of the GM-flow and the
influence are opposed.

- The e-junctions are now denoted by (e,g) (panel 9-C-c). Their operation on GM-flows is
unchanged but now, they also receive two influences I1 and I2, operate on them by the function
g(I1,I2) and send the result outside. We see in panel B that again, we need to distinguish two cases:
an e-junction in the donor side in which signals and GM-flows run in the same direction and one for
the acceptor side in which they run in opposed directions.

Fig.9: Introduction of influence causality strokes to eliminate the signal arrows denoting close influences.

With these new definitions, each bond joining two elements runs in parallel with an influence link which may
have the same direction than the bond or the reverse direction. The two possible cases are represented in
Fig.9-C-d (left side). Instead of considering explicitly the pair bond-link, we choose the notation indicated on
the right side of this panel. This notation is imported from bond graphs. The bond is drawn with its flow
causal marker (the circle) but instead of drawing the influence link, we indicate just its orientation by putting
a small bar, called an « influence stroke », perpendicular to the bond on the side pointed by the full arrow of
the influence link. Remark that, in each case, the flow causality marker (little circle) and the influence
causality (the stroke) are opposed. Like our other elements, a bond has thus now two functions : it
transports a GM-flow with a value determined by the element connected to its side without circle (where the
stroke is) and imposed to the side with a circle18. On the other hand, it also transmits an influence from the
side without stroke (where the circle is) to the side with stroke.

Using this new notation for a pair (bond-influence link), we may redraw the elements of panel C (a,b,c). This
is done in panel D which shows the store (sub-panel a), the two cases of the modifier (sub-panel b) and the
two cases of the e-junction (sub-panel c).

Finally, using the notations of panel D, we may redraw the complete process given in panel B. The result is
given in panel E which is the full KPG of this process. Its GM-network is now completed by a GI-network
which is represented unobtrusively but unambiguously by the causal markers and the symbols of the
elements. Following these causal markers it is indeed possible to see the complete path of the influences. For
instance, starting from [A] and [B], we see two strokes on their output bonds indicating that influences IA=A
and IB=B arrive at the modifiers (M: m,fA) and (M: n,fB). These modifiers generate the influences fA(IA) and
fB(IB) which are then sent by the two strokes seen in their output bond to the e-junction (e,FDO). This
junction generates the influence fDO(fA(A), fB(B)) and sends it to the process P> by its output stroke. A
similar reasoning shows that the acceptor side generates the influence fAC(fC(C), fD(D)). The process receives
thus the appropriate signals on its two causal strokes. The influence from the donor side is called « forward
influence IF» and the influence from the acceptor side is called the « backward influence IB»19.

It happens frequently that a process does not depend on a specific close influence. For instance, the process
discussed here may be independent of C or of both C and D. In such cases, we still draw all the causal
strokes to check their eventual correctness (to test the validity of the connections made in the model) but the
causal strokes manipulating influences which are not needed are drawn in grey and we indicate that they are
not used by putting a little black square called an « influence blocker IB » which we place just near the
unused influence closer to the process. For instance, if the process discussed here does not depend on C, we
will place a blocker before the arrival on the junction (e,fAC) of the influence fC(IC) (case non illustrated in the
figure). If it does not depend on both C and D, we may block directly the backward influence IB. This is
done by putting the influence blocker at the output of P>. When we see a blocker, we know that the
influence computations leading to the blocked influence do not need to be executed.

It remains to describe the process P> itself. This is very simple : it just receives the influence signals IF and IB
and computes its rate as a function R=RP(IF, IB).

18 We remind the reader that a GM-flow may be positive or negative and thus may flow in the direction of the semi-arrow or
opposite to it independently on its flow causality (the circle) which indicates just the side which receives the information on the
flow value which it has to provide or to receive.
19 These names are again inspired by a chemical analogy. Indeed, let us choose the following definitions :
(1) For X=A,B,C,D we impose fX=ln(X).
(2) For any I1 and I2, fDO(I1, I2) =fAC(I1,I2) = I1 + I2
(3) R= kF exp(fDO) – kR exp (fAC). (kF and kR the forward and reverse kinetic constant ; kR is 0 if the reaction is unidirectional)
Then the computations described by the KPG of Fig.9-D are close to the classical thermodynamic view of a chemical reaction
controlled by the mass action law. We just need to add formulas for entropy and temperature to get a coherent thermodynamic
model but then the result, with some changes of notations becomes a bond graph and is no longer a KPG. In that case the
signals fDO and fAC are respectively called forward and backward affinities. This establishes a close filiation link between our
version of SD described by KPGs and physical lumped system modelling.

This completes the description of our treatment of close influences. We have dealt only with four elements :
stocks, modifiers, e-junctions and unidirectional rates. We do not have the space here to present them
completely but transformations similar to those of panels C and D may be done for all the other elements of
table I (constant stock, bi-directional process, process with delay, source, sink, balance junction and
repartitor). It is then possible to specify the part of any GI-network dealing with close influences entirely by
influence strokes. All the arrows indicating close influences are thus eliminated and replaced by strokes. This
is obviously much less visually cumbersome than the SD notation and the topology (pattern of connection)
of the PM is fully preserved. The addition of the GI-network of close influences preserves thus the two
qualities of a PM : its parsimony and its intuitiveness.

The use of causal strokes presents an additional advantage. Indeed, on each bond, the flow marker and the
stroke must be placed on opposite sides. Since we have seen that flow causal markers have specific patterns
for each element, it follows that causal strokes also have specific patterns (i.e. laws of stroke placement)
which are easily deduced for each element by taking the dual of the flow connection patterns given in table 1.
These patterns of connection may be checked algorithmically. The software implementing KPGs is thus able
to detect wrong patterns, i.e. connection mistakes. It may then issue warnings prompting the modeller to
correct his KPG. This self-checking feature of KPGs speeds up model development appreciably.

To complete the specification of the GI-network, we still need to consider the representation of the distant
influences acting on three kinds of elements : (1) processes, (2) packing coefficients of modifiers and (3)
variables of the functions which we have now inserted to process close influences in stocks, modifiers and e-
junctions. Obviously, if a model contains many distant influences and if we want to represent each of them
graphically, we will probably end up again in the complexity trap. Indeed, the only way to represent these
influences is to draw a network of auxiliary nodes and signal links like in SD. KPGs use several means to
maintain this complexity to manageable levels:

-A BUS of signals has been introduced. Signals may be posted on it by associating the element defining them
and an « Entry point » in the BUS. A BUS signal may be used as an influence in any element accepting a
distant influence by placing an « Exit point » from the bus near the influenced element. This is illustrated in
Fig.9-D where we have represented a stock [X] which is neither a donor nor an acceptor of the process
represented. Its influence is placed in the BUS entry point and used in the process by downloading it from a
BUS exit point. The availability of this BUS makes possible to represent explicitly by signal links the
influences central to the problem studied while keeping all the other in the BUS. The repartition of the
signals which are explicitly shown may be changed explicitly before a simulation in order to focus on
different aspects of a model.

- The implementation of the GM and GI-networks are completely modular and hierarchical. Any part of a
KPG may be defined as a sub-model which may be connected to other elements or sub-models through
contact points called « ports ». It exists two kinds of ports : GM-ports which accept only a a bond and GI-
ports to which we must connect an influence link. A sub-model may have a fixed but arbitrary number of
ports. Graphically, a sub-model is encapsulated in a single box with an icon and a name chosen by the
modeller. A sub-model may contain any other sub-models. A KPG may thus be defined hierarchically and the
number of hierarchical levels is practically unlimited.

- Sub-models may be defined either directly as KPGs or by using other methods : block diagrams, bond
graphs or even directly in an object-oriented language specific to the implementation software 20-SIM. This
allows the representation of sophisticated influence computations like neuro-fuzzy controllers, decision maps
or sets of rules in a very clear way.

- Finally, I have extended the KPG method to accept array variables in order to deal efficiently with
disaggregated models (e.g. people disaggregated in various spatial areas or in various age classes, products
differentiated by their quality level…). Fig.10 illustrates the graphical array vectorial notation.

Fig.10 : Array notation for disaggregated KPGs

Array elements are indicated by symbols drawn with hollow letters and lines. The figure shows a simplified version of a
small part of a model built for the Cabinet of the Belgian Vice Prime Minister in order to evaluate new proposals of
employment policies. The part of the model illustrated here distinguishes two classes of people20 according to their level
of qualification (L=low and H=high). The stock of people contains thus two stocks, one for each class L or H. These
two stocks form the component of an array of dimension 2. The stock of jobs is similarly indexed. The process is bi-
directional with a left side indicating firing of people and the right side indicating hiring. The hiring direction corresponds
to positive flows (double symbol >>). This process computes thus an array of four individual rates : FiringL, FiringH,
HiringL and HiringH which we denote by the numbers 1, 2, 3, 4. The bonds transport arrays of flows of various
dimensions. The bonds connected to the process transport its four flows (some are positive and others negative) but a
new element called a « U-junction » may combine or separate these arrays. The U junction shown here receives the
requirement (flow causal marker) to provide an array of four flows from the process and separates it into two separate
requirements : a first array of two components (1,2) is sent to the junction (e,f)Firing and a second vector of two
components (3,4) is required from the junction (e,f)Hiring. Remark that the hiring reaction also uses money which is not an
array but a scalar component.

Array elements may also be used for GI networks as illustrated by the upper part of this figure which shows
two arrays of signals coming from the parts of the model generating the factors from industry (I) and
government (G) used in policy determination. These factors are combined by the block W weighting
conjonctures, decisions and policies. The block W implements a standard fuzzy controller and controls the
four rates of the processes. Taken together, the array notations for GM and GI-networks provide a
representation of disaggregated models keeping all the qualities of our previous scalar representations. It
would be highly difficult to build, modify or use complex, highly disaggregated models without them.

7. CURRENT IMPLEMENTATION, DEVELOPMENT, RESEARCH AND APPLICATIONS

Graphically KPGs are closer to bond graphs than to the SF-diagrams of System Dynamics. Despite the facts
that any SF-diagram may be transformed into a KPG and that any KPG may be de-constructed to provide an
equivalent SF-diagram, implementation of KPGs in a SD software would most probably need many basic
modifications to the software. On the other hand, if a BG software is built in an object-oriented way and
allows the user to re-define the code and the graphical icons of each element and to add new elements, it is
possible to adapt it quite simply to KPGs by changing all the basic laws of bond graphs and by replacing the
bond graphs icons by our KPG icons. This needs only some modifications to the code of the methods in the
library giving the class library of the elements. The bond graph package 20-SIM fullfils our conditions. I
have thus used it for developing a complete implementation of the version of the KPG method which has just
been described. In this way, KPGs have a full upward compatibility with BGs, a fact which brings much
unity to the field of lumped modelling since it unifies SD and BGs, the two methods which are currently
most frequently used in this field across the whole spectrum of disciplines.

20 The disaggregation used in the real model is obviously bigger and based on sex, age classes, qualification and work expertise.

The library KPG-LIB provides a complete implementation of KPGs (see trademarks before). KPG-LIB
contains our basic and advanced elements, frequently used sub-models, advanced sub-models and examples
of applications. Elements supporting time-varying connections, self-organisation and dynamic
reconfiguration of a model are also included. Finally, a library providing a hierarchical decomposition of
multi-variable fuzzy rules was developed to provide a generic implementation of GI-networks from
interviews of domain specialists giving us sets of fuzzy qualitative rules. As explained before, the KPG
implementation uses the capability of 20-SIM fo the full : we benefit indeed from its modular and
hierarchical structure and from the possibility it offers to mix sub-models of different types (code, block
diagrams, bond graphs, and now KPGs).

We may mix sampled and continuous models and even study much less classical types of systems. For
instance, in a study of bacterial evolution, one of my PhD students is currently integrating a genetic
algorithm with 20-SIM. In the model, bacteria are described by a gene which may mutate. Each gene
existing at a given moment defines a stock storing the bacteria having that gene. The processes are the
typical processes of bacterial life : growth, poisoning, infection by phages… Some population die and other
are generated by mutation. In response to Natural Selection and to co-evolution simulated in the genetic
algorithm, the number of stocks in our graphs may change from a few to several hundreds The KPG
structure is thus constantly adapted. This system has two levels of dynamics : even when the number of
stocks is constant, its variables show interesting dynamics like chaos or hyper-chaos but, in addition, the
number of stocks and processes changes frequently. The topology of the graph is thus itself a dynamic object
of a higher order controlled by the genetic and extinction rules. We call these rules a « meta-dynamics »21.
Since computation of such high dimensional systems would be very slow, we are now busy defining KPG
elements implementing finite automata and the whole model becomes then similar to a cellular automaton
with modifiable connections.

Fig.11 illustrates our implementation by showing screen dumps of a small model developed for the
previously mentioned study of the employment market in Belgium.

Fig.11 : Screen Dumps showing an example of KPG model implemented in 20-SIM

The left panel shows the model. We will not describe it in detail. We just want to pinpoint a few points of
interest. First remark the BUS defining and using signals. Even in a small model like this one, it provides a
very much needed simplicity. Secondly, remark that exception made of the few signals transported by the
BUS, this model does not contain any distant influences. All the influences are close and transmitted by the
causal strokes. The structure of the PM is thus clearly shown and easy to follow. We can use this model to

21 By providing adaptive SD models which change not only the values of their parameters but also their topology, this study
links KPGs and thus SD to the field of complex adaptive systems as studied in the Santa Fe Institute or at the Ackhoff Center
in Philadelphia. Indeed, it would probably be possible to define SD models of evolving industrial or economical eco-systems.

discuss with specialists directly in front of the computer during a simulation. This would be much more
difficult if the screen was filled with a maze of signals. Thirdly, the block called « goods » market is a sub-
model, if we click on it, we can see its structure which is shown on the right panel. It contains a KPG (upper
part) and various sub-models which in turn are defined by block diagrams and code.

To end up this brief presentation of KPGs, let us describe their current status of development.

The basic 20-SIM implementation is complete but the library of elements is still under development. All the
elements described here are implemented but the library of sub-models needs to be completed and extended
in a major way. The current version of the library of fuzzy and neuro-fuzzy blocks is minimal and can only be
used to express simple rules and policies. It is used more and more in policy studies and a major effort is
needed to extend its scope and implement it in a more generic and flexible way.

Another important direction for the R/D effort on KPGs is the development of a generic framework for the
GI-networks for business and organisation dynamics and more generally for managed systems. Using
Morecroft’s ideas on policy structuring and the “information-decision-action” framework it should be
possible to define generic purposive managerial agents which could then be made to act in co-operation
and/or competition in a mix of decentralised organisation coupled to hierarchical structure. Each agent
would control some processes and interact with other agents in being controlled by the others or controlling
them. They could also share the control of some processes. Adaptation of such agents to specific cases
might provide a way to model managed systems by injecting a bit of « theory of organisations » in SD.

Finally, more research is needed on adaptive networks with meta-dynamics and on systems with time-varying
connections which we might use for instance to study re-engineering or re-organisation in companies.
Although the use of genetic algorithms to evolve optimal policies is tempting, it is still beyond what is
possible. Indeed, the simulation of the invention of an innovative policy involves not only parametric
adaptations but also and mainly the invention of new decision rules and the modification of the structure of a
system. Designing new rules is now possible by genetic programming which evolves syntactic structures and
not bit strings. However, new policies need new algorithms to build new observables and these observables
may be quite sophisticated. Designing them is probably at the border of what genetic programming can
achieve in its current state. Designing new structures by adding or deleting stocks, modifiers and processes is
still more difficult. This necessitates the addition to a model of new stocks and processes with a well-defined
interpretation or semantics. Finding automatically this semantics is currently impossible but, as demonstrated
by our work on bacterial cultures, applying genetic programming to a pre-defined (eventually huge) library
of stocks with pre-specified semantic interpretations is possible and could provide a good test-bed for
studies on re-engineering or design of new managed systems.

Coming now to practical matters, the main applications of KPGs pursued at IDEA.SIM LTD have been the
following: human resource management for the EU communities (DGXIII); effect of JIT on human
resources in retail for the KSRC store chain (London) ; surgery cancellations for the Guy’s and St Thomas
Trust (London), sustainable re-development in the Luberon area for the Departmental Council of Vaucluse,
France; prospective study of the effect of new policies in the employment market for the Belgian vice-Prime
Minister and coupling between evolution and population dynamics in multi-bacterial populations with the
Institut Pasteur de Lille. In addition, many smaller models have been built in various fields from biochemistry
to business dynamics. This is still a small sample of applications but they show that KPGs are generic enough
to support the development of intuitive and parsimonious models for the whole range of applications usually
encountered in SD.

Since 1995, various versions of KPGs have been taught to a total of about 200 students in three EU-
supported MSc degrees (Bioengineering in Lyon and London, Medical Informatics in Athens, Engineering in
Lille). Although the present paper is our first attempt to contact the SD community, KPGs have been
presented at Keynote Lectures at the European Congress of simulation EUROSIM – Helsinki, 1999, at the
6th World Congress on Bond Graphs ICBGM 1997 and at the American Congress of the Society for
Computer Simulation, Phoenix, 1997.

8. CONCLUSIONS

- In recent addresses to the SD Society, two of its presidents wrote that, to expand and be better accepted,
as a mainstream activity, SD had, among other priorities : (1) to develop research activities focusing on our
methodological tools for problem definition and conceptualisation [27], (2) to establish bridges with other
disciplines and more mainstream modelling communities while retaining our identity [28]. I would like to
suggest that the KPGs method may provide a step forward in each of these directions.

- Indeed, by grounding its models on a deeper look at the « Physics » of a SD application, i.e. at its
GM-flows and transformations, it provides a strong methodological foundation for problem
definition and provides a conceptualisation tool focusing on physical, structural insight.

- Secondly, by bridging almost seamlessly with classical SD on one hand and with bond graphs and
object-oriented modular, hierarchical modelling methods like MODELICA [29] on the other hand, it
establishes a link with engineering disciplines and creates a common language for SD people and for
model users in more technical fields while retaining entirely the SD identity and unique point of view.
KPGs should thus favour co-operation between these communities. For instance, people in marketing
using a KPG to study the potential growth of their market might find that they are not as far as it
may seem from a team in concurrent engineering using bond graphs for the prototyping of a new car.
This common basis should provide one of the pre-conditions for improving communication in a
company, promoting thus its development as a truly integrated learning organisation.

- KPGS alleviate the mental abyss and visual complexity problems seen by Richmond as plaguing our current
SD practice [14]. They include the SF-diagrams of SD as particular cases and are thus conceptually
compatible with them. They may form a potential basis for a new generation of SD tools. Their current
implementation in 20-SIM allows a fully modular and hierarchical development of large scale models which
benefit from the numerical power and speed of a modern engineering-oriented simulation software. This is
very good for model development and test. However, to develop management flight simulators with user-
friendly interfaces and multi-media education, our implementation does not even come close to the current
SD packages. Integration of KPGs in such packages would thus be highly desirable. Moreover, let us recall
that KPGs do not replace but only extend current methods when our mental models are characterised by
general processes. This is obviously not always the case and if a model has many qualitative soft levels and a
small GM-part or even no GM part at all, KPGs will not be more adapted to its modelling than SF-diagrams.
However, our implementation of modularity and hierarchy and the availability of fuzzy and rule-based policy
blocks might still be interesting.

- The price to pay for the greater expressiveness and parsimony of the KPG models is that they use a few
more « basic concepts » than SF-diagrams (see table 1 and the section on causal strokes). This may be a
problem. Indeed, if we consider that, for some users, even SF-diagrams are too abstract, we will not be
astonished if they initially consider KPGs as a game for theoreticians. However, our experience shows that
the basic KPG-syntax may be learned in about a day. After this time, a non-mathematically minded person
may start developing small models. Obviously, practice makes perfect and it takes much more time to
become an expert in KPG development. For a team considering the development of a large model for an in-
depth study, this is certainly reasonable. For superficial use of SD, this investment in time may be too big for
some customers. In that case, I focus nearly exclusively on the process maps. Almost invariably, the
discussion of these maps with customers reveals many points of interest and, as mentioned before, is often
easier than a discussion centred on the equivalent SF-diagram.

- An area for development is the strengthening of the links of KPGs with the modelling methods used in
other fields. Due to their close similarity, BG and KPG models may be coupled much more easily than SD
and BG models. It becomes thus possible to develop hybrid models having a SD part and a more physically-
based BG part. For instance a continuous or hybrid model of a chemical plant might be physically based and
integrated with a model of its resource management built with a KPG. Similarly, it is desirable to couple for
instance a detailed model of a manufacturing plant using discrete event-based methods like DEVS to a KPG
model of the parts of the company surrounding the plant.

- Revisiting SD models with the reaction metaphor modifies our perspective considerably and often results in
new hypotheses. For instance the analogies mentioned previously between biochemical control and
production management are probably worthwhile to pursue. This suggest that the metaphor of the cell as « a
chemical factory » should be considered seriously and studied as a source of inspiration for investigating the
possibility of bio-mimicking management procedures to control the efficiency of the internal workings in a
company or organisation. To this inside « metabolic view of a company » corresponds also a view
concerned more with the outside of a company : its stake holders and the environment in which it works and
develop. Some modern management scientists speak of a « business ecosystem » [30] and I suggest that the
analogy between ecosystems and socio-economical or industrial networks should also be taken seriously by
SD modellers. Adaptive KPGs with meta-dynamics might just be the tool for this kind of study.

Let us end up by insisting on the fact that until now, KPGs are only useful to model GM-networks. The
interpretation of their basic metaphor in cognitive terms as a rule or semantic map points toward similar
researches which should now be done for GI-networks for which other cognitive models might also be
useful (cognitive or semantic maps [23]). Research linking mental models with cognitive sciences and AI is
indeed very much needed in SD. Such links forms the basis of my current work on a generic structure for
management agents (see section 7) incorporating adaptation, purposive behaviour and neuro-fuzzy rules.

BIBLIOGRAPHY

[1] Karnopp D.C., Margolis D.L. and Rosenberg R.C. : System Dynamics, A unified Approach, Wiley, NY, 1990
[2] LeFèvre J. : An elementary bond graph approach to structured biological modelling, in « Advanced Simulation in Medicine, » D.F.

Möller ed. ; SpringerVerlag, N.Y., pp. 10-40, 1990
[3] LeFèvre J. : Keynote address to EUROSIM 2000, Helsinki, pp.1-9, 2000
[4] LeFèvre J.: European SCS congress on simulation, Marseilles, pp.122-130, 2001
[5] LeFèvre J. : Keynote address to the 1999 Int. Conf. on bond graphs, Las Vegas, pp.1-4, 1999
[6] Forrester J.W.: Industrial Dynamics, MIT Press, Cambridge, Mass. 1961.
[7] Forrester J.W. : Principle of Systems, Wright Allen Press, Cambridge Mass., 1968
[8] Forrester J.W.: World Dynamics, Wright Allen Press, Cambridge Mass., 1971
[9] Forrester J.W.: Collected Papers, Wright Allen Press, Cambridge Mass., 1975
[10] Sterman J.D. : Preface of reprint of [6], Syst. Dyn. Rev., 2, 158-170, 1986
[11] Forrester J.W. : Syst. Dyn. Rev., 10, 1994 (draft in Forrester web site)
[12] Richardson G.P. : Sys. Dyn. Rev.,
[13] Roberts N., Andersen D. et al. : Computer simulation, a SD approach,

 Addison Wesley, Reading, Mass.,1983
[14] Richmond B. : Syst. Dyn. Rev., 10, 135-157, 1994
[15] Coyle R.G. : System Dynamics Modelling, Chapman & Hall, London, 1996
[16] Bellinger G. : http://www.outsights.com/systems/sts/stsf.htm ,2000
[17] Sterman J.D. : Business Dynamics, Mc Graw Hill, Boston, 2000
[18] Forrester J.W : in « The systemic basis of policy making in the 1990s »,
 De Greene K.B. Ed., 1991
[19] Stella « Getting Started Manual », HPS, 1997
[20] Hannon B. and Ruth M. : Modeling biological systems, Springer, NY, 1997
[21] Andersen D.F. and Sturis J. : Sys. Dyn. Rev ;, 4, 218-245, 1988
[22] LeFèvre J. & Barreto J. : J. of Franklin Inst., 319, 201-215, 1985
[23] Russell S. & Norvig P. : Artificial intelligence, Prentice Hall, NJ, USA, 1995
[24] Anderson J.R., The architecture of cognition, Harvard, Cambridge, Mass., 1983.
[25] Stella technical documentation, HPS, 1997
[26] Kosko B. : Neural networks and fuzzy systems, Prentice Hall, N.J., USA, 1992
[27] Mashayekhi A.N. : Presidential address, System Dyn. Newsletter, December 2001
[28] Vennix J. : Presidential address, System Dyn. Newsletter, November 2000
[29] Borutzky W. : SIMPRA, 7, pp. 439-462, 1999
[30] de Geus A. : The living Company, Nicholas Brealey Publ., London, 1997

	Table of Contents:
	Abstracts:
	back to the top:

