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ABSTRACT : This paper presents a new graphical modelling language extending the stock-flow (SF) diagrams used in 
System Dynamics (SD). It introduces a new kind of graphs, the «Kinetic Process Graphs or KPGs». A KPG groups in 
a single flow-process some mechanisms representing flows modelled separately in a SF diagram but cognitively linked in 
our mental models as belonging to a single process using and providing material resources of different kinds. KPGs 
contain SF-diagrams as special cases and every KPG may be transformed in a SF equivalent. However for many 
processes in which several material-like resources are transformed into and/or transform each other (e.g. systems in 
business dynamics, environment, biology…), a KPG is usually more parsimonious in arrows and thus less visually 
complex than its corresponding SF diagram. It is also closer to our cognitive or mental models and thus more intuitive. 
In consequence, for this class of problems, KPG models are often easier to obtain, explain and maintain than SF 
diagrams and frequently suggest new vistas on a given problem. Section II discusses the current tools of SD (causal loop 
and stock-flow diagrams) and surveys quotations by leading SD scientists suggesting that these tools need some basic 
improvements. The rest of the paper presents KPGs which generalise the tank-pipe metaphor underlying SD by using a 
chemical reaction metaphor allowing a more natural representation of resource transformation. KPGs import some ideas 
from the method of Bond Graphs used in engineering to represent energy-based systems. Since SD is basically a kinetic 
theory, these BG concepts have nevertheless to be strongly modified. We briefly discuss the implementation of KPGs in 
the library KPG-LIB for the bond graph modelling and simulation software 20-SIM, (see footnote 1). Finally, we present 
very briefly three advanced aspects of KPGs : array-based KPGs, fuzzy processes and adaptive graphs and we list some 
significant examples developed in our consultancy work in business dynamics, socio-economy and biology. We conclude 
by showing where exactly KPGs belong in the family of modelling languages and by discussing our current research. 
 

 

I. INTRODUCTION 
 

Since 1990, I have used System Dynamics (SD) in scientific research, in academic teaching and in a consultancy 
business. During that period, I have developed mid and large scale SD models in biochemistry, physiology, regional 
development, governmental policy analysis and business dynamics. Like many SD users, I often had the feeling that the 
graphical representation of SD models was not as intuitive and parsimonious as it should have been. This was most 
obvious in biochemistry, a field in which I was using two methods: SD to develop kinetic models of metabolic pathways 
and another graphical methodology from engineering, the Bond Graphs (BG) [1,2] to build energetic models of the 
same pathways. Despite their greater level of detail, the structure of the BGs was easier to explain to biochemists than 
the Stock-Flow (SF) diagrams of their SD cousins. It was therefore tempting to ask if  a purely kinetic method merging 
the main ideas of SD with some features of BG would not provide SD models with appreciable gains in simplicity and 
intuition. However, SD is a kinetic theory and BG are based on energy conservation. Direct integration of both methods 
is thus impossible and many adaptations are needed. Would the resulting method still present intuitiveness and 
simplicity ? This paper presents the results of the work started in 1995 to answer these questions. Its result is a new SF 
graphical modelling tool called « Kinetic Process Graphs (KPG) » implemented in the library KPG-LIB for the software 
20-SIM.  
                                                        
1 This paper mentions the following trademarks : KPG-LIB (from IDEA.SIM, Harrow, UK), ,20-SIM (from ControLLab, Enschedde, NL), 
STELLA (from HPS-Hannover, NH, USA), Powersim (from POWERSIM, Bergen, Norway) and Vensim (from Ventana – Harvard, 
MA,USA). 
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Until now, KPGs have been presented only to audiences specialising in simulation methodology [3,4] and 
engineering modelling [5] and the goal pursued here is to submit their main concepts to the SD community 
for discussion. KPGs extend the stock-flow diagrams of SD by replacing the classical tank-pipe metaphor by 
a generalised chemical reaction called a «(N,M)-process » which admits the tank-pipe metaphor as a 
particular case for N=M=1. To change, even partially, the metaphor on which a whole research community 
is  thriving is certainly a high risk business which has to be strongly justified. Therefore section 2 briefly 
reviews the existing SD methods and discusses quotations from leading SD authors suggesting that some 
improvements are needed2. Our new (N,M)-process metaphor is then introduced and I suggest that its use 
may give significant benefits in simplicity and parsimony of the models for many SD applications ranging 
from biochemistry to socio-economy and business dynamics. Section 3 uses then simple biochemical 
examples to introduce heuristically the main KPG notions and to show how they complement  the current 
SD methodology. The rest of the paper is devoted to a more complete presentation of KPG, introducing 
successively its main concepts and notations, some advanced concepts needed in the development of large 
scale models and my current research directions. Finally the conclusion discusses how KPGs relate to other 
modelling methods: graphical continuous methods like block diagrams, bond graphs and classical System 
Dynamics, object oriented equation-based continuous methods  and discrete event methods.  
 
 
2. WHY DO WE NEED TO MODIFY THE STOCK-FLOW NOTATION OF SYSTEM DYNAMICS? 
 
The two main graphical modelling tools of System Dynamics (SD) are « Causal Loop or CL» diagrams and  
« Stock-Flow or SF » diagrams. They  emerged almost fully defined from the seminal work of J.W. Forrester 
[6-9]. Over the years impressive progresses have been made in their application methodology (e.g. mental 
model elicitation and refinement, group modelling, policy modelling, validation, micro-worlds…) and 
obviously in their supporting software.  However, their basics have remained almost unchanged (see their 
original definitions in chapter 8 of [6] for SF and in p.257 of [9] for CL). Despite and perhaps because of 
this longevity, the use of CL and SF diagrams in real world modelling is not without its problems, repeatedly 
discussed in the SD literature and briefly surveyed hereafter.  
 
Let us see first what current authors think about CL diagrams (see [7] for a brief history). Initially Forrester 
did not use them (there is no CL-diagrams  in [6-8]). Then he started to use them sparingly and only as 
explanatory aids (see for instance [7], p.257). Soon their apparent (deceptive ?) simplicity led many people 
to use them also as pre-modelling tools for interdisciplinary works in which SF diagrams were seen as too 
technical3. However, from the beginning, many people recognised the limitations of CL diagrams for 
modelling. To mention a goldsmith’s opinion, let us give here a quotation from Forrester [11]: 
 

« Causal loops do not provide the discipline for thinking imposed by level and rate diagrams in SD. I do not use 
them as the beginning point for modelling. Instead I start from identifying the system levels and later develops the 
flow rates that cause those levels to change. Sometimes I use CL-diagrams for explanation after a model has been 
created and studied. For a brief presentation to people who will not try to understand the real sources of dynamic 
behavior, CL diagrams may be a useful vehicle for creating a general impression of the subject. » 
 

Similar opinions have been expressed by many experts ([1], [11-17]). Although not accepted by all, the 
lesson emerging from their papers is that the use of CL diagrams for modelling is not conducive to good SD 
practice. Therefore it seems that, in their current form, they should only be used in the early phases of a 
project as tools for the elicitation of simple aspects of the underlying mental models and, at the simulation 
stage, to help in introducing some general aspects of the observed dynamics. In both roles they may and 
should be improved and automated by using for instance artificial intelligence methods like semantic 
attributes, fuzzy cognitive maps and qualitative simulation. However, due to the uncertainty generated by 
this kind of methods for high dimensional problems, we conjecture that the usefulness of CL diagrams will 
not scale up well. Their improvement, although much needed, is therefore not my priority. 
                                                        
2 All the quotations made n this paper are a bit shortened. However, I think that their messages are true to the originals.  
3 We focus here on System Dynamics and thus computer modelling and simulation are crucial. We will thus not discuss the 
qualitative use of CL diagrams and archetypes by the « System Thinking movement ».  



On the contrary, it is what Richmond calls operational thinking or «Thinking Physics» [14], i.e. getting a 
clear view of the structure of the stock and flows of a system which is the  «Key Step» in building a good SD 
model [14] and it is often impeded by the use of CL diagrams. In this perspective, SF-diagrams become thus 
the main SD tools. Initially, stock-flow models were built  directly in code (e.g. Dynamo). With the advent 
of graphical programming, it was realised that a code-based approach was limiting drastically the 
communication with domain specialists and model users. Thus many current SD packages (e.g. Stella, 
Ithink, Powersim, Vensim, see footnote 1) implement stock-flow models graphically, i.e. as SF-diagrams. 
This notation has been quite stable over the years having got only some additions (conveyors, queues, ovens, 
co-flows, sectors) since the early seventies. It has thus acquired the status of a de-facto paradigm and almost 
every system dynamicist takes it for granted. However,  a disturbing voice may be heard from B. Richmond, 
the very father of Stella and Ithink. In a 1994 paper, he wrote an assessment of the SF graphical language 
[14]. Putting together and shortening  some of his sentences, his message reads: 
  

« Operational thinking represents the essence of SD… one does it when one gets at the core SF (stock-flow) 
infrastructure... We must thus focus on understanding the impediments to internalising the SF language… The first 
is the abyss between a mental model and the associated SFD. The second is the visual complexity of SFDs which 
often look like a spaghetti of stocks, flows, converters and connectors… We must find ways of parsing them out into 
more bite-sized chunks... We must squarely face up to the challenges inherent in bringing about a major paradigm 
shift and in improving our language. » (Note :  underlining by the author of the current paper) 
 

We find a message hinting also at a lack of intuitiveness in a recent text from Forrester [13] : «The level-rate-
feedback structure in SD is the fundamental structure of real social and physical systems…The process of SD 
modelling must still be baffling to those who are new to the subject…. There is still much room for very constructive 
research on the process of converting information from the real world into SD models. » 
 
Supported by Richmond’s view but being more radical, we claim that, for mid to large scale systems, SD-
diagrams are often too complex to be of much help in interdisciplinary model formulation, understanding and 
modification (we call this « the visual complexity trap »). We also claim that the difficulties felt by many 
users to draw even simple SD diagrams show that these diagrams do not correspond sufficiently well to our 
cognitive representations of the systems modelled (this is « the mental abyss »). Clearly, improving the SF 
notation to decrease these two problems must be our first priority. 
 
To better understand what is wrong with SF diagrams, let us discuss first the visual complexity trap. 
Richmond’s drastic opinion is confirmed by a brief examination of the SD papers describing large models. 
Often, their authors  present only the global structure of their models. This is clearly inadequate since then 
the reader cannot really understand and check the work presented. Other, specially with very large models, 
revert to equation-oriented languages and, in some cases, do not even mention their links with SD. Again 
this is unsatisfactory. Finally, a few papers present the SF diagram completely but then fall in the complexity 
trap. In all cases, the result is «cognitive overload » which, for the reader, leads to misunderstanding and 
rejection and, for the modeller, to oversimplification or a very difficult life.  
 
Obviously, the more complex a model is, the more we feel this complexity trap. A possible answer to that 
problem is thus to limit our use of SD to simple models. This has been a trend in some recent SD works 
focusing almost exclusively on very simple models well suited for general insights or introductory teaching 
but often too oversimplified for  more realistic applications. Excessive focus on such simple models  give to 
outsiders and would-be users and customers the wrong feeling that SD may only be used for elementary 
modelling. It creates thus an attitude of rejection in some professional circles (e.g. among many engineers or 
hard scientists). On the other hand excessively detailed models miss the point of good system thinking : to 
see at the same time both the forest and the trees by adopting what Richmond calls the « intermediate 
vantage point between specificity and breadth ». Thus we have to focus on models of « intermediate 
complexity » and, as Forrester tells us, the definition of what this means clearly depends on the goals and 
intended uses of the model [18]: « For interacting with mental models, small models have clear advantages over 
large ones. However, the appropriate size of a model depends on the amount of time and effort available to study it. 
In a half day, all we can do is to consider a few variables. For a detailed study, with months available,  models can 
be of a far wider scope.» 



Thus we need both simple models used as sources of metaphorical, preliminary or general insight and mid or 
even large scale models for more comprehensive prospective work. These more complex models are 
obviously subject to the full complexity trap. Their maze-like SF diagrams are difficult to use. Even the 
model builders themselves have troubles when, after a few months spent on other projects, they need to 
modify a large model. Similarly, it is quite difficult to use a complex SF diagram to understand the 
underlying model from scratch and to see its assumptions and its structure. Finally using a SF diagram to 
explain a complex system to non specialists (students, managers, customers, general public) is just asking for 
trouble. Array variables, modularisation and hierarchical structures have been introduced and go a long way 
to improve communicability. However, if we use them too much, we end up with another form of the 
complexity trap : in trying to get a global view of a strongly modular and hierarchical complex model, we 
need to shift so frequently from one level to another that, again, the global view fades away and remains out 
of focus. Obviously, nobody expects a faithful graphical model of a truly complex system to be simple. 
However, our methods should not make this representation more complex than strictly needed. Since SF 
diagrams should be communication vehicles between people, there is clearly room for improvement.  
 
Richmond’s first impediment, the mental abyss separating our mental models and SF diagrams is more subtle 
to perceive. As this author explains in [14], this abyss does not appear exclusively in large models but even 
in small ones since the difficulty starts with the first stocks and flows drawn on a piece of paper when 
starting a study. To isolate the problem, let us consider a typical small model, the classical prey-predator 
« PopDynam » model used in the « Getting Started »  brochure of Stella [19]. Due to its educational role, 
this SF diagram has probably been chosen for its intuitiveness, good compromise between simplicity and 
complexity and intrinsic interest. However, let us ask ourselves if we can use it directly as our main 
communication tool to explain basic ecology to complete newcomers to SD and ecology. Let us consider for 
instance Fig.1 which gives a slightly modified version of a figure found in this brochure [29]. 

Fig.1 : A SF diagram modified from an introductory SD text [19] 
 

This SF diagram looks crystal clear to every system dynamicist worth his or her salt. However, I tried to use 
it and similar models with newcomers to ecology (students in secondary education, medical students, 
average citizens) to introduce them to simple notions like exponential and limited population growth, 
dynamic carrying capacity, links between nutrition, metabolism and reproduction, prey-predators… Then I 
asked them to express their feelings about the diagrams themselves. In general, they found them acceptable. 
Indeed, to avoid the complexity trap, I presented only simple and classical  ecological models like the one 
above and Volterra-like models. However, they also felt a bit puzzled by their structure, saying things like : 
 

A 13 year old student pointing to source A (Fig.1): « What is the source of deers ? » 
 

A biology student showing the signal B (Fig.1): « You told us that dark lines are signals and do not transport 
materials. But then look: eating plants is a signal. This is strange. Deers eat plants, they do not receive signals from 
them. To come to that, they do not receive signals from plants to die (point C)… I  understand what you mean but…» 
 

A biologist : « Ok, I can use your diagrams, this is not a big deal but to me, they are just another way to describe the 
equations. For instance, they do not fully capture what I mean when I speak about material flows in metabolism...» 
 



To avoid a bias due to the particular model considered, I did similar interviews for two other models : a 
model of a Michaelis-Menten enzymatic process [20] and the CCRS model of human resource management 
in business dynamics [21]. Although expressed differently, the reactions were quite similar.   
 
Let us now make some remarks : 
 

- In SD we are always told to look at the endogenous causes of a behaviour. It is thus interesting to note 
that the first naï ve comment points at an exogenous source. We all know that its presence is just a 
notational trick… but it is indeed the artificial nature of this element which creates a problem for the student. 
Such dummy sources are endemic in SD diagrams. It seems that they are sources… of confusion and should 
be eliminated when possible. Obviously, this cannot be done without basic changes to the SF method. 
 

- The two other « gut reactions » are interesting too : these people express what they perceive as unnatural 
in the SF notation : the representation of material flows (e.g. plants enter into deers) by signals linking 
entities of different natures. Again modifying that point needs basic changes to the SF method.   
 
At first sight, these two remarks seem anecdotal and we might just ignore them. However, I claim that they 
reveal something important since they point towards areas of confusion which, if taken seriously, forces us 
to a complete revision of the basics of SF-diagrams. Indeed, what they really mean is that, if we delete all the 
auxiliary signal links from a SD diagram, to focus only on stocks and flows, we get a few rather simple 
disconnected networks having each the form of a tree and usually showing  dummy sources (Fig.2).  

Fig.2 : Simple disconnected trees showing the usual structure of stock-flow networks when the networks 
of auxiliary signals are ignored. 

 

This is due to the fact that all the entities flowing in a connected set of stocks and flows must have the same 
nature or in other words, that a flow process may have only one input stock and one output stock. Indeed, in 
[6] (p.70), Forrester gives what I call the principle of « material network consistency » which is the basis if 
the tank-pipe metaphor: 
 

It should be noted that flow rates transport the contents of one level to another. Therefore the levels within one 
network must all have the same kind of content. Inflows and outflows connecting to a level must transport the same 
kind of items that are stored in the level. Items of one type must not flow into levels that store another type. 
 

This assumption seems totally sound and belongs to the very core of SD. However, I will suggest  in the 
next section, that it often gives a decomposition of the networks of stocks and flows which is mathematically 
correct but too detailed and too close to the equations representing the system to really express the structure 
of our mental models. I will also suggest that, as far as flow rates and stocks are concerned, this is the basic 
source of the mental abyss. The following sections will then present the theory underlying a modified 
notation for SF diagrams eliminating this problem and allowing us to build what we call «cognitively 
justified models». We will also see that this new notation gives much simpler and « parsimonious » diagrams 
and is thus a partial solution to the complexity trap problem.  
 



3. (N,M)-PROCESSES : A NEW METAPHOR FOR MATERIAL STOCK-FLOW DIAGRAMS 
 
Before to proceed, we must make some remarks limiting the scope of our claims which otherwise could 
appear overly ambitious.  
 
First, our new graphs will be compatible with the existing SD framework which has proven its worth time 
and again. This compatibility requirement has two consequences : 
 

- We keep the basic pillars of Forrester’s thinking : flows, stocks, intertwined causes and effects, delays 
and feedback loops remain central to determine the dynamic behaviour of a system and we still focus on 
endogenous reasons for this behaviour before to suppose that it comes from exogenous factors.  
 

- The new method does not extend the scope of SD. Its goal is only to provide clearer models for the 
same class of systems. It is easy to show that SF-diagrams are generic for systems described by delay-
differential or even functional equations. Any model developed with the new graphs will thus have a SF 
equivalent and the translation of the new model to a SF model will be algorithmic. Finally, it exists many 
cases in which the current SF-diagrams are perfectly satisfactory. In these cases, our new method will 
reduce naturally to classical SF-diagrams. 

 
Secondly, the extent of our modifications is limited. SF-diagrams interconnect what Forrester calls  physical 
networks and information networks [6]. Physical networks deal with flows of matter-like quantities like 
people, money, goods or species  which satisfy a conservation principle. Hereafter we will call them 
« generalised matter or GM-networks ». Information networks represent signals. They have thus no 
conservation property. We will call them « generalised information or GI-networks »4. Stocks (called levels 
by Forrester) exist not only in  GM-networks but also in GI-networks.  Indeed as soon as it is dynamic, i.e. 
has a memory, a GI-network contains integral operators which are equivalent to stocks. For instance entities 
like awareness level, motivation or knowledge may be represented by accumulations and thus by stocks. 
However GM and GI-stocks are different, a fact which has important consequences for our work :  
 

- We distinguish carefully between both kinds of accumulation by using different names and symbols for 
GM-networks (stocks) and GI-networks (levels). Although making this distinction clearly in its principles, 
standard SD does not distinguish sufficiently between both at the level of its notations. This fact, in 
addition to creating some confusion for non specialists, may be one of the reasons why the representation 
of GM-networks has remained a bit under-developed in modern SD. 
 

- Our representation of GI-networks will be very similar to the one used in SD. Indeed, considering the 
huge variety of SD applications ranging from biochemistry to biology and management, I do not think that 
there is much to gain in trying to find a set of totally general structuring principles for GI-networks5.    
 

- The thrust of the effort reported here is to find such a set of general structuring principles for GM-
networks by focusing on matter conservation which is valid not only in SD but also in physics and 
chemistry. The question is thus to see if we can benefit from the more structured approaches to modelling 
used in these fields. They have two conservation principles (matter and energy) and a method like bond 
graphs implements them directly in its structure. We, in SD, cannot use energy conservation as a general 
concept. Indeed, energy, although existing in all systems, is not a useful concept for most applications of 
SD which, to use a physical terminology, are purely kinetic. We have therefore to abandon all the physical 
modelling concepts representing energy-based aspects. It remains then a core of physical modelling ideas 
dealing with matter conservation. Until now, they have not been interwoven in the fabrics of SD. We 
claim that there is much to gain by doing so and, taking really and deeply Richmond’s advice on the need 
for « Thinking Physics ». This is exactly what the remaining parts of this paper do.  

                                                        
4 The term « generalised » is needed for both networks. It is only from the aggregated  viewpoint of our models that people or 
animals may be considered strictly as matter. Similarly, the information network contains entities like a degree of motivation or 
an anxiety level which are seen as information in our models but are probably much more complex than that. 
5 Although, as shown by Morecroft,  that may very well be possible and fruitful in specific fields of applications like business 
dynamics in which management and decision theories may for instance provide some general background to policy modelling. 



Biochemical kinetics seems to be the proper field in which to go shopping for new ideas to improve the 
representation of SF-diagrams by focusing on matter conservation. Indeed, biochemists spend their working 
life in analysing complicated set of reactions which they see as networks in which matter flows and is 
transformed. The first task on our agenda is thus to compare their descriptive tools with SF-diagrams6. 
 

We start by remarking that the kinetics of a simple mono-molecular reaction is naturally described by a a SF-
diagram. This is shown in Fig.3-A where we see, in panel A, a reaction R> from A to B with a rate given by 
the  kinetic equation dB/dt = -dA/dt = F(A,B,y), y being an external signal like for instance the temperature 
or PH level. Its SF-diagram is given in panel B and proves our point. We can go further : every set of mono-
molecular reactions may be represented by a SF-diagram as demonstrated in panel C which shows the GM-
network of the system of reactions A→B, B→C, B→D, C→A, A→E, E→F with provision of A from 
outside and loss of D and F to the environment (auxiliary signals not represented).   

Fig.3 : Representation of mono-molecular reactions by SF-diagrams. 
 

The cycle ABCA, the competition of reactions for using A and B and the organisation or structure of the reactions are 
obvious at first glance in the SF-diagram but need attention to be remarked in the above list of reactions. This is a minor 
advantage for such a simple system but it is very important for large sets of reactions with many cycles, branching points,  
recombination points and disconnected reactions. In fact, to support their discussions, biochemists who routinely study 
sets of hundreds of reactions with hundreds of chemicals use a specific informal representation called a « metabolic 
map » which uses symbols like those of panel A to represent their networks of reactions [17]. The metabolic map of the 
example of panel C is given in its inset. It has obviously the same structure than the SF-diagram. It should thus be clear 
by now that, for sets of mono-molecular reactions, SF-diagrams are just the fleshing out of metabolic maps with all the 
details needed to get fully fledged models but with the same high level of simplicity and intuitiveness. If biochemists find 
mono-molecular metabolic maps useful for qualitative discussions, they will of course accept SF-diagrams very well 
since they bring dynamics, i.e. life to metabolic maps.  
However, mono-molecular reactions are quite trivial. The situation changes drastically when we consider 
more complex cases like the general bi-molecular reaction nA +mB →pC + qD in which n moles of species 
A and m moles of B combine to produce p moles of C and q moles of D7.  Its metabolic map (Fig.4-A) uses 
the same symbols than in Fig. 3-A plus two additional nodes called J and S. It clearly shows that the material 
flows of A and B get together at point J (join) in a reaction R> which produces and separates at point S 
(separate) the material flows of C and D. The most salient point in this map is that material flows of different 
entities A and B join in given stoechiometric ratios at point J and that the reaction separates its products in 
given stoechiometric ratios into flows of different entities C and D at point S.  

                                                        
6 Our heuristic basis is chemical. Thus we cannot avoid here the presentation of some elementary chemical kinetics. If the 
chemical knowledge of some readers is too rusty to accept comfortably the arguments presented here, they should not despair. 
They should indeed be able to follow the gist of the argument. Moreover, later sections will redefine these notions without 
further references to chemistry. They will also present applications to management. 
7 The « stoechiometric coefficients » n, m, p, q define the atomic proportions of A, B, C, D needed and produced in the 
reaction. 



This is directly in contradiction with the SD principle of « material network consistency » recalled in section 
2. In fact, SD has no « direct » means to represent points like J and S for junction and separation of material 
flows of different natures. Consequently, the SF-diagram must use a trick to represent them (Fig.4-B). It is 
made of 4 trivial and disconnected GM-networks, one for each species. Reactants are represented by stocks 
flowing into sinks and products by stocks filled by sources. The reaction rate (flow) is computed by an 
auxiliary block R receiving the appropriate signals and imposing it through blocks imposing stoechiometric 
constraints to all the flow-defining taps. In contrast with its metabolic map (panel A), this diagram presents 
the flaws discussed before  for Fig.1 and 2: 

- The material flows are connected only by signals and the GM-network contains dummy sources. 
- Conservation is imposed artificially by abstract signals which do not exist in reality. 
- It is much more complex (i.e. contains more arrows and symbols) than the metabolic map. 

 

Fig.4 : Representation of a pluri-molecular reaction by a metabolic map and a SF-diagram. 
 

Like in our ecological example, if we try to use the SF-diagram to explain this basic reaction to a student or 
if we try to convince a professional chemist that it is a description as intuitive as the metabolic map, we will 
run into trouble. SF-diagrams lack the notions and notations J and S needed for a parsimonious and intuitive 
representation of a general, i.e. non mono-molecular, chemical reaction with an arbitrary stoechiometry. 
Some tricks are needed and they do not result in a parsimonious and cognitively justified diagram. For a 
single reaction, this is still acceptable. We can certainly find our way around the SF-diagram of Fig.4-B. 
However, for  a network of reactions, the SF-diagram becomes a nice example of Richmond’s complexity 
trap. Consider for instance the following biochemical reaction scheme depicting an enzymatic system: 

S→P1,   S+E↔C,   C→P2+E,   E+I→EI,   EI→EXT 
Although a bit more complex, it is very similar to a SD example presented in [20].  Its metabolic map, 
obtained by combining the maps of each reaction, is given in Fig. 5-A. We will now give an introductory 
description of this system and we invite the reader to follow it directly on Fig.5-A to realise that this map is 
indeed a good vehicle for communicating the main aspects of this system. We see a reactant S (substrate) 
provided from the environment by an input process PI>. It may then follow two reaction pathways R1> and 
R2> in competition for its use: R1> transforms it in a product P1 and alternatively, <R2> combines it with an 
enzyme E to produce reversibly (arrows on the two sides of <R2>) an intermediate product C (complex) 
which then is decomposed irreversibly by a reaction R3> into a product P2  while recycling the enzyme E. 
This enzyme E may thus cycle repeatedly along the path just described, taking at each cycle a molecule of S 
and producing a molecule of P2. The number of molecules of E cycling and thus the production of P2 may be 
decreased by a reaction R4> binding E to a molecule I (inhibitor) to give an ineffective enzyme EI eliminated 
into the external environment EXT by an output process PO>. This map shows clearly the fate of the various 
species, the cycle, the two competitions between reactions for S and for E. It is thus a good tool to discuss 
qualitatively the dynamics of this reaction scheme and I used it many times to teach basic enzymatic kinetics 
to complete beginners. They always considered it as very intuitive and useful. 



The corresponding SF-diagram is given in Fig.5-B. In an effort to make it more palatable, I have drawn it 
with the same spatial arrangement of the stocks than the one used in panel A. Despite this, if you try to 
follow the previous description directly on the SF-diagram, you will experience problems due to the fact that 
it presents the previously described pathologies to an extent making its use difficult for what should be 
simple discussions. Since the diagram is not very complex, the problem is not its complexity but its lack of 
intuitiveness. It seems to most users that the metabolic map captures well our mental model of the structure 
of a reaction network and that a SF-diagram does not do it well. This is exactly Richmond’s mental abyss8.  
 
Remark that, compared to the sophistication of real biochemical networks, this example is elementary. It has 
only a few reactions and does not use stoechiometric coefficients. If we were using more complex networks 
with these two features, we would see that the metabolic map scales up well and remains usable and even 
mandatory for any serious understanding [22]. However, SF-diagrams would become almost useless. We 
would experience then the full force of the complexity trap. Like Forrester said (see previous quotation), 
building or using SD models may indeed appear sometimes quite daunting.  

 Fig.5 : Representation of an enzymatic reaction scheme by a metabolic map and a SF-diagram 
 

As far as chemistry is concerned, the way forward is obvious, we want our SF-diagrams to be as simple and 
intuitive as metabolic maps but also to be able to present unambiguously all the details needed to fully define 
the underlying model and its simulation program. We will show in the next section that this may be done by 
re-defining taps and by adding to the current concepts of SF-diagrams special symbols dealing with the 
operations denoted in Fig.4-A by the « Join » and « Separate » points and by the stoechiometric coefficients. 
However, there is more to SD than just chemistry… and it is now time to look further to other applications. 
Our goal is to make SD more powerful and not only to get better chemical kinetic models. Will the 
modifications just suggested be sufficiently generic to cover the whole range of SD applications?  
                                                        
8 For instance, you may try, as I did years ago, to convince a biochemist that Fig.5-B is at least as intuitive as Fig.5-A and you 
will loose some hardly gained credibility. This is in fact what motivated me to develop the Kinetic Process Graphs. 



This question may be answered positively by defining what we call a (N,M)-process. It is an (eventually 
abstract) operation taking at each time stoechiometrically defined flows of N input GM-quantities and acting 
on them to produce stoechiometrically defined flows of M resulting output GM-materials. Like it is done for 
flows in SD, the rate of a (N-M)-process is defined in steps per unit time by a formula or algorithm 
dependent on different variables communicated to the process by auxiliary signals. However, in opposition 
to SD flows, a (N,M)-process acts on N species and produces M species at each time. The entering and 
exiting flows of each species are deduced from the rate by multiplication by the stoechiometric coefficients.   
 
(N,M)-processes are similar to but more general than chemical reactions since their rate laws may be much 
more general than those used in chemical kinetics and since their stoechiometric coefficients, instead of being 
constants like in chemistry, may depend on all sorts of auxiliary variables. This similarity is made obvious by 
Fig.6. Panel A defines a (N,M)-process by a chemical-like equation. We call A1,…,AN its input GM-stocks 
and B1,…,BM its output GM-stocks. The process occurs at a rate R(X,U,t) expressed in number of steps per 
unit time and dependent in general on several variables : a vector X of variables measuring the contents of 
stocks in the model (i.e. of the stocks participating as inputs or outputs to the model as well as of any other 
stocks), a vector U of external time-dependent signals, and sometimes explicitly of time. At each time, the 
process computes its rate R and takes flows computed stoechiometrically (see defining equations) from its 
input stocks to deliver stoechiometrically computed flows to its output components. Stoechiometric 
coefficients, instead of being constants like in chemistry may be controlled like the rates. 

Fig.6: Defining a (N,M)-process by a chemical-like equation (A), a «Process map » (B) and a SF-diagram (C). 
 

The equations of the rates and stoechiometric coefficients are not restricted to simple algebraic forms but 
may be arbitrary functionals of their arguments. Panel B shows the corresponding generalised metabolic map 
which we call now the « Process Map PM » and which is quite simple. Its stoechiometric coefficients and 
the symbols J and S have still to be defined mathematically but we will see later that this does not modify the 
complexity of the map. Panel C gives the SF-diagram which, as expected, is more complex. It remains to 
show that (N,M) processes do occur naturally in SD applications and to define more exactly the symbols of 
their «Process Maps» given in Fig.6-B but if these two points are dealt with, it seems obvious that SF-
diagrams incorporating (N,M)-processes represented as simply as in Fig.6-B will go a long way to fulfil our 
goals of parsimony and intuitiveness. 



Firstly, let us see what exactly is the scope of (N,M)-processes. Can we use them « naturally » in discussing 
non-chemical systems like those studied in SD ? To see this, let us consider the following list of application 
domains and chemical-like equations describing very informally some (N,M)-processes denoted by P> 9: 

a) Bio-technology    : bacteria+glucose  P>→ more bacteria+useful products+toxins 
b) Ecology                : foxes+rabbits P>→ more foxes+biomass  
c) Population biology: people+food+water P>→ more people+pollution+toxins  
d) Epidemiology   : uninfected people+infected people P>→ more infected people  
e) Management    : equipment+materials+resources+people P>→ products+equipment+people+pollution  
f) Management   : products+orders+resourcesP>→ more resources+provided customers  
g) Management   : resources+trainees+trainers P>→more trained staff  
h) Management   : doctors+patients+resources P>→ cured patients+ doctors 

 

Admittedly, the views expressed in these processes are too simple to be really useful. However, they are not 
much more simplified than the ideas which we use generally as starting point for SD models and we can 
understand their meaning intuitively without further explanations. We can even see directly how naï ve they 
are and how we would modify them or add supplementary processes to go further and get much less naï ve 
models in the form of networks of processes representing our mental models. Despite their simplistic 
character, we may use them as communication vehicles in our discussions about the systems concerned. For 
instance if, in interviews conducted to build SD models, we ask people to « Think Physics », i.e. to describe 
the flows of « generalised materials » in their systems, we usually collect sentences like the following: 
 

- (1) An Australian civil servant : « In our country, foxes do not predominantly hunt rabbits anymore, they have 
started to feed on small Australian mammals and they just thrive on them. » 
 

- (2) An executive from a food company : «We tried hard to decrease the dependence of production on human 
resources but then quality went down because people were demotivated» 
 

- (3) A biochemist : « In the production cycle of this substrate, the enzyme is clearly not rate limiting. It is the co-
factors which control the production rate. »   
 

We might translate them into normal SF-diagrams. However, we can also see them as resulting from an 
hypothetical underlying « universal cognitive structure» presented by our mental models and centred around 
(N,M)-process. Indeed, we can  re-word these sentences as follows: 
 

- (1) « Foxes and rabbits interact in a hunting process which produces more foxes. Foxes also interact with small 
Australian mammals in a currently emerging hunting process which again produces more foxes.» 
 

- (2) « Human resources, equipment and materials interact in a food production process.  Decreasing human 
resources lead to an increased proportion of low quality products. » 
 

- (3) « Enzyme substrate and co-factors enter a reaction process rate-limited by co-factors.» 
 

It is now clear that we may represent them as (N,M)-processes. To see more clearly the cognitive nature of 
this representation, let us denote a stock of a quantity Q by [Q] and a unidirectional process P by P>, we 
may then represent a (2,2)-process by the notation: 

             n[A] & m[B]   →P(rP(I1,…,In))>→ p[C] & q[D]              
In which n,m,p,q are the stoechiometric coefficients. This is just a rule similar to those used in artificial 
intelligence and considered by many cognitive theories as basic building blocks for our mental symbolic 
structures [23,24]. Its semantics is simple. The process P> has a rate rP of transformation of input resources 
to output resources; rP is computed by an algorithm from given « influence signals »  I1 to In . The process 
P> transforms packs of input resources in packs of output resources. At each time t, it computes its rate rP in 
number of packs transformed per unit time and transfers these packs from its input to its output. An input 
pack is made of m units of A and n units of B. An output pack is made of p units of C and q units of D. In 
the following, we will rename the stoechiometric coefficients and call them by the more domain-independent 
names « packing and/or unpacking coefficients ». The As and Bs needed are taken from [A] and [B]. The 
Cs and Ds produced are sent to [C] and [D]. 

                                                        
9 These definitions are illustrative and informal. Their stoechiometry is specified very incompletely by words like several, more, 
less… and their rates R are left unspecified. In reality, the rates should be defined by eventually complex algorithms dependent 
on auxiliary signals and possessing frequently a dynamics and a memory of their own. All these points will be dealt with later. 



 
Using this notation, we can model one of the processes in the ecology example (1) by : 

1 [F] & 1 [R]   →P-Hunting>→ (1+n) [F] 
with F = Foxes,  R = Rabbits and n>0. In that representation, the rate equation r= r(I1,…,In) is left 
unspecified. Remark that [F] appears on both sides : a fox entering P-Hunting> produces 1+n foxes. This is 
just  a slightly more accurate version of the informal ecology process given above. 
 
 In the same way, for the production process (2), the result would be : 

h [H] & e[E] & m[M]  →P-Production>→ fH[HF] & fL[LF] & [H] & [E] 
with H = human resources, E = equipment, M = materials. HF and LF are high and low quality food. The 
packing coefficients fH and fL sum to 1 and may be variable to express the changing proportion of  low and 
high quality food. Again H and E appear on both sides since their units are recycled after each production 
cycle. Compare with the informal rule (2). 
 
Finally, the chemical example becomes : 

[E]+[S]+[CF] →P-Reaction mechanism>→ [P]+[E]+[CF] 
These rules or processes are obviously similar to a chemical reaction nA+mB→pC+qD but the kinetic 
algorithm of P> is usually more complex than the chemical laws and the packing and unpacking coefficients 
n,m,p,q may be modified by various influences.  
 
With this notation, we have thus established a bridge with the modern theories of cognitive psychology 
which use similar production rules in much more general settings. Since improving our knowledge on the 
nature of the mental models with which we perceive our systems is an important objective for SD, it seems  
that the connection just mentioned should be profitably pursued. However, we cannot really use the rule 
notation as a basis for SD. Indeed, we would end up with a representation of the model by a large collection 
of lines like (1) and we would be as confused as before. Due to the multiple appearances of  resources in the 
left and right sides of several lines, it would indeed be very difficult to get a feeling for the global behaviour 
of the system. This kind of rules may well be used as unconscious or partial building blocks for our mental 
models but we are also visual animals. What our conscious cognition needs to reach a global understanding 
of a system is not a set of rules but a diagram summarising them. This is just what the informal metabolic 
maps described before achieve by connecting together the representations of each reaction. These maps are 
to reactions what semantic or cognitive maps are to rules in artificial intelligence.  
 
This end up our qualitative discussion of the motivations and basic hypotheses underlying Kinetic Process 
Graphs (KPG). The next section will now present them more accurately. We will proceed in two steps :  

- Our first step will be to define what we call «Structural Process Maps or PM». We will begin by 
defining the components of an elementary process map like the one shown in Fig.6-B and then we will see 
how we may interconnect elementary process maps to get the PM of a system. The PM generalises and 
makes quantitative the metabolic maps discussed above. It allows the representation of the relations 
between the various stocks and flows of a system and the computation of all the flows entering or leaving 
the stocks once the external inputs and the rates of its various processes are determined. We use the word 
« structural » to characterise this map since it summarises all the properties of the system which depends 
only on its GM or “physical” structure (defined as the interconnections between its stocks, processes and 
packing/unpacking coefficients) and not on the functions modulating the packing/unpacking coefficients 
and the specific rate laws or kinetics used to compute the process rates themselves. We will see that, if, at 
each time, we know the rates of each process and the values of the packing and unpacking coefficients, we 
can compute the flows everywhere in the PM and thus obtain its state equations.  
     

- Then in a second step, we will show how to compute the process rates and values of packing/unpacking 
coefficients needed by the PM defined in the first step. This will be done by  defining a signal network 
transmitting to these elements the signals needed to compute their values. We will call these signals 
« Influences »; their network will thus be called a « GI-network ». By interconnecting the PM defined in 
the first step and the GI-network we will get a full KPG.  



 . 
4. STRUCTURAL PROCESS MAPS : DETERMINING GM-FLOWS FROM PROCESS RATES  
 
Most of the elementary components of our PMs have already been introduced informally in the preceding 
pages. Table 1 completes their definitions10,11: 
 

TABLE 1 : BASIC ELEMENTS OF STRUCTURAL PROCESS MAPS 
 

                                                        
10 For advanced applications, we have also defined other elements (multi-bonds and array elements, time varying connectors, 
external product elements, or-junctions, modular elements) to be described elsewhere. 
11 The reader familiar with bond graphs (BG) will notice that these elements are obtained by neglecting some BG elements (R,I, 
Se, GY) and stripping the other (Sf, C,0,1,TF) from every property related to power and effort variables. From a BG perspective, 
the result may, at first sight, look trivial and BG afficionados may wonder if anything useful may be achieved with it? The 
answer is a definite YES: the whole class of kinetic models and thus of SD models may be represented easily and intuitively. 

Flow is positive in the direction of the semi 
arrow and negative in the other direction. 

It indicates which side of the bond receive 
the information on the flow value. 

Q=Q0+INT(sum of flowsin –sum of flowsout). 
Must receive causal markers on each bond. 

May have both flow causality; Q is constant 
independently of the flow given or received 

Defines a rate RP and imposes the flow f=RP in 
its input and output bonds. In P>, RP is always 
positive, In <P>>, it is positive in the 
direction >> and negative otherwise.  

Same behaviour than preceding element but  
finput = RP(t) and foutput= RP(t-τ) with a delay 
τ. Thus some GM-quantity is stored inside 
(in the process internal store [Q]).  

Provides to the left side a flow f=r(t) taken 
from the constant store. 

Delivers to the constant store a flow f=r(t) 
taken from its left side. 

1) Receive an information on the value of fleft 
and imposes to its right side frigh t= n * fleft. 
2) Same definition but  fleft = n * fright.  

Receives from one of its bonds an 
information on a flow value (marker near e) 
and imposes this value to the other bonds.  

Receives information on flow values from all 
its bonds minus one. Impose on this last bond 
a flow=algebraic sum of flows on other 

Receives information on the flow value f 
(marker near r) and determines other flows 
by : f1=m*f and f2=(1-m)*f with m≤1.  



Let us now describe the symbolic representation and the meaning of these elements : 
 
Flow bond : The transportation of a GM-flow between elements is represented by a « flow bond » denoted 
by a semi-arrow12. A positive flow is considered to travel in the direction of the arrow and a negative flow 
travels in the reverse direction. When needed, the name of the flow travelling in the bond is indicated close 
to the bond on the side opposite to the semi-arrow. 
 
Flow Causality Marker : Consider a bond with its origin connected to a sub-model A and its end (arrow 
side) connected to a sub-model B i.e. A         B. The value of the flow in the bond may only be computed by 
A or B, not by both since then they could compute different values and the bond would be over-determined. 
Consider the case in which A has an equation computing the flow value. This flow value may be positive in 
which case the flow, in addition of being determined by A, physically flows from A to B. On the other hand, 
the flow determined by A may be negative and then physically flows from B to A. In the first case, A 
determines the value of flow it is delivering and in the second case, it computes the value of flow it is 
receiving. In both cases, B has just to comply and physically receive the flow if f is positive or physically give 
it if f is negative. B therefore cannot use one of its defining equations to compute f.  It is given the 
information on the value of f by A and may use it as a variable in the right terms of its equations to compute 
some other variable. In other words, B sees the flow value as a cause received from outside , i.e. from A, to 
determine its behaviour, i.e. what it will compute from it.  
 
We indicate the side which has to comply, i.e. which receives the cause  by putting a small circle called a 
«flow causality marker » on the side of the bond connected to it. Thus in the case just analysed, the notation 
becomes A           B. Obviously, since physical flow directions and causality sending are unrelated, the flow 
might as well be determined by B while flowing physically either from A to B or from B to A. In that case, A 
would have to comply by giving or receiving the computed flow. The notation would then be                       
.. .                  . These causality markers are useful to determine at first sight if a PM is well constructed or 
not. Indeed, every element will have a defining condition on its flow causality markers. If a model is well 
constructed, all these conditions have to be satisfied otherwise it contains an invalid connection of elements 
 
GM-stock : Like a stock in SD, this element stores a GM-quantity Q. We denote it by [Q]. It is connected 
to an arbitrary number of bonds which may be directed towards it or which may point to it. A bond pointing 
to a store transports a flow which, if positive, will enter the store or will leave it if negative. A bond pointing 
from the store does just the reverse. At each time t, the store determines its value of Q by computing the 
flow balance : Q=Q0 + integral from 0 to t of the algebraic sum of all its flows (Q0 = initial value). All the 
flows in the bonds connected to the store must be determined outside the store, i.e. in the model parts 
connected to the other side of the bonds connected to the store. Causally, the store must thus receive the 
values of all its entering or leaving flows. This is indicated by the fact that all its bonds, pointing to it or from 
it, must have causality markers on their side connected to the bond. 
 
Constant stock : This is a special stock used like in SD to represent boundary conditions from the 
environment. It is denoted by the SD cloud symbol but we consider it to have a given constant value of the 
GM which it provides or receive. A constant stock has one or several bonds connected to it. They may point 
towards the stock or not but in both cases, each bond must have a causality marker close to the constant 
stock. In other words, it gives or receive flows which have their values determined elsewhere. 
 
Process rate block: This is the cousin of the SD taps. It is connected to an input bond and an output bond. 
A process rate block has an equation which allows it to determine at each time the rate RP of the process  
from information signals received from other places in the model. In this section, we do not discuss this 
equation nor the representation of the signals needed for its computation. This will be done in the next 

                                                        
12 The KPG notations used from now on will be quite different from those used in SD even for the elements having an identical 
meaning in both methods. The reason of this choice is that I want to emphasize the kinship of KPGs with bond graphs in order 
to be able to minimize the adaptations needed to implement KPGs with a bond graph modelling package.   

A               B 



section. For now, we just suppose that the value of RP may be computed at each time. The process rate 
block imposes then the values of the flows in its input and output bonds by the equations fIN=fOUT=RP. It has 
thus the causality indicated in table 1. We distinguish uni-directional processes P> and bi-directional 
processes <P>>. The equation of a uni-directional process is such that its flow is always positive. The flow 
occurs thus from « In » to « Out ». This rate process block requires then at all times the value of f from the 
element connected on its « In » side and delivers f to the element connected on its « Out » side. For bi-
directional processes, the flow equation may compute positive or negative flows. The direction of positive 
flow is indicated by the double arrow >>. If f is positive, the flow occurs from « In » where it is required to 
« Out » where it is delivered. If the value of the flow is negative, the situation is the opposite. 
 
Process rate block with delay: This element verifies the same rules than the simple process rate block. 
However, its flow conditions are  fIn=RP(t) and fOut= RP(t-τ) where τ is a discrete delay. It has thus the 
memory of its flow on a horizon τ. The integral of the flow stored during the delay period may be considered 
as an internal stock of the GM transported in the process. This element is thus partially a process and 
partially a stock. This is indicated by its symbol which contains both the notation P> and the notation [Q]. 
Instead of a discrete delay we may use special continuous delays enforcing GM-conservation.    
 
Source and Sink : They are composite elements obtained by connecting a constant stock and a uni-
directional process rate block. The source delivers a flow given by f=RP and the sink receives a flow given by 
f=RP (cf. causalities). By connecting a constant block to a bi-directional process, we obtain an element which 
may work as a source or sink dependent on the sign of R (not illustrated). 
 
Modifiers : They correspond to the packing/unpacking coefficients discussed before. A modifier is linked to 
an « In » and an “Out” bond. It has a parameter n called its ratio and makes between its input and output 
flow a transformation with two cases. In case 1 (see Table), it receives an information on the value of its 
input flow and then computes fOut = n*fIn. In case 2, it does the opposite , receiving an information on the 
value of the output flow, it computes fIn = n*FOut. As we have mentioned previously, n may be variable and 
may depend in eventually complex ways on signals received from elsewhere. Again, we will not discuss this 
point here but leave it for the next section. For now we will just suppose that n is known at all times. 
 

The interpretation of the equations given above depends on the notion of packing/unpacking. We have seen 
that a process works at a rate of RP steps per unit time and at each time takes packs of various resources to 
combine them into packs of various products (see Fig.6-A). Let us thus consider such a process taking at 
each step nA units of A to give nB units of B. We represent it by the PM :  

The process P computes its rate and imposes a flow f=RP of packs to its input and output bonds. On the 
input side, the modifier (M :nA) is in the causality situation 2. We have therefore fA=nA*f. On the output side, 
the modifier (M :nB) is in the causality situation 1 and therefore fB=nB*f. These equations represent the 
packing in the input side and the unpacking in the output side. We can consider the flow f as made of packs 
of As on one side and Bs on the other side while fA and fB are made of separate units of As and Bs. Packing 
is made by a modifier with a case-2 causality and unpacking by a modifier with a case 1 causality. 
 
Equality junction : it represents the nodes which we have called previously J (join) and S (separate). An e-junction (e 
for equality) may be connected to an arbitrary number of bonds with arbitrary orientations. One and only one of its bonds 
must have its flow causality marker near the e-junction. This bond, called the commanding bond (see the little  in the 
table) imposes thus its value of flow to the junction. This value may be positive or negative and the commanding bond 
may point toward the e-junction or depart from it. Then the e-junction imposes to all the other bonds to have a flow 
value equal to the one imposed by the commanding bond. These other bonds, receiving the information on their flow 
value, have thus the causality indicated in the table (marker on the side distant from the e-junction) and impose this value 
of flow to the elements connected to them. We will see later that e-junctions are used mainly in direct connection with 
(N,M)-processes with N,M>1 where they give us the packing and unpacking points needed for each participating GM. 



Balance junction : This is the dual of the e-junction. It may be connected to an arbitrary number of bonds 
with arbitrary orientations. All its bonds except one must have their flow causality marker near the b-junction 
(b for balance). The junction receives thus the flow values in all these bonds. It computes their algebraic 
sum, i.e. their balance and imposes the result as the flow value in the remaining bond which is called the 
commanded bond (see the little ) and has thus a flow marker on the side distant to the junction. This 
junction is mainly used to compute explicitly the balance of flows for a stock participating to several 
processes (see later). 
 
Repartitor : This is a composite element (cf. left side of the repartitor box in Table 1) made of an e-junction 
connected to modifiers with ratios summing to 1. The e-junction receives a flow f and transmits it to its 
output bonds. The modifiers, receiving each an input flow f, compute their output flows respectively equal to 
mf and (1-m)f. The flow is thus divided in a given ratio between the branches. In practice, we use the 
notation given on the right side of the repartitor box (table 1). It is an input repartitor. We may reverse the 
direction of each bond (but not the causal markers) and we obtain an output repartitor requiring a flow f 
from two directions. We use also repartitors with more complex conditions than simple equality to 1. 
 
This ends up the first description of our elements. We will see later that each of them has additional features  
to deal with signal propagation. Right now, to gain some insight on how these elements combine together, 
we will present a few simple PMs (Fig .7).  

Fig.7 : Process maps of the simple examples used in the text 
 

Our first example is the elementary process mA+nB → pC+qD (see also fig.6-B) . We see what we call the 
« Donor stocks » A and B and the « Acceptor stocks » C and D. We also see the process P> connected on its 
input and output sides to e-junctions. Modifiers implement the packing coefficients n, m, p, q and are linked 
by bonds to the stocks and to the e-junctions. The units of A and B needed by P> flow from their stocks to 
the packing coefficients which packs them into groups (packs) of respectively m units for A and n units for 
B. These packs flow to the input e-junction where they unite to form combined packs. Each pack entering 
the process P> is made of a pack of A having m units and a pack of B having n units. This process 
transforms the input packs in output packs at a rate RP per unit time. The output packs separate in packs of 
C and D in the output e-junction and these separated packs flow to their unpacking modifiers where they 
unpack respectively into p units of C and q units of D. The Cs and Ds flow then into their respective stores. 
Computation proceeds at each time t by computing first RP (see next section). Then the flow RP of packs 
computed is required from the input e-junction by f=RP. This e-junction transmits an equal requirement of RP 
= f  packs to each of its input sides for A and B. The packing coefficients then transfers a requirement for 
fA= n*f  units of A and m*f  units of B to the input stores.  
 
Remark that once RP and eventually, n, m, p, q are computed, this PM is a full computational model of the 
process. It is thus equivalent to the SF-diagram of Fig.6-C but has still the same simplicity and intuitive 
character than the simple metabolic map of Fig.4-A. Admittedly, the auxiliary signals needed to define the 
rate are still missing from the PM which is therefore not strictly comparable to the SF-diagram. However, 
we will see later that, due to the bond graph-like notations explained in the next section,  their inclusion 
leaves the simplicity and the intuitiveness of the PM unchanged.  



Panel B gives the PM of the  system of foxes [F], rabbits [R] and small Australian mammals [A] described 
before (see the interview of an Australian civil servant). The foxes [F] may participate to two processes. 
First they « get together » with rabbits [R] in the packing e-junction eRF to enter the classical predation 
process PPr>. Due to the modifier in the output side of this process, each fox entering the process generates 
1+n1 foxes which go back in their stock. The population of foxes grows if n1>1. The foxes may also enter a 
second emerging process PPr-E> in which, instead of rabbits, they predate the Australian mammals [A] and 
grow if n2>1. Remark (1) that each process acts on different resources, (2) that the graph contain loops since 
the two processes deliver a resource F also used in their input, (3) that a competition is obvious between the 
processes since foxes F participate to one or the other and finally (4) that the model does not contain dummy 
sources like a « source of foxes » (see Fig.1). On these accounts, the PM given here looks more intuitive and 
simpler than the SF-diagram. Of course auxiliary signals are still missing from it but, like in the previous 
example, we will soon see that their addition does not change our conclusions.  
 

Panel C gives the PM of the food production process of section 3 (sentence from a food company 
executive). Equipment [E], human resources [H] and raw materials [M] are packed together at an e-junction 
e1 to enter a food production process FP> . The resulting output packs of this process first separate in three 
GM-flows at the output e-junction e2. Flows of equipment and human resources go back to their stock from 
which they can be used again and again to transform raw materials into food. The third flow exiting from e2 
is a flow of food products which separates in two in a repartitor R. A fraction m of the food produced (m<1) 
goes into a store of high quality food [HQF] and the remaining fraction (1-m) goes into the stock of low 
quality food [LQF]. By modifying the value of m, the ratio of low to high quality production changes. Again, 
the map is simple and may be directly used with the managers of the plant to discuss their problem. 
 

As seen in the above story, this problem is that the value of [H] has two effects. First, it influences directly 
RP since the more people we have, the more we will be able to run them around the production cycle. 
However, it also mentions that the ratio m depends on [H] probably due to a low morale or efficiency effect 
if [H] decreases too much. To represent these two effects we need to add two signals to the PM used until 
now (full arrows represented with interrupted lines). The first one goes from [H] to PF> and represents the 
dependency of RP on [H]. The second one, from [H] to the repartitor R modifies m for the low morale or 
efficiency effect. We will deal with signals in the next section. However in preparation for this section, I  
have added them on panel C using notations similar to those used in SD. If we have to add many such 
signals, we will again get a diagram with the spaghetti-like aspect  familiar to SD practitioners. The goal of 
the next section will thus be to find a way of adding signals while minimising the trouble they create.  
 

Finally, panel D presents the PM of the enzyme system discussed in section 2 (the biochemist’s sentence). 
Substrate [S], enzyme [E] and cofactors [CF] get together in a first reaction P1> forming a complex [C] 
which is transformed by a second process P2> to give a product [PR] and recycle the enzyme. The more 
enzyme we have to  cycle in the production loop, the higher is the production of [PR].  The product [PR] is 
then used by a third process P3> which sends it into the environment. Since the cofactor [CF] was attached 
to [S] and [E] by P1>, it is present in [C]. Since it is not liberated by P2>, it is still attached in some form to 
the product [PR]. We see this by the fact that once P3> uses [PR], it recycles the co-factor [CF]. Thus if the 
process P3> does not work i.e. if the product is not used, the cofactor accumulates in a form linked to [PR]. 
If this occurs, the [CF] stock is empty and no co-factor is available to attach to [E] and [S] in P1>. 
Consequently P1> stops and is rate limited by [CF]. The whole process is strongly reminiscent of a JIT 
process. Indeed, [PR] is not produced if it is not used in P3> and the cofactor plays the role of the Kan Ban 
which is just a tag playing not a physical but an informational role in production. It is attached to the product 
and liberated only if the product is used. The kan ban is then recycled to control the production from its end-
use point. Remark that the PM itself is a critical tool in the preceding discussion, a fact which provides a 
strong argument for our thesis that PMs are excellent tools for SD modelling.13  
                                                        
13 The PM suggests thus a deep analogy between enzymatic processes and production management. Co-factors were evolved by 
Nature a million years ago and Kan Ban by Toyota several decades ago. The fact that KPGs suggests this analogy is a strong 
argument for their intuitiveness. However, we can go further : applied to biochemistry, KPGs show graphically many deep 
control mechanisms. Co-factors are just one of them. Considering that our body has evolved to be reasonably efficient, could we 
use biochemistry as a source of metaphors for production management ?  



A PM is not only intuitively appealing, it is also a good theoretical tool. Indeed, its state equations are given 
by the following “GM- structural flow matrix equation”:14 

 
                                         
       

with Q an array listing all the contents of the stocks of the model and r a vector listing all the rates of the various 
processes. S is the packing/unpacking connection matrix with rows corresponding to the stocks and  columns 
corresponding to the rates. The element Sij of this matrix is defined by: 

   Sij   = + n   if process j produces n units in stock i. 
    = -  n   if process j consumes n units from stock i. 
    =    0   if process j  do not produce or consume units of stock i. 

If a process is recycling or auto-catalytic, i.e. if it consumes and produces units of the same stock, the corresponding 
element of S is the sum of two terms, one for consumption and one for production. Formally, we may define the model 
“GM-structure“ as given either by its PM or by S. Any information related to the definition of the rate vector i.e. of the 
functions determining the dependence of r on stocks and other auxiliary variables values is not GM-structural but kinetic. 
In chemistry, S is a constant matrix and formal kinetics study structural properties independently of the kinetic equations 
(conservation invariants, steady states, cycles, zero-deficiency). However, our coefficients may be modulated, i.e. 
dependent on the content of the stores and of external variables and we have : 

  
 with r = r (Q, U, t)T                
 

This equation is much more complex and, in general, the study of its global properties may only be done by 
simulation. However, for local analysis  around a given operating point, we may consider S as « locally 
constant » and then, the link with chemical kinetics made by PMs makes all the concepts of formal kinetics 
available for the mathematical analysis of SD models by distinguishing three levels of properties: 

-Strictly GM-structural: valid for any equations and values of the  coefficients and of the rates. 
-Weakly GM-structural: valid only for specific equation forms or values of the variable coefficients. 
-Kinetic: considering all the information (structural + kinetic).  

 
As explained before and as the preceding two equations make obvious, the full definition of a model by its 
PM needs a preliminary step : the determination of its rate vector r and of its packing/unpacking coefficients 
i.e. of the elements of the matrix S. This is done by specifying the equations : 
                                                       r= r(Q,U,t)   and    S = S(Q,U,t) 
Where r and S may contain arbitrary functionals. Graphically, specifying these equations is equivalent to 
drawing the previously defined GI-network. A adding it to the PM fully defines a model which we call then a 
« Kinetic Process Graph ». Since Q is known at each time t (initially by initial conditions and later by 
integration), the simulation of a KPG is then done  by following at each time t a two step procedure : 

- Compute U(t) and use it with the GI network to compute r and S 
- Use r and S to compute dQ/dt and integrate to get the value of Q for the next time t of integration. 

At this stage, the only step remaining to define a KPG is thus to specify its GI-network. We will do this by using, like in 
SD, auxiliary signals linking the variables in Q and U to the various rates and modifiers. However, we have seen that the 
GI-network is responsible for the visual complexity of the SD models. We will thus have to introduce some new 
concepts to obtain maximally simple GI-networks and we will see that again the theory of bond graphs will give us the 
tools required. This will be explained in section 6 but there is a last point to discuss regarding PMs : all the examples 
discussed until now have indeed be very simple and, from the point of view of standard SD practice, a bit exotic 
(chemistry, ecology). Will we observe the same parsimony and intuitiveness in more complex examples chosen in 
mainstream SD i.e. in Business Dynamics ? As we  said before, models of complex models have to be complex but not 
more than needed. Can we use PMs of mid to large complexity with the same ease than simple PMs ? Our next section 
answer this question.  

                                                                                                                                                                                                      
 
14 The reader will notice that we use the word « structure » to indicate the physical arrangement of stocks and flows. This is 
different from the usual SD practice which uses the word « structure » to denote the arrangement of causal loops. 
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5. SCALING UP PROPERTIES OF PROCESS MAPS 
 
To investigate the scaling properties of PMs regarding parsimony and intuitiveness, let us discuss a more 
extensive example in Business Dynamics15, 16. Its size is probably typical of many studies of mid range in 
complexity. We will present first a verbal description of the system to model and then show that it may be 
expressed naturally by a PM.  
 
Problem Description : HOTSTUFF LTD makes high quality « model Ts »  better than the « model Xs » of 
their rival company PLAINSTUFF. HOTSTUFF sells its Ts but can also use them in steps of their own 
production (e.g. a software company producing OO-development systems or a mechanical engineering 
company producing lathes used in the production of some of their own critical parts).  HOTSTUFF must 
obviously prime its production by using the Xs of PLAINSTUFF but hopes to gain a competitive advantage 
by replacing most Xs by Ts to depend less on PLAINSTUFF and to reach  leaner production and higher 
quality. Here are excerpts of HOTSTUFF’s CEO’s last talk to the board (annotated for further reference): 
 

« As you know, the new production plant for our model Ts is almost fully operational and we have already started production at 
60% of our capacity (d). We expect to be at full speed in about 6 months (e). We are thus busy to progressively re-assign to the 
management of this plant most of the specialists from corporate and other divisions who are now supervising its development and 
test. Unavoidably, we will loose some people but we hope to keep most of the best ones. Indeed, our investment in development will 
soon decrease and we will re-invest a major portion of the funds liberated to support plant operation (f). This should allow us to 
give attractive conditions to these people. A second critical factor for the success of our new venture will be the cumulative 
boosting of our quality level and the increased productivity due to the smooth but massive introduction in our production lines of 
our new « model T » tools. This will decrease drastically our production costs since we will not need PLAINSTUFF"s model Xs 
anymore (a) and since we will be able to stop paying their expensive maintenance contract (b). In addition, this will also allow us 
to re-engineer our lines and get a leaner, more efficient production process (c). Our vision is to reach a dominant position during 
the second financial year after kick-off. We have thus already started to build up our sales force which should start being 
operational in 8 months. Its progressive strengthening will generate enough income to break even in about two years, a time at 
which we expect the whole plant to become self-supported.» 
 

Starting from this text, we can certainly produce a classical SD model but, instead, we give in Fig.7 a PM 
representing the main processes deduced from the CEO’s talk. We see a decomposition in sectors 
(Procurement, Production, Sales and Marketing, Training and Plant Development) which, to stay in 
reasonable limits, are all represented by extremely simplified PMs. Let us start with the procurement sector. 
It shows a feature which has not yet been described. Indeed, all its elements are drawn with unfilled symbols. 
They denote not scalar elements like those described previously but vectorial or array elements manipulating 
not single GM-quantities and flows but arrays of such entities. We will explain this notation  later. For now, 
let us just say that P-procurement> computes two flows of resources : a flow of model Xs bought from 
PLAINSTUFF and a flow of various aggregated resources including raw materials. These flows separate at 
a junction which we meet for the first time, a U-junction from which model Xs and resources go in their 
respective stocks. The procurement process needs an input from outside (the cloud) and an input of money 
from a store [$ ] where  indicates that it is a « repeat-stock », i.e ; a « conceptually » unique stock with 
phantoms drawn at several places just to get a nicer drawing. In this case, the real stock [$] is defined on the 
right side of the figure in the Sales and Marketing sector. The symbol D in this stock tells us that it is its 
defining place and that it is repeated elsewhere. The procurement process is related to the sentences marked 
a, b, c in the CEO’s talk : a and b are obvious, c expresses that model Ts are more efficient than model Xs. 
Obviously, the procurement rates and the number of money units used by the process have to be controlled 
in time to represent the « progressive switching » of procurement from model Xs to model Ts but these 
signals are not drawn on the PM, they should be added at a later stage when building the full KPG.  
 

                                                        
15 We need also to know if the primitive concepts of table 1 are sufficient. In fact, to tackle more complex cases, I have had to 
complement them with a few other elements (array elements, time-varying connectors, conditional stocks, conditional 
switches….) However, until now, I have developed more than 100 PMs in various fields and the set of primitives needed has 
remained quite small and does not seem to expand anymore. It is thus probably close to be generic. 
16 In order to cope with space limitations, this example is just a caricature but it is sufficient to make the argument cogent.  



Coming now to production, we represent it by a single process which has a significant delay (indicated by D) and thus 
some “work in process” represented by the internal store [WIP]. It uses various inputs : a -stock of money, the various 
entities aggregated in [resources], and trained people from the b-junction. Two points needs mentioning. First the 
repartitor RI expresses the fact that we may use either Ts or Xs as tools for production. The repartition coefficient 
expresses the proportion in which these two stocks are used and may be modified by a policy signal (non illustrated). 
Secondly, the flow of manpower from [Trained people] is represented by an interrupted bond. This is a shortcut notation 
for «an enzyme stock» i.e. a resource which is both an input and an output of a process with equal packing coefficients. 
It participates in the production and is a factor in the computation of its process rate but is not used by it. Remark that 
the stock [WIP] immobilises some trained people for a while. The model Ts produced go either in a stock  [model Ts for 
sales] or in the stock [model Ts for production]. The proportion affected to each of these two stocks is defined by the 
repartitor R which is also modulated in time by a policy signal (non illustrated).  

Fig.8 : an example of PM of intermediate complexity. 
 

The production sector just described gives us the GM-structures needed to translate the sentences marked d, e and f in 
the CEO’s talk by adding signals (non illustrated in Fig.8) to modify its various coefficients. A signal from Plant 
Development should be added at a later stage to allow a progressive increase in capacity of production and a signal from 
the same origin should modify the packing coefficient of money used in production to express a freeing of funds. The 
other sectors may be described similarly. The sales and Marketing sector shows a customer recruitment process needing 
trained people (sales force) and obviously money and producing orders and loss of customers. The orders are combined 
with the Ts to produce money spent everywhere in various proportions. The training sector hires and trains people to 
distribute them to various processes through the b-junction. Finally, the plant development sector computes the 
operational capacity reached. As said before, we should now add signals controlling all these  processes and creating 
many feedback loops. Remark nevertheless that, in contrast with a SF-diagram the PM which describes just the  basic 
« Think Physics » infra-structure of the model shows already many loops, a fact decreasing  the complexity of the signal 
network which should now be added. 



6. KINETIC PROCESS GRAPHS : ADDING CONTROL SIGNALS TO A  PM  
 
To define the GI-network, we have thus to represent graphically the computations of the rates and modifier 
coefficients. As shown in Fig.6-A, they are in general, functions of several kinds of variables: contents of 
stocks, external inputs and auxiliary variables. Indeed, let us consider again the general process equation :  

X is the vector of stocks on which the process depends. U is a vector of input signals and t is time. The Ai 
are the donor stocks and the Bi the acceptor stocks. The nA,i are the donor modifier coefficients and the nB,i 
are the acceptor modifier coefficients. Finally, R(…) is an operator defining the process rate. We can 
partition X in two subvectors : 

X=(Xc,Xd)  
where Xc (close stocks) contains the donors Ai and acceptors Bi appearing in R and Xd (distant stocks) 
contains stocks appearing in R but which are not donors or acceptors of R. In chemistry, R is given by an 
algebraic formula and nA,i and nB,i are constant. However, in our case, they may be much more complex, 
including for instance their own state variables, time delays, functionals, expert systems, fuzzy rules, neural 
networks or even human interactions. We call « influences on R » the variables appearing as arguments in R. 
We may distinguish two classes of influences according to their level of proximity to the flow: 
 

- “The class of close influences”: the dependencies on Xc i.e. on the  donors or acceptors of the process. 
In many models, a large, often major, part of the influences belongs to that class. Most processes depend 
indeed on their donors. For instance, if they are not available, the process cannot take place and often 
their level of availability influences the rate in subtle ways. Moreover, quite often, at least in controlled 
processes, the level of acceptors is also a controlling factor through laws like «The more products I 
have, the less I want to produce them » making R an inverse function of its acceptors. We have already 
given an example of close influence (see box C in Fig. 7-C) 

 
-  “The class of distant or indirect influences » which contains all the other variables appearing in R: 
 

- Distant stocks Xd : stocks are the most important variables in a model. It is therefore obvious that 
many finely tuned processes must depend from stocks which, being not direct donors of acceptors , 
are more distant in the graph but nevertheless influence its rate through some control mechanism. An 
example is the final product of a production chain , the availability of which should influence all the 
steps by controlling the rate of the chain of processes. 

 

- Input signals, i.e. time functions U1(t),…,Um(t) representing influence dependencies (different from 
sources or sinks) from the non-modelled environment. 

 

- The time variable t itself (which may always be assimilated to an input signal y=t). 
 

- Auxiliary variables defined from the above close and distant variables and used either in the     
computations (e.g. the monthly average of a flow of orders controlling a production rate 17) or as 
intermediates in the computations.  

 

Some models have only a few distant influences. However, in many socio-economic models, they are 
encountered much more frequently creating thus the well known dizzying feeling that everything depends on 
everything. Moreover, some distant influences may act on many processes (e.g. in a socio-economic model, 
an auxiliary block computing an estimate of the economic conjuncture would influence most processes).  
 
It is the explicit representation of all these influences by signal arrows which creates the maze characteristic 
of large SD-models. We need thus to find different ways of representing them. Our first effort must bear on 
close influences which are, by far, the most frequently encountered.   

                                                        
17 Algebraic loops and incompatibilities may result from defining flows as functions of other flows. In general, we cannot exclude these possibilities. However, 
frequently, a flow-dependency occurs through an intermediate operation like averaging and uses only the past values of the flow in a given horizon window.  



To represent close influences as parsimoniously as possible, we will adapt to KPGs a notion of effort- 
causality imported from the theory of bond graphs and which in our case will become an « influence 
causality ». To introduce it, let us consider a simple process : 
  

nA + mB  →R(fDO(fA(A), fB(B)) , fAC(fC(C), fD(D)))→  pC + qD  
 

in which the modifier coefficients are constant and the rate depends on all the donors and acceptors. We 
have represented the rate function in a general manner emphasising its various levels of dependencies. A first 
function fDO expresses the interaction between the influences of its donor stores. These influences themselves 
are expressed individually by the functions fA and fB. The same kind of representation is used for the 
acceptors. A global function fAC expresses their interaction and each of their participation to fAC comes 
through individual functions fC and fD.  
 
Fig.9-A represents a possible notation for the KPG of this process. Its PM is reproduced from Fig.7-A. It is 
transformed into a full KPG by adding a GI-network (full arrows and circles in grey) with four operations. 
First it measures  the values of the stocks and sends them to auxiliary blocks computing fA, fB, fC, fD. Then 
these blocks compute the four individual influences. The third operation is to send these influences to the 
blocks fDO and fAC which compute their interactions. Finally, the results of these two blocks are sent to P> 
This representation is equivalent to the SD representation of a tap dependent on four stores. For a single 
process , this representation is acceptable  but, if we have many processes in a network, each dependent on 
its donors and acceptors, the resulting graph will soon become cluttered with signal arrows.  
 
The panel B of Fig.9-B is equivalent to the panel A but we redraw the information links in parallel with the 
bonds. We also places the individual functions fA, fB, fC , fD near the modifiers and the blocks fDO and fAC near 
the e-junctions. Apparently not much is gained. However, let us focus our attention on the parts indicated by 
grey filled circles. Each circle encloses an element (respectively a stock, a modifier and an e-junction ) 
coupled to an operation on influences (respectively a measurement of influence in the stock, a function fA of 
one argument A near A and a function fDO of two arguments fA(A) and fB(B) near the e-junction. Let us 
remark also that each bond is now in parallel with a signal link going either in the same direction than the 
bond in the donor side or in the reverse direction on the acceptor side. 
  
We may then redefine our basic elements like in panel C by putting, in an element itself, the operation on an 
influence placed close to it in the grey circles of panel B. With these new definitions, each element has two 
functions, one on a GM-quantity and one on an influence. The functions on GM-quantities have been defined 
before (table 1) and do not change. We will now describe the functions on influences. 
 

- A stock (panel C-a) is now denoted [Q, IQ]. Like before, it stores a GM-quantity Q but now , in 
addition, it also generates an influence IQ(Q). Often we have just IQ=Q and we may drop the 
indication of IQ getting back the former notation [Q]. Remark that Q being a GM entity is 
conserved : if it flows through a bond, its value changes necessarily. On the other hand, IQ is a signal 
and thus sending its value somewhere else in a signal link does not modify it.  
 

- A modifier (panel C-b) is now denoted by (M: n,f). Like before, it transforms a GM-flow by 
multiplying it by its coefficient n but in addition, it receives an influence I, transforms it by the 
function f(I) and send the result outside. We need to distinguish two cases (panel 9-C-b). A modifier 
in the donor side of a process has a GM-flow and an influence running in the same direction (left side 
. In a  modifier placed in the acceptor side of a process, the directions of the GM-flow and the 
influence are opposed. 
 

- The e-junctions are now denoted by (e,g) (panel 9-C-c). Their operation on GM-flows is 
unchanged but now, they also receive two influences I1 and I2, operate on them by the function 
g(I1,I2) and send the result outside. We see in panel B that again, we need to distinguish two cases: 
an e-junction in the donor side in which signals and GM-flows run in the same direction and one for 
the acceptor side in which they run in opposed directions. 

  



 

Fig.9: Introduction of influence causality strokes to eliminate the signal arrows denoting close influences. 
 



With these new definitions, each bond joining two elements runs in parallel with an influence link which may 
have the same direction than the bond or the reverse direction. The two possible cases are represented in 
Fig.9-C-d (left side). Instead of considering explicitly the pair bond-link, we choose the notation indicated on 
the right side of this panel. This notation is imported from bond graphs. The bond is drawn with its flow 
causal marker (the circle) but instead of drawing the influence link, we indicate just its orientation by putting 
a small bar, called an « influence stroke », perpendicular to the bond on the side pointed by the full arrow of 
the influence link. Remark that, in each case, the flow causality marker (little circle) and the influence 
causality (the stroke) are opposed. Like our other elements, a bond has thus now two functions : it 
transports a GM-flow with a value determined by the element connected to its side without circle (where the 
stroke is) and imposed to the side with a circle18. On the other hand, it also transmits an influence from the 
side without stroke (where the circle is) to the side with stroke. 
 
Using this new notation for a pair (bond-influence link), we may redraw the elements of panel C (a,b,c). This 
is done in panel D which shows the store (sub-panel a), the two cases of the modifier (sub-panel b) and the 
two cases of the e-junction (sub-panel c).  
 
Finally, using the notations of panel D, we may redraw the complete process given in panel B. The result is 
given in panel E which is the full KPG of this process. Its GM-network is now completed by a GI-network 
which is represented unobtrusively but unambiguously by the causal markers and the symbols of the 
elements. Following these causal markers it is indeed possible to see the complete path of the influences. For 
instance, starting from [A] and [B], we see two strokes on their output bonds indicating that influences IA=A 
and IB=B arrive at the modifiers (M: m,fA) and (M: n,fB). These modifiers generate the influences fA(IA) and 
fB(IB) which are then sent by the two strokes seen in their output bond to the e-junction (e,FDO). This 
junction generates the influence fDO(fA(A), fB(B)) and sends it to the process P> by its output stroke. A 
similar reasoning shows that the acceptor side generates the influence fAC(fC(C), fD(D)). The process receives 
thus the appropriate signals on its two causal strokes. The influence from the donor side is called « forward 
influence IF» and the influence from the acceptor side is called the « backward influence IB»19.  
 
It happens frequently that a process does not depend on a specific close influence. For instance, the process 
discussed here may be independent of C or of both C and D. In such cases, we still draw all the causal 
strokes to check their eventual correctness (to test the validity of the connections made in the model) but the 
causal strokes manipulating influences which are not needed are drawn in grey and we indicate that they are 
not used by putting a little black square called an « influence blocker IB » which we place just near the 
unused influence closer to the process. For instance, if the process discussed here does not depend on C, we 
will place a blocker before the arrival on the junction (e,fAC) of the influence fC(IC) (case non illustrated in the 
figure). If it does not depend on both C and D, we may block directly the backward influence IB. This is 
done by putting the influence blocker at the output of P>. When we see a blocker, we know that the 
influence computations leading to the blocked influence do not need to be executed.   
 
It remains to describe the process P> itself. This is very simple : it just receives the influence signals IF and IB 
and computes its rate as a function R=RP(IF, IB). 
 
                                                        
18 We remind the reader that a GM-flow may be positive or negative and thus may flow in the direction of the semi-arrow or 
opposite to it independently on its flow causality (the circle) which indicates just the side which receives the information on the 
flow value which it has to provide or to receive. 
19 These names are again inspired by a chemical analogy. Indeed, let us choose the following definitions :  
(1) For X=A,B,C,D we impose fX=ln(X).  
(2) For any I1 and I2, fDO(I1, I2) =fAC(I1,I2) = I1 + I2  
(3) R= kF exp(fDO) – kR exp (fAC). (kF and kR the forward and reverse kinetic constant ; kR is 0 if the reaction is unidirectional) 
Then the computations described by the KPG of Fig.9-D are close to the classical thermodynamic view of a chemical reaction 
controlled by the mass action law. We just need to add formulas for entropy and temperature to get a coherent  thermodynamic 
model but then the result, with some changes of notations becomes a bond graph and is no longer a KPG. In that case the 
signals fDO and fAC are respectively called forward and backward affinities. This establishes a close filiation link between our 
version of SD described by KPGs and physical lumped system modelling.   



This completes the description of our treatment of close influences. We have dealt only with four elements : 
stocks, modifiers, e-junctions and unidirectional rates. We do not have the space here to present them 
completely but transformations similar to those of panels C and D may be done for all the other elements of 
table I (constant stock, bi-directional process, process with delay, source, sink, balance junction and 
repartitor). It is then possible to specify the part of any GI-network dealing with close influences entirely by 
influence strokes. All the arrows indicating close influences are thus eliminated and replaced by strokes. This 
is obviously much less visually cumbersome than the SD notation and the topology (pattern of connection) 
of the PM is fully preserved. The addition of the GI-network of close influences preserves thus the two 
qualities of a PM : its parsimony and its intuitiveness.  
 
The use of causal strokes presents an additional advantage. Indeed, on each bond, the flow marker and the 
stroke must be placed on opposite sides. Since we have seen that flow causal markers have specific patterns 
for each element, it follows that causal strokes also have specific patterns (i.e. laws of stroke placement) 
which are easily deduced for each element by taking the dual of the flow connection patterns given in table 1. 
These patterns of connection may be checked algorithmically. The software implementing KPGs is thus able 
to detect wrong patterns, i.e. connection mistakes. It may then issue warnings prompting the modeller to 
correct his KPG. This self-checking feature of KPGs speeds up model development appreciably. 
 
To complete the specification of the GI-network, we still need to consider the representation of the distant 
influences acting on three kinds of elements : (1) processes, (2) packing coefficients of modifiers and (3)  
variables of the functions which we have now inserted to process close influences in stocks, modifiers and e-
junctions. Obviously, if a model contains many distant influences and if we want to represent each of them 
graphically, we will probably end up again in the complexity trap. Indeed, the only way to represent these 
influences is to draw a network of auxiliary nodes and signal links like in SD. KPGs use several means to 
maintain this complexity to manageable levels: 
 
-A BUS of signals has been introduced. Signals may be posted on it by associating the element defining them 
and an « Entry point » in the BUS. A BUS signal may be used as an influence in any element accepting a 
distant influence by placing an « Exit point » from the bus near the influenced element. This is illustrated in 
Fig.9-D where we have represented a stock [X] which is neither a donor nor an acceptor of the process 
represented. Its influence is placed in the BUS entry point and used in the process by downloading it from a 
BUS exit point. The availability of this BUS makes possible to represent explicitly by signal links the 
influences central to the problem studied while keeping all the other in the BUS. The repartition of the 
signals which are explicitly shown may be changed explicitly before a simulation in order to focus on 
different aspects of a model. 
 
- The implementation of the GM and GI-networks are completely modular and hierarchical. Any part of a 
KPG may be defined as a sub-model which may be connected to other elements or sub-models through 
contact points called « ports ». It exists two kinds of ports : GM-ports which accept only a a bond and GI-
ports to which we must connect an influence link. A sub-model may have a fixed but arbitrary number of 
ports. Graphically, a sub-model is encapsulated in a single box with an icon and a name chosen by the 
modeller. A sub-model may contain any other sub-models. A KPG may thus be defined hierarchically and the 
number of hierarchical levels is practically unlimited. 
  
- Sub-models may be defined either directly as KPGs or by using other methods : block diagrams, bond 
graphs or even directly in an object-oriented language specific to the implementation software 20-SIM. This 
allows the representation of sophisticated influence computations like neuro-fuzzy controllers, decision maps 
or sets of rules in a very clear way. 
 
- Finally, I have extended the KPG method to accept array variables in order to deal efficiently with 
disaggregated models (e.g. people disaggregated in various spatial areas or in various age classes, products 
differentiated by their quality level…). Fig.10 illustrates the graphical array vectorial notation. 



Fig.10 : Array notation for disaggregated KPGs 
 

Array elements are indicated by symbols drawn with hollow letters and lines. The figure shows a simplified version of a 
small part of a model built for the Cabinet of the Belgian Vice Prime Minister in order to evaluate new proposals of 
employment policies. The part of the model illustrated here distinguishes two classes of people20 according to their level 
of qualification (L=low and H=high). The stock of people contains thus two stocks, one for each class L or H. These 
two stocks form the component of an array of dimension 2. The stock of jobs is similarly indexed. The process is bi-
directional with a left side indicating firing of people and the right side indicating hiring. The hiring direction corresponds 
to positive flows (double symbol >>). This process computes thus an array of four individual rates : FiringL, FiringH, 
HiringL and HiringH which we denote by the numbers 1, 2, 3, 4. The bonds transport arrays of flows of various 
dimensions. The bonds connected to the process transport its four flows (some are positive and others negative) but a 
new element called a « U-junction » may combine or separate these arrays. The U junction shown here receives the 
requirement (flow causal marker) to provide an array of four flows from the process and separates it into two separate 
requirements : a first array of two components (1,2) is sent to the junction (e,f)Firing and a second vector of two 
components (3,4) is required from the junction (e,f)Hiring. Remark that the hiring reaction also uses money which is not an 
array but a scalar component. 
  
Array elements may also be used for GI networks as illustrated by the upper part of this figure which shows 
two arrays of signals coming from the parts of the model generating the factors from industry (I) and 
government (G) used in policy determination. These factors are combined by the block W weighting 
conjonctures, decisions and policies. The block W implements a standard fuzzy controller  and controls the 
four rates of the processes. Taken together, the array notations for GM and GI-networks provide a 
representation of disaggregated models keeping all the qualities of our previous scalar representations. It 
would be highly difficult to build, modify  or use complex, highly disaggregated models without them. 
 
 
7. CURRENT IMPLEMENTATION, DEVELOPMENT, RESEARCH AND APPLICATIONS 

 
Graphically KPGs are closer to bond graphs than to the SF-diagrams of System Dynamics. Despite the facts 
that any SF-diagram may be transformed into a KPG and that any KPG may be de-constructed to provide an 
equivalent SF-diagram, implementation of KPGs in a SD software would most probably need many basic 
modifications to the software. On the other hand, if a BG software is built in an object-oriented way and 
allows the user to re-define the code and the graphical icons of each element and to add new elements, it is 
possible to adapt it quite simply to KPGs by changing all the basic laws of bond graphs and by replacing the 
bond graphs icons by our KPG icons. This needs only some modifications to the code of the methods in the 
library giving the class library of the elements. The bond graph package 20-SIM fullfils our conditions. I 
have thus used it for developing a complete implementation of the version of the KPG method which has just 
been described.  In this way, KPGs have a full upward compatibility with BGs, a fact which brings much 
unity to the field of lumped modelling since it unifies SD and BGs, the two methods which are currently 
most frequently used in this field across the whole spectrum of disciplines. 
                                                        
20 The disaggregation used in the real model is obviously bigger and based on sex, age classes, qualification and work expertise. 



 
The library KPG-LIB provides a complete implementation of KPGs (see trademarks before). KPG-LIB 
contains our basic and advanced elements, frequently used sub-models, advanced sub-models and examples 
of applications. Elements supporting time-varying connections, self-organisation and dynamic 
reconfiguration of a model are also included. Finally, a library providing a hierarchical decomposition of 
multi-variable fuzzy rules was developed to provide a generic implementation of GI-networks from 
interviews of domain specialists giving us sets of fuzzy qualitative rules. As explained before, the KPG 
implementation uses the capability of 20-SIM fo the full : we benefit indeed from its modular and 
hierarchical structure and from the possibility it offers to mix sub-models of different types (code, block 
diagrams, bond graphs, and now KPGs).  
 
We may mix sampled and continuous models and even study much less classical types of systems. For 
instance, in a study of bacterial evolution, one of my PhD students is currently integrating a genetic 
algorithm with 20-SIM. In the model, bacteria are described by a gene which may mutate. Each gene 
existing at a given moment defines a stock storing the bacteria having that gene. The processes are the 
typical processes of bacterial life : growth, poisoning, infection by phages… Some population die and other 
are generated by mutation. In response to Natural Selection and to co-evolution simulated in the genetic 
algorithm, the number of stocks in our graphs may change from a few to several hundreds The KPG 
structure is thus constantly adapted. This system has two levels of dynamics : even when the number of 
stocks is constant, its variables show interesting dynamics like chaos or hyper-chaos but, in addition, the 
number of stocks and processes changes frequently. The topology of the graph is thus itself a dynamic object 
of a higher order controlled by the genetic and extinction rules. We call these rules a « meta-dynamics »21. 
Since computation of such high dimensional systems would be very slow, we are now busy defining KPG 
elements implementing finite automata and the whole model becomes then similar to a cellular automaton 
with modifiable connections. 
 
Fig.11 illustrates our implementation by showing screen dumps of a small model developed for the 
previously mentioned study of the employment market in Belgium. 

Fig.11 : Screen Dumps showing an example of KPG model implemented in 20-SIM 
 
The left panel shows the model. We will not describe it in detail. We just want to pinpoint a few points of 
interest. First remark the BUS defining and using signals. Even in a small model like this one, it provides a 
very much needed simplicity. Secondly, remark that exception made of the few signals transported by the 
BUS, this model does not contain any distant influences. All the influences are close and transmitted by the 
causal strokes. The structure of the PM is thus clearly shown and easy to follow. We can use this model to 

                                                        
21 By providing adaptive SD models which change not only the values of their parameters but also their topology, this study 
links KPGs and thus SD to the field of complex adaptive systems as studied in the Santa Fe Institute  or at the Ackhoff Center 
in Philadelphia. Indeed, it would probably be possible to define SD models of evolving industrial or economical eco-systems. 



discuss with specialists directly in front of the computer during a simulation. This would be much more 
difficult if the screen was filled with a maze of signals. Thirdly, the block called « goods » market is a sub-
model, if we click on it, we can see its structure which is shown on the right panel. It contains a KPG (upper 
part) and various sub-models which in turn are defined by block diagrams and code. 
 
To end up this brief presentation of KPGs, let us describe their current status of development.  
 

The basic 20-SIM implementation is complete but the library of elements is still under development. All the 
elements described here are implemented but the library of sub-models needs to be completed and extended 
in a major way. The current version of the library of fuzzy and neuro-fuzzy blocks is minimal and can only be 
used to express simple rules and policies. It is used more and more in policy studies and a major effort is 
needed to extend its scope and implement it in a more generic and flexible way.  
 

Another important direction for the R/D effort on KPGs is the development of a generic framework for the 
GI-networks for business and organisation dynamics and more generally for managed systems. Using 
Morecroft’s ideas on policy structuring and the “information-decision-action” framework it should be 
possible to define generic purposive managerial agents which could then be made to act in co-operation 
and/or competition in a mix of decentralised organisation coupled to hierarchical structure. Each agent 
would control some processes and interact with other agents in being controlled by the others or controlling 
them. They could also share the control of some processes. Adaptation of such agents to specific cases 
might provide a way to model managed systems by injecting a bit of « theory of organisations » in SD.  
 

Finally, more research is needed on adaptive networks with meta-dynamics and on systems with time-varying 
connections which we might use for instance to study re-engineering or re-organisation in companies. 
Although the use of genetic algorithms to evolve optimal policies is tempting, it is still beyond what is 
possible. Indeed, the simulation of the invention of an innovative policy involves not only parametric 
adaptations but also and mainly the invention of new decision rules and the modification of the structure of a 
system. Designing new rules is now possible by genetic programming which evolves syntactic structures and 
not bit strings. However, new policies need new algorithms to build new observables and these observables 
may be quite sophisticated. Designing them is probably at the border of what genetic programming can 
achieve in its current state. Designing new structures by adding or deleting stocks, modifiers and processes is 
still more difficult. This necessitates the addition to a model of new stocks and processes with a well-defined 
interpretation or semantics. Finding automatically this semantics is currently impossible but, as demonstrated 
by our work on bacterial cultures, applying genetic programming to a pre-defined (eventually huge) library 
of stocks with pre-specified semantic interpretations is possible and could provide a good test-bed for 
studies on re-engineering or design of new managed systems. 
 
Coming now to practical matters, the main applications of KPGs pursued at IDEA.SIM LTD have been the 
following: human resource management for the EU communities (DGXIII);  effect of JIT on human 
resources in retail for the KSRC store chain (London) ; surgery cancellations for the Guy’s and St Thomas 
Trust (London), sustainable re-development in the Luberon area for the Departmental Council of Vaucluse, 
France; prospective study of the effect of new policies in the employment market for the Belgian vice-Prime 
Minister and coupling between evolution and population dynamics in multi-bacterial populations with the 
Institut Pasteur de Lille. In addition, many smaller models have been built in various fields from biochemistry 
to business dynamics. This is still a small sample of applications but they show that KPGs are generic enough 
to support the development of intuitive and parsimonious models for the whole range of applications usually 
encountered in SD. 
 
Since 1995, various versions of KPGs have been taught to a total of about 200 students in three EU-
supported MSc degrees (Bioengineering in Lyon and London, Medical Informatics in Athens, Engineering in 
Lille). Although the present paper is our first attempt to contact the SD community, KPGs have been 
presented at Keynote Lectures at the European Congress of simulation EUROSIM – Helsinki, 1999, at the 
6th World Congress on Bond Graphs ICBGM 1997 and at the American Congress of the Society for 
Computer Simulation, Phoenix, 1997. 



8. CONCLUSIONS 
 
- In recent addresses to the SD Society, two of its presidents wrote that, to expand and be better accepted, 
as a mainstream activity, SD had, among other priorities :  (1) to develop research activities focusing on our 
methodological tools for problem definition and conceptualisation [27], (2) to establish  bridges with other 
disciplines and more mainstream modelling communities while retaining our identity [28]. I would like to 
suggest that the KPGs method may provide a step forward in each of these  directions.  
 

- Indeed, by grounding its models on a deeper look at the « Physics » of a SD application, i.e. at its 
GM-flows and transformations, it provides a strong methodological foundation for problem 
definition and provides a conceptualisation tool focusing on physical, structural insight. 
  

- Secondly, by bridging almost seamlessly with classical SD on one hand and with bond graphs and 
object-oriented modular, hierarchical modelling methods like MODELICA [29] on the other hand, it 
establishes a link with engineering disciplines and creates a common language for SD people and for 
model users in more technical fields while retaining entirely the SD identity and unique point of view. 
KPGs should thus favour co-operation between these communities. For instance, people in marketing 
using a KPG to study the potential growth of their market might find that they are not as far as it 
may seem from a team in concurrent engineering using bond graphs for the prototyping of a new car. 
This common basis should provide one of the pre-conditions for improving communication in a 
company, promoting thus its development as a truly integrated learning organisation. 

 

- KPGS alleviate the mental abyss and visual complexity problems seen by Richmond as plaguing our current 
SD practice [14]. They include the SF-diagrams of SD as particular cases and are thus conceptually 
compatible with them. They may form a potential basis for a new generation of SD tools. Their current 
implementation in 20-SIM allows a fully modular and hierarchical development of large scale models which 
benefit from the numerical power and speed of a modern engineering-oriented simulation software. This is 
very good for model development and test. However, to develop management flight simulators with user-
friendly interfaces and multi-media education, our implementation does not even come close to the current 
SD packages. Integration of KPGs in such packages would thus be highly desirable. Moreover, let us recall 
that KPGs do not replace but only extend current methods when our mental models are characterised by 
general processes. This is obviously not always the case and if a model has many qualitative soft levels and a 
small GM-part or even no GM part at all, KPGs will not be more adapted to its modelling than SF-diagrams. 
However, our implementation of modularity and hierarchy and the availability of fuzzy and rule-based policy 
blocks might still be interesting. 
 

- The price to pay for the greater expressiveness and parsimony of the KPG models is that they use a few 
more « basic concepts » than SF-diagrams (see table 1 and the section on causal strokes). This may be a 
problem. Indeed, if we consider that, for some users, even SF-diagrams are too abstract, we will not be 
astonished if they initially consider KPGs as a game for theoreticians. However, our experience shows that 
the basic KPG-syntax may be learned in about a day. After this time, a non-mathematically minded person 
may start developing small models. Obviously, practice makes perfect and it takes much more time to 
become an expert in KPG development. For a team considering the development of a large model for an in-
depth study, this is certainly reasonable. For superficial use of SD, this investment in time may be too big for 
some customers. In that case, I focus nearly exclusively on the process maps. Almost invariably, the 
discussion of these maps with customers reveals many points of interest and, as mentioned before, is often 
easier than a discussion centred on the equivalent SF-diagram. 
 

- An area for development is the strengthening of the links of KPGs with the modelling methods used in 
other fields. Due to their close similarity, BG and KPG models may be coupled much more easily than SD 
and BG models. It becomes thus possible to develop hybrid models having a SD part and a more physically-
based BG part. For instance a continuous or hybrid model of a chemical plant might be physically based and 
integrated with a model of its resource management built with a KPG. Similarly, it is desirable to couple for 
instance a detailed model of a manufacturing plant using discrete event-based methods like DEVS to a KPG 
model of the parts of the company surrounding the plant.  
  



- Revisiting SD models with the reaction metaphor modifies our perspective considerably and often results in 
new hypotheses. For instance the analogies mentioned previously between biochemical control and 
production management are probably worthwhile to pursue. This suggest that the metaphor of the cell as « a 
chemical factory » should be considered seriously and studied as a source of inspiration for investigating the 
possibility of bio-mimicking management procedures to control the efficiency of the internal workings in a 
company or organisation. To this inside « metabolic view of a company » corresponds also a view 
concerned more with the outside of a company : its stake holders and the environment in which it works and 
develop. Some modern management scientists speak of a « business ecosystem » [30] and I suggest that the 
analogy between ecosystems and socio-economical or industrial networks should also be taken seriously by 
SD modellers. Adaptive KPGs with meta-dynamics might just be the tool for this kind of study. 
 

Let us end up by insisting on the fact that until now, KPGs are only useful to model GM-networks. The 
interpretation of their basic metaphor in cognitive terms as a rule or semantic map points toward similar 
researches which should now be done for GI-networks for which other cognitive models might also be 
useful  (cognitive or semantic maps [23]). Research linking mental models with cognitive sciences and AI is 
indeed very much needed in SD. Such links forms the basis of my current work on a generic structure for 
management agents (see section 7)  incorporating adaptation, purposive behaviour and neuro-fuzzy rules. 
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