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Yet another Representation for system Dynamics Models, and 

its Advantages 

Abstract 

The present paper relates to an artificial neural network (ANN) representation for a 

system dynamics model (SDM) and its advantages in model construction and policy design. 

The similarities between SDMs and ANNs have been noted, i.e., both of which store 

knowledge mainly in the structure (or linkages) of a model, rather than in the units or other 

components. By a specially designed mapping scheme, it is shown that a given flow diagram 

(FD) (i.e., traditional representation for a SDM) can be mapped to a corresponding model in 

the representation of partial recurrent networks (PRNs) that will correctly behave like the one 

it mimics. Because a (partial recurrent) neural network can be trained with exemplar data, 

numeric propagation constraints can be identified by extracting rules from a set of 

multivariate time series of data by induction. This adds an advantage to the study of SD since 

it is made possible to create a model by learning instead of manual construction, which solely 

relied on experts’ observation and deduction quality. Similarly, it is also beneficial to policy 

design. By assigning an intended behavior pattern as a set of training examples for a given 

SDM, it can learn a new system structure that fits the data; the differences between the 

original and new structures lead to considerations of policy design. In short, the neural 

representation for SDMs provides a new dimension of studying SD, and some traditionally 

hard problems in a FD might now be solved easier in the new representation. It is proved in 

mathematics that the two model representations operate under the same numerical 

propagation constraints. 

 

Keywords: model representation, model mapping, neural network, propagation of constraints, 

machine learning 

 

1. Introduction 

The emergence of system dynamics (SD) science can be dated back earlier in the 

publication of book “Industrial Dynamics” by Jay W. Forrester at 1961 [Forrester, 1961], in 

which it is defined as “the study of the information-feedback characteristics of industrial 

activity to show how organizational structure, amplification (in policies), and time delays (in 



 
 

decisions and actions) interact to influence the success of the enterprise”. Feedback structures 

and time delays usually play a key role in the behavior of such a system that makes it 

complicated and hard to understand. Forrester later mentioned, “feedback processes emerged 

as universal in social systems and seemed to hold the key to structuring and clarifying 

relationships that had remained baffling and contradictory” [Forrester, 1968a]. Therefore, SD 

can be viewed as a structuring theory for systems (particularly close-loop systems), in which 

one can construct and analyze the dynamic feedback model of a social system in a systematic 

way [Starr, 1980]. 

To enable the study, a number of representation forms had been proposed for modeling, 

which have different focuses, strengths, and weaknesses. The most often used are flow 

diagrams (FD) and causal loop diagrams (CLD) in different levels of abstraction. These 

diagrams usually consist of a set of graphical icons to denote the semantics of various system 

components so that a constructor can use them to conceptualize a model and communicate 

with related people. Although suitable for conceptualization and simulation, these 

representations are not good for manipulation; it is hard to do transformation and/or reduction 

in the diagrams themselves. We, however, think this functionality, if exists, will be useful and 

might provide a new perspective in problem solving. 

In the following, we will present a new representation form, i.e., a specially designed 

partial recurrent network (PRN), and see how to use the FD-PRN model mapping to 

transform a FD into it. The idea of this new representation comes from the observation of an 

important similarity between the system dynamics models (SDMs) and artificial neural 

networks (ANNs); they both store knowledge mainly in the structure of a model, not in the 

units but in the links between units. By establishing a mapping scheme, it is shown that a 

given FD can be related to a corresponding PRN that will correctly behave like the one it 

mimics. 

The equivalence between the two types of model representations will be shown both in 

structure and in mathematics. It will be seen that with the new representation form, one will 

have an additional choice of using which model representation in problem solving, and some 

traditionally hard problems in SD research, e.g. model construction, policy design, etc. can 

now be solved easier in the new representation. As an example, we will illustrate how to use 

this model representation to learn a SDM by induction from a set of prepared data. 

The remainder of this paper is organized as follows. Section 2 briefly reviews the 

representations that previously used in SD and introduces the concepts of artificial neural 

networks. Section 3 describes the design concepts of the new representation model and the 

FD-PRN mapping to show its relationship with a FD. Section 4 illustrates a simple example 

to show how to use the new representation to assist the construction of a SDM. The 

comparison of FD and PRN is discussed in Section 5, which concludes the paper. 



 
 

2. System Dynamics Models and Artificial Neural Networks 

2.1. The representation of a SDM 

In its purest form, a SDM consists of merely a set of assumptions describing a 

problematic situation. To simulate the consequences of the assumptions, a model is 

formulated as a set of equations and coded in a computer program. In order to conceptualize 

and represent the underlying models, representations for SD typically use a set of graphic 

icons to denote the semantics of various system components. 

Two forms of representation are overwhelmingly used in the SD community. A simpler 

one is CLD that focus on the representation of variables and loop structures of a model. In 

contrast, FD is more detailed, discriminating both state and flow variables [Lane, 2000]. 

In history, FDs is the first representation form appeared in Forrester’s first SD book 

[Forrester, 1961], which consists of a set of symbols for “levels”, “rates”, “information links” 

and “conserved flows” diagrammatically to describe a “flow diagram”. This diagram is the 

root of today’s FD implementation found in various software packages (e.g., Stella, i-Think, 

etc.). There is no CLD in that book. 

An early form of CLD is first described in Forrester’s later publication [Forrester, 

1968c], in which it is used as a means of summarizing and explaining the behavior of a 

specified simulation model. That is, CLDs were used near the end of a study to represent the 

structure of dominant loops deduced during simulation. In the following years, however, 

CLDs were frequently suggested as the initial step in model conceptualization to quickly 

sketch the structure of a target model [Goodman, 1974; Coyle, 1977; Randers, 1980; 

Richardson and Pugh, 1981; Roberts and et al., 1983]. 

Lane [2000] compares the two representation forms as follows. As a conceptualization 

tool, the advantage of CLDs is its simplicity and clarity to those who use them. A very 

limited library of symbols is involved and the concentration is on loop structures within a 

model. (A famous usage is the description of archetypes shown in Peter Senge’s book [Senge, 

1990].) The deficiencies of CLDs are that they do not always explain well how “flows” 

influence “stocks” and can lead to mislabeling of loops. 

In comparison with a CLD, the advantages of a FD are numerous. It carries more 

information about an underlying model. It graphically displays the relationships between 

stocks and flows, and distinguishes the important difference between conservative flows and 

information links. Therefore, it provides a sounder basis for the rigorous deduction of 

dynamic behavior. The disadvantage of a FD is in its very details and specificities that can 

obscure the loop structures for a large model. It is also difficult to be introduced in a group 

discussion with a broad range of individuals. 



 
 

To combine the advantages of both representation forms, Burns and et al. [Burns, 1977; 

Burns and et al., 1979; Ramos, 1983] presented an algorithm for converting signed digraphs 

(i.e., CLDs) into Forrester schematic (i.e., FDs). Richardson [1986] identified the problem of 

traditional definitions of positive and negative links in CLDs and suggested a modified CLD 

that distinguishing additive (rate to level) from proportional (information) links with 

improved definitions of positive and negative links. Some literature called the modified 

CLDs “influence diagrams” [Coyle, 1977]1  and viewed them lying somewhere between 

CLDs and FDs. However, this term would be interpreted by the majority of system dynamic 

scientists as a synonym for CLDs [Richardson, 1991]. 

Another extension of influence diagrams is Morecroft’s notion of “policy structure 

diagram” with explicit rates and levels [Morecroft, 1982; 1985]. It elaborates some important 

levels and rates appearing in a portion (or sector) of a complex system with an aggregated 

view of information connections into those levels and rates. It highlights key policy areas in a 

sector and shows how information links combined to determine the decisions under these 

policies. The strengths of a policy structure diagram is: (1) an appropriate level of detail for 

model users, i.e., explicit representation on stocks and flows, which helps to sensitize users to 

the importance of accumulations in the dynamics of a system; and (2) a focus on policy, 

which matches a user’s locus of concern. Its main weakness is the tendency to obscure the 

existence and the character of feedback loops in a system [Richardson, 1991]. Richardson 

also mentioned that the use of policy structure diagrams in SD literature is limited. 

Another kind of representation useful for both conceptualization and communication is 

“subsystem diagram” [Morecroft, 1982] which is a context diagram for an overview of model 

and sector boundaries. Such a diagram strives to capture the organization of a simulation 

model, to show a summary of what is included and excluded, and to show the main 

interconnections among the identifiable sectors in a system. It is a visual outline of the system 

as well as the model formulated for policy analysis [Richardson, 1991]. STELLA and i-Think 

adopt these diagrams on top of FDs [Richmond and et al., 1987]. 

Along the trend of the above research that strives to find a better representation form for 

a SDM, we will present another one here. However, in difference with those that emphasize 

on designing a suitable set of model components and notations for conceptualization and 

communication, this representation will be emphasized on the model’s manipulability for 

easier problem solving (e.g., model construction, policy design, etc.). We found that artificial 

neural network is a suitable candidate, and a brief introduction is given in the following. 

                                                
1 This usage is distinct from that in decision analysis [Oliver and Smith, 1990]. 



 
 

2.2. Artificial neural networks 

Artificial neural networks (ANNs) are a kind of knowledge representation form that has 

been studied for many years by artificial intelligence scientists. Like SDMs, they also store 

knowledge in system structures rather than units. This is to mimic the structure of a biological 

brain, in which it consists of a large set of brain cells inter-connected to form a complicated 

structure and electrical messages propagate within this structure in order to response to 

outside world’s stimuli. An artificial neural network can be simulated by a program easily. 

To use an ANN for problem solving, one usually needs first to decide the structure of the 

network. Different types of problems need different structures; related issues to be considered 

are: the network types, the number of hidden layers, and the number of units for each layer. A 

typical structure of such a network is shown in Fig. 1, where numeric data all propagate in 

one direction toward the output layer and there is no feedback. This type of network (called 

feed-forward network) is suitable for problems where outputs are only dependent on inputs 

and nothing else. Once the initial network is created, it enters a learning phase in which one 

has to decide a training data set, the learning rate parameter, and the convergence of the 

network. After the training phase, it has to evaluate whether the created network has solved 

the problem. 

We will use a special type of ANNs called partial recurrent networks (PRNs) in this 

paper. According to Elman’s definition [1990], PRN is a kind of ANN with recurrent links 

that were used to associate a static pattern (a 'Plan') with a serially ordered output pattern (a 

sequence of 'Actions'). Figs. 2 and 3 are examples of such PRNs, in which there is a new type 

of units called state units occurring in the input layer. Jordan’s network [1986] connects the 

output units to these state units directly (i.e., recurrent inputs) as shown in Fig. 2. Elman’s 

network [1990] renames the state units as context units and allows the connections of 

recurrent links to each layer within a network as shown in Fig.3. 
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Fig. 1 a typical feed-forward ANN 
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Fig. 2 a Jordan network 
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Fig. 3 an Elman network 

3. The FD-PRN Mapping 

Because of the cause-effect relationships and its graphic representation, system dynamic 

models are classified as a structural modeling technique. Dolado [1992], from a different 

aspect, showed that the structure of FD represents a general scheme that propagates numeric 

constraints. Members belonging to this group also include other types of models such as 

ANNs that propagate numeric constraints via a network of computing units and links. 

Therefore, it would be interested to see if there is a way to use the latter representation forms 

as a modeling tool for system dynamics since they have a unique capability of learning 

structures from given exemplar data. An approach to verify this is to see if a correspondence 

mapping exists that can relate a neural network representation to any of a SD representation 

both in structure and in numeric constraints. If it does, then we have shown that a neural 

network can also be a model for SD. The following sections will explore this idea and 

describe the details. In particular, we will establish a mapping scheme that relates a FD to a 

PRN (and vice versa) and show the advantages of the new representation in some particular 

applications. 
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Fig. 4 an Inventory Model 

3.1. Mapping in structure 

We’ll use a FD as the representation for a SDM and a PRN as the candidate 

representation to be studied. Let us start from a simple FD for an inventory control system 

shown in Fig. 4. Within this model, there is a decision point (Order Rate) that controls the 

flow into a level (Inventory). Note that a flow is always coupled with a rate. There must be 

exactly one rate on each flow, and no flow can be present without a corresponding rate. The 

model is classified as a first-order system [Forrester, 1968b] since it has only one level 

variable, which maintains the system’s memory. It describes an inventory control system in 

which there is no delay between the ordering and receiving of goods. The function of the 

order rate (OR) is to bring the actual inventory (I) to a desired inventory level (DI). If the 

actual inventory level is below the target, the order rate increases; otherwise, it decreases. The 

difference between DI and I should be adjusted within time interval AT, in which DI and AT 

are all constants and propagated to OR through wires. 

The numeric equations/constraints related to the system in Fig. 4 are the following: 

I(t) = I(t – DT) + (OR) × DT 

OR = (1/AT) × (DI – I) 

DI = 6000 

AT = 5 

Now let us take a close look at each part of the FD, and see whether a mapping between 

this form of representation and a PRN is possible. The most important and obvious 

components in a FD are “levels”, whose function is to exchange information with the outside 

world and keep a memory of the state of a system; that is, accept an initial value before 

simulation and accumulate the result after each time step. From the previous description for a 

PRN, there is no single component in a neural network that corresponds to such a level 

component. However, the functions of a level can be distributed among three types of 



 
 

components in a PRN: an input unit, an output unit, and a state unit. The pair of an input and 

an output unit serves as an interface, in which data may be fed in or retrieved out of the 

network, respectively. The state unit serves the other function of a level, and keeps the 

previous value of an output unit in a network (i.e., the state of the network). In other words, 

each input unit receives an initial value in the beginning of a simulation and propagates the 

value to its corresponding output unit through the network structure. Then the output unit 

forwards and stores its result to the related state unit and through which to the corresponding 

hidden unit as another round of input value. 

The second important components in a FD are “rates”, whose function is to control the 

amount of flow into or out of a level at each time step. Discovering the existence of the rate 

on a “flow” is not always easy. It usually relies on the skill and insight of a model constructor. 

This is also true for a hidden unit in a neural network, which hides inside and defines a 

function from a related input stimulus to an output unit. In addition, the number of hidden 

units required in a network is also dependent on the experience of a network constructor. 

Therefore, it is natural to map a rate component to a hidden unit and its associated flow as a 

link between a hidden unit and an output unit in a PRN. (“Auxiliary” components will not be 

discussed here – they are optional in a FD and can always be a subdivided part of a rate 

equation, which can be treated like a “rate in front of another rate” in the mapping.) 

The third type of component in a FD is a “wire”, which is simply a connection between 

a rate and some information source like a level or a “constant”. The mapping is easy, which 

is a link between a state and a hidden unit in a corresponding PRN.  

Depending on its usage in a FD, the mapping of a “constant” can be either treated like a 

(constant) level or viewed as a coefficient in a rate function (explained later in the next 

section). 

The algorithm (FD2PRN) that physically implements the above mapping is described in 

Fig. 5. The input to the algorithm is a FD while its output is a PRN. Without lost of generality, 

it assumes that a FD is only composed of levels, rates, flows, wires, constants, and system 

boundaries. (System boundaries have no physical meaning in a PRN.) Other modeling 

components not given here are all derivable from these basic components. So, the generated 

PRN by the algorithm will be expressive enough to cover any kind of FDs. 



 
 

FD2PRN (FD) return PRN 
// 
//FD: a Flow Diagram 
//PRN: a Partial Recurrent Network 
//Act_IDENTITY: the identity function as an activation function 
//Out_IDENTITY: the identity function as an output function 
// 
Set default activation function Act_IDENTITY 
Set default output function Out_IDENTITY 
For each level or constant in FD  

Generate an input unit I 
Generate an output unit O 
Generate a state unit S 
Connect a link LIO from I to O 

   Set the weight of LIO 1 
Connect a link LSO from S to O 

   Set the weight of LSO 1 
Connect a link LOS from O to S 

   Set the weight of LOS 1 
For each rate DR in FD 
 Generate a hidden unit NR 
   If the start point of the flow that DR is upon is a level LV1 

Connect a link LHO1 from NR to the output unit corresponding LV1 
    Assign the weight of LHO1 with -DT 

   If the end point of the flow that DR is upon is a level LV2 
Connect a link LHO2 from NR to the output unit corresponding LV2 

Assign the weight of LHO2 with DT 
   For each information source IS in the rate equation DRE of DR 

 Connect a link LSH from the corresponding state unit for IS to NR 
   Assign the weight of LSH with the coefficient of IS in DRE 

 

Fig. 5 the algorithm of mapping a FD to a PRN (FD2PRN) 

Using Fig. 4 as an example, the output of the FD2PRN algorithm will be like the one 

shown in Fig. 6(c); the relationships of the corresponding components between the two 

representations described above are listed in Table 1. As shown in Fig. 6(a), level (inventory: 

I) and constant (desired inventory: DI) are mapped to three units: input II, output OI, state 

SI and input IDI, output ODI, state SDI, respectively. Rate (order rate: OR) is mapped to 

hidden unit HOR, and the flow is mapped to the link from HOR to OI, as shown in Fig. 6(b). 

The other type of constants (e.g., adjust time: AT) that appear as a coefficient in a rate 

equation is mapped to the weights of the links from SI to HOR and from SDI to HOR, 

respectively, as shown in Fig. 6(c). 
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(c) 

Fig. 6 the PRN corresponding to the SDM of Fig. 4 

Table 1 the corresponding components between a SDM and a PRN 
Components for SDMs Components for PRNs 
Level variable, constant (not for coefficient) A triple of input, output, and state units 
Rate (or auxiliary) variable Hidden unit 
Wire Link from a state unit to a hidden unit 
Flow Link from a hidden unit to output unit 
Level equation A weighted sum of the values of hidden and state units 

connecting to an output unit via links 
Rate equation (including constants as 
coefficients) 

A weighted sum of the values of state units connecting 
to a hidden unit via links 

Equation for initial value Link from an input unit to an output unit 
Constant equation Link from a state unit to an output unit  

3.2. Mapping in numerical propagation constraints 

Not shown in Fig. 6 are the values that propagate within the network. Are they also 

same with the corresponding ones in the FD? To verify this, we need to show mathematically 

that the two representation forms involved in the mapping are equivalent. According to 

Dolado [1992], a FD represents a set of numeric propagation constraints, in which the 

intrinsic part is composed of the internal equations of levels and rates while the extrinsic part 

is composed of the initial values of constants and levels. On the other hand, the intrinsic 

constraints of a PRN are defined by the internal activation function of each unit and the 

weights on links between two units, while the extrinsic constraints are network inputs. Only if 

the constraints of the two representations are shown equivalent, one can claim that the two 

models operate and propagate numeric constraints in the same way with no difference. In the 



 
 

following, the equivalence of each individual constraint is proved. 

3.2.1. Level equations 

Forrester [1968b] defines a level equation as “a reservoir to accumulate the rates of 

flow that increase and decrease the content of the reservoir”. Thus, the final value of a level is 

the accumulation of changes within a certain period. A level equation in Forrester’s form is as 

(Eq. 1): 

L.K = L.J + DT * (RA.JK - RS.JK)      (Eq.1) 

where 

L is the level, 

L.K is the level L’s new value, 

L.J is the level L’s old value, 

DT is the period between JK, 

RA is the rate on an inbound flow into the level, 

RA.JK is the rate value increases between time J and K, 

RS is the rate on an outbound flow out of the level, and 

RS.JK is the rate value decreases between time J and K. 

 

The equation can be rewritten in a more easily understandable form: 

n210t1tr1trT ) 1 L(t-L(t) 
m

1i

n

1j
ji ,...,,,,))( )(( =−−−∆+= ∑ ∑

= =

   (Eq. 2) 

where 

L is the level 

L(t) is level L’s new value at time t, 

L(t–1) is level L’s old value at time t–1, 

∆T is the time interval of the calculation, 

ri is the rate of an inbound flow into the level, 

ri(t–1) is the rate value between time t–1 and t, 

m is the number of rates of the inbound flow into the level, 

rj is the rate of an outbound flow out of the level, 

rj(t–1) is the rate value between time t–1 and t, and 

n is the number of rates of the outbound flow out of the level. 

 

The corresponding level equation in a PRN is referred to the value of an output unit, 

which is determined by a weighted sum of output values from the hidden and state units 

connected to the output unit via links. To show how this part of numerical constraints 

between the two representations is equivalent, let us start first from the output function of an 



 
 

output unit, which is 

ak(t)=I(netk(t))          (Eq. 3) 

where 

ak(t) is the output value of the kth output unit at time t, 

netk(t) is the net input to the kth output unit at time t, and 

I( ) is the identity function. 

 

Note that to match the characteristics of a SDM, the PRN model here always uses the 

identify function as the activation function that passes the net input of a unit to output directly. 

The net input netk(t) is calculated as follows: 

∑++=
h

hhkkkkkk tHwtSwtIwtnet )()()()( &&&   (Eq. 4) 

where 

netk(t) is the net input for the kth output unit at time t, 

k is the index of the kth output unit (also corresponding to the kth level), 

kw& is the weight of the link from kth input unit to kth output unit, 

Ik(t) is the kth input unit’s output value at time t, 

kw&&  is the weight of the link from kth state unit to kth output unit, 

Sk(t) is the kth state unit’s output at time t, 

h is the index of the hth hidden unit (also corresponding to the hth rate), 

whk is the weight of the link from the hth hidden unit to the kth output unit, and 

Hh(t) is the hth hidden unit’s output at time t. 
 

Close examination of Fig. 7 reveals that the incoming links connecting an output unit are 

divided into two groups: (1) from input or state units and (2) from hidden units. The former 

set of links is always assigned with a weight equal to one, so that the initial input values are 

propagated to output units directly and then forwarded to state units. After that, the values of 

state units are used as a new set of inputs that feed in again to propagate to output units, and 

this process repeats at each time interval to ensure that the previous system outputs are 

maintained. This part of mapping corresponds to the levels that accumulate old values in the 

last step. The weights of links from hidden units to an output unit receive either ∆T or –∆T so 

that the product values represent the net changes of rate values into output units. Now 

substitute these weight values into Eq. 4 and simplify the equation: 
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Fig. 7 the corresponding part of a PRN for the level equation of I in Fig. 4 
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where 

netk(t) is the net input for the kth output unit at time t, 

k is the index of the kth output unit (also corresponding to the kth level), 

Ik(t) is the kth input unit’s output value at time t, 

Sk(t) is the kth state unit’s output at time t, 

∆T is the weight, 

i is the index of the ith hidden unit (also corresponding to the ith rate of the inbound 

flow into the level), 

j is the index of the jth hidden unit (also corresponding to the jth rate of the outbound 

flow out of the level), 

Hi(t) is the ith hidden unit’s output at time t, and 

Hj(t) is the jth hidden unit’s output at time t. 

 

Input Ik(t) is also restricted to carrying values only at step 0 and is reset to zero otherwise. 

(The reason for this and the method used will be described in the next section.) In contrast, 

Sk(t), Hi(t), and Hj(t) will receive a zero value at step 0, and any values after that. In addition, 

Sk(t) represents the current value of the kth state unit at time t as well as the output value of the 

kth output unit at time t–1. Substituting these values into Eq. 5 results in the following: 

netk(0) = Ik(0)                (Eq. 6-1) 

ntjitHtHTtnettnet
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where 

netk(t) is the net input for the kth output unit at time t, 

k is the index of the kth output unit (also corresponding to the kth level), 

Ik(t) is the kth input unit’s output value at time t, 

netk(t-1) is the net input for the kth output unit at time t-1, 

∆T is the weight, 

i is the index of the ith hidden unit (also corresponding to the ith rate of the inbound 



 
 

flow into the level), 

j is the index of the jth hidden unit (also corresponding to the jth rate of the outbound 

flow out of the level), 

Hi(t) is the ith hidden unit’s output at time t, and 

Hj(t) is the jth hidden unit’s output at time t. 

 

The above analysis shows that the output functions for a PRN can be expressed as Eqs. 

6-1 and 6-2, which can be compared to Forrester’s form of level equations (Eq. 2) rewritten 

from (Eq. 1). On the condition that t = 1, 2, ..., n, Eqs. 2 and 6-2 are identical. This shows that 

the numeric constraints defined in a level equation can be re-implemented in a PRN designed 

as above. 

3.2.2. Initialization equations 

In the previous section, it was shown that each input unit at step 0 propagates its value to 

the corresponding output unit, which assigns an initial value of a level (Fig. 8). In the 

subsequent steps, however, a PRN can still allow the input units to feed new values into the 

network. This is different from the situation in a FD, where each level is set to an initial value 

by an initialization equation before a simulation starts, and then let the numeric values alone 

propagate in the simulation process without any interference from the outside world 

[Forrester, 1968b]. (There are exceptions when a model constructor wants to manipulate 

some system variables or add noisy data to the system.) To mimic this behavior, one has to 

restrict the input units of PRNs so that they do not receive more data from the outside world 

after step 0. This requirement is achieved by a special arrangement of training cases in a data 

set, in which only the training tuple for step 0 is given initial values, while other tuples in the 

following steps all receive zero values in the input part. 

3.2.3. Constant equations 

In a FD, all constants are assigned values by constant equations [Forrester, 1968b]. In 

the corresponding PRN however, constants can be either appeared as coefficients in a rate 

equation or treated as levels (as shown in Fig. 9). The latter case is distinguished from a 

normal level only in that they are connected with no hidden unit, and do not change values in 

simulation. So, its equivalence proof is the same as that for the level equation. 
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Fig. 8 the corresponding part of a PRN for the initial equation of I in Fig. 4 
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Fig. 9 the corresponding part of a PRN for the constant equation of DI in Fig. 4 

3.2.4. Rate equations 

A rate equation defines how a flow is controlled. It accepts inputs from levels or 

constants and generates an output that, in turn, controls a flow into or out of a level. A rate 

equation in Forrester’s format is 

R.KL = f(all levels and constants),        (Eq. 9) 

where 

R.KL is the rate value in time interval KL. 

 

The above equation can also be rewritten in a more general form as 

r(t) = f(Li(t),…, Cj,…), i=1, 2, …, m,  j=1, 2, …,n     (Eq.10) 
where 

r(t) is the rate value between t and t+1, 

f() is any function, 

Li is level i, 

Li(t) is the level value at time t, 

m is the number of levels, 

Cj is the constant j, and 

n is the number of constants. 
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Fig. 10 the corresponding part of a PRN for the rate equation of OR in Fig. 4 

A rate equation can be any type with the following restrictions: (1) an equation cannot 

contain constant DT; (2) the right-hand side of an equation should not include other rate 

variables, but only levels and constants; and (3) the left-hand side of an equation contains the 

rate variable being defined by the equation. An additional constraint to be noted is that the 

value of a rate variable is only affected by the outputs of levels in the previous time interval 

in a FD. Therefore, a level value within function f in the above equation is the old value of 

that level in the previous time step. 

Since rates are mapped to hidden units in which the input links come from state units (as 

shown in Fig. 10), the three restrictions for rate equations are enforced because: (1) DT is 

only assigned to links from hidden units to output units, which has nothing to do with links 

from either input or state units to hidden units; (2) there is no connection between any two 

hidden units, so no part of a rate equation will be represented by another; and (3) the output 

of a hidden unit itself represents a corresponding rate value. As to the last restriction, the only 

inputs of a hidden unit are from state units according to the algorithm FD2PRN. If a state unit 

has come from the mapping of a level, then the state unit keeps the value of a level in the 

previous time step, which satisfies the constraint; otherwise, it is from a constant (which does 

not change value in time), and the constraint is satisfied trivially. 

Besides the restrictions imposed on the rate equation, there is an additional one in the 

implementation of a PRN. A rate equation can be any arbitrary function. So it suffers a 

limitation if it has to be faithfully re-implemented in its original form in a PRN. That is, some 

functions cannot be trained in a PRN. As a requirement of a neural learning algorithm, an 

activation function has to be smooth and continuous in order to calculate its derivative value 

during a training process. Those functions (e.g., a look-up table) that do not satisfy the 

condition can exist in a PRN, but they will not participate in the learning process. This type 

of function, however, is usually provided with certain by a human constructor and occurs 

only in a small portion of a model. The most common rate equations are those that include 

only levels and constants in a weighted-sum format as illustrated below. An arbitrary 

weighted-sum equation may take the following form: 

3311 )()( CbtLatr += ,        (Eq.11) 

where 



 
 

r(t) is the rate value between t and t+1, 

L1 is the level 1, 

L1(t) is the level value at time t, 

a1 is the coefficient of L1, 

C3 is the constant 3, and 

b3 is the coefficient of C3. 

 

The equation for r(t) that corresponds to the output of unit k is 
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     (Eq. 12) 

where 

neth(t) is the output for the hth hidden unit at time t, 

h is the index of the hth hidden unit (also corresponding to the hth rate), 

uih is the weight of the link from the ith state unit to the hth hidden unit, 

Li(t) is the ith state unit’s output at time t (also corresponding to the ith level’s 

value at time t), 

vjh is the weight of the link from the jth state unit to the hth hidden unit, and 

Cj(t) is the jth state unit’s output at time t (also corresponding to the ith constant’s 

value). 

 

Let uik = 0 for i = 2,3,... ,m, and vjk = 0 for j = 1,2,4,...,n. Then Eq. 12 becomes: 

)()()( 3311 tCvtLutnet hhh +=       (Eq. 13) 

where 

neth(t) is the output for the hth hidden unit at time t, 

h is the index of the hth hidden unit (also corresponding to the hth rate), 

u1h is the weight of the link from the 1st state unit to the hth hidden unit, 

L1(t) is the 1st state unit’s output at time t (also corresponding to the 1st level’s 

value at time t), 

v3h is the weight of the link from the 3rd state unit to the hth hidden unit, and 

C3(t) is the 3rd state unit’s output at time t (also corresponding to the 3rd 

constant’s value). 

 

One can see that the form of the rate equation in Eq. 11 is identical to that in Eq. 13. For 

rate equations in a product form, the result will be similar. 

As a summary, one may check that the formulae for the PRN shown in Fig. 6(c) are 

rewritten as follows: 

OI(t) = OI (t–1) + HOR(t–1) × ∆T 

HOR (t–1)= (1/5)×[ODI(t–1) – OI(t–1)] 



 
 

ODI = 6000 

3.3. Mapping in physical simulation 

In the above, it is shown structurally and mathematically that a FD can be mapped to a 

specially designed PRN. The experiment here will physically examine and evaluate the 

validity of this claim. First, an arbitrarily selected FD is created using STELLA2, and then 

used to produce the output patterns of level variables over a time interval. Meanwhile, the 

FD2PRN algorithm is used to create a corresponding PRN from this FD with a one-to-one 

mapping in structures. With this new representation, another set of output patterns is 

produced which is compared against the original. There is currently no standard comparison 

method to evaluate the performance of the regenerated patterns, so criteria that are most 

frequently found in papers are adopted here (e.g., MSE, RMSE, MAE, MAPE, NMSE, and 

NRMSE). These criteria are commonly used to estimate the correctness of forecasting [Nie, 

1997; Zhang and Hu, 1998; Aussem, 1999], and to measure the difference between a real 

value and an estimate of it. The equations are following:  

MSE=
T

yy tt∑ − 2)ˆ(
 

RMSE= MSE  

MAE=
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NMSE=
2σ

MSE
 

NRMSE=
σ

RMSE
 

where yt is an output of a FD, tŷ  is the corresponding output of the PRN, t is the 

number of data points, and σ2 is the variance of the output time series pattern. The first three 

criteria are a kind of mean values while the last three are normalized with respect to yt or σ, 

respectively. 

Four well-known FDs are adopted in the experiments here, as shown in Fig. 11. The first 

three (Fig. 11(a)–(c)) are found in [Forrester, 1968b] which were used to illustrate a 

first-order negative feedback loop, a second-order negative feedback loop, and a positive 

feedback loop, respectively. (The first model, i.e., Fig. 4, is already seen in this paper.) The 

fourth one is modified from an example model (named “Business”) given in the library of 

                                                
2 This is a standard software package used for the creation and simulation of a SDM since its introduction 

in 1985 [Richmond, 1987]. 



 
 

STELLA, in which there are many positive and negative feedback loops intermixed together. 

The coefficient constants within these models are rewritten and incorporated into rate 

equations; other constants are changed into levels without inbound or outbound flows. These 

modifications do not affect the behaviors of the models. The four models generate different 

numbers of data points: 50, 100, 50, and 100, respectively. One point represents an output for 

one DT time interval in a time series. 

Table 2 shows the performance of pattern regeneration of each of the four models. One 

can see that all of the criteria indices receive a tiny value (of the order of 10-6), which means 

that the regeneration patterns produced by the corresponding PRN are almost exactly the 

same as their original patterns, and the new model is merely another representation of the 

original one with the same structure. Thus, it is proved in simulation that the FD2PRN 

algorithm for a FD does generate an equivalent PRN. What is interesting from the results is 

that the regeneration effectiveness of a complicated model (e.g., model 4) is not necessarily 

worse than a simple one (e.g., model 3). This hints that pattern regeneration has nothing to do 

with either the number of variables or the number of data points; it only has something to do 

with the structure. 

3.4. Reverse Mapping 

Basically, the FD-PRN algorithm can be applied in either direction from FD to PRN or 

vice versa, and each row in Table 1 is a two-way mapping. However, this does not mean that 

any arbitrary PRN will have a correspondent in SDM. In order to satisfy the requirement, 

some conditions for a PRN should be fulfilled. First, the numbers of input units, output units 

and state units must be the same. Second, the same number of recurrent links exists which 

connects between an output unit and a state unit and the weights on the links must be 1. Third, 

there is the same number of links connecting between an input unit and an output unit and the 

weights on the links must be 1. Forth, the activation function for output units must be an 

identity function. Fifth, absolute values of weights on the links connected from hidden units 

to output units must be all the same. Note that the first four conditions tie the input, output 

and state units together to serve the role of levels in a SDM. The fifth condition mimic the 

simulation that each result is multiplied by the same DT value after one period. 

Table 2 the Effectiveness of Pattern Regeneration by PRNs 
 Levels MSE RMSE MAE MAPE NMSE NRMSE 
Model 1 I 0.00000006  0.24494897  0.06000000  0.10020955  0.00000516  2.27220024  

I 0.00000024  0.48989795  0.24000000  0.43631328  0.00001208  3.47628848  Model 2 
GO 0.00000030  0.54772256  0.30000000  31.93470574  0.00001026  3.20332483  

Model 3 S 0.00000032  0.56568542  0.32000000  3.25769262  0.00037884  19.46393932  
I 0.00000030  0.54772256  0.30000000  0.36676194  0.00011291  10.62581797  Model 4 
ES 0.00000025  0.50000000  0.25000000  1.34740232  0.00019029  13.79456641  

* All values in this table are already multiplied by 106. 



 
 

 
(a)                                (b) 

 
(c) 

 

(d) 

Fig. 11 System Dynamic Models - (A) First-Order Inventory Model, (B) Second-Order 

Inventory Model, (C) Salesmen Model, (D) Business Model 



 
 

II IDI

HOR

OIODI

1

1

∆T

SISDI

11 11

? ?

I
GO

I
I

HOR

O IO
DI11

∆ T

S
IS

DI

11 11

O
GO

S
GO

11
HRR

∆ T

I
DI

1

? ?? ? ?

 
(a)                                     (b) 

I
S

H SHR

O
S

1
∆ T

S
S

11

?

I
ES

I
I

HS

O
I

O
AS11

− ∆ T

S
I

S
AS

11 11

O
ES

S
ES

11
HP

∆ T

I
AS

1

HCES

? ?? ? ? ?

∆ T

 
 (c)                               (d) 

Fig. 12 four models of Fig. 11 in PRN representation 

 

PRNs that do not satisfy the above conditions may or may not be mapped to a FD by a 

different rule or algorithm. Theory of this part is not clear yet and will be left in future 

research. 

4. A Simple Application of the PRN Representation 

We want to investigate the learning capability of the new representation with an attempt 

to explore the possibility of using it to assist model construction in SD. Therefore additional 

experiments are conducted. In particular, we are interested to see whether the PRN 

representation can learn by itself from the given exemplar data. Can a PRN in Section 3.3 

re-create its own structure from the given data that generated by STELLA without the 

knowledge of what the model is? In another word, using the four models in the above section 

with given exemplar data prepared, will the new representation help us to re-discover the four 

models in PRNs? 

In order to verify this, one needs first to prepare an initial PRN for each model that satisfy 

the conditions specified in Section 3.4. These are shown in Fig. 12, where there is one layer 

of hidden units that fully connected to the output units since one has no idea of the 

cause-effect relationships in the models. The numbers of links to be learned in each model are 

2, 6, and 1, which are marked with “?” labels in the diagrams. The training data are collected 

from the simulation results of each model implemented in STELLA. 



 
 

Tables 3–5 show the learning process of the first three models with a learning rate of 0.1. 

One can see that their learning results are almost perfect, with the weights to be adjusted 

gradually approaching the final target values and the weights on the nonexistent links all 

being reduced to near zero. The training of the three models completes at around the 150th, 

200th, and 10th epoch, respectively. Note that an epoch means that the neural network was 

trained on the entire set of training examples once and each training example being used once 

in the learning process. 

The data shown in Tables 6 and 7 are for training the network of model 4 with learning 

rates of 0.1 and 0.05, respectively. The learning effect is a little worse than for the first three 

models, but it is already very close to the target, and the three link pairs3 with net effects are 

also successfully learned in the structure. When the learning rate is 0.1, the training process 

ends at 10,000 epochs; for a learning rate of 0.05, it ends at 15,000 epochs. 

Although the above experiments are simple, it does show that various kind of SDMs can 

be learned, irrespective of whether a model contains positive (models 3 and 4) or negative 

(models 1, 2, and 4) feedback loops, is of high (models 2 and 4) or low (models 1 and 3) 

order, and is complicated (model 4) or simple (models 1, 2, and 3). The experiment also 

shows that the learning speed is dependent on the complexity of a model, which may be an 

obstacle when a model is too large. However, with these experiments, it does open the 

possibility of using the PRN representation to assist in the construction of a SDM, and its 

evaluation needs more studies. 

 

Table 3. The learning process for model 1 with a learning rate of 0.1 
Epochs 
Links 

1 50 100 150 In FD 

DI->OR 0.07201 0.19778 0.19992 0.2 0.2 
I->OR –0.09258 –0.19779 –0.19992 –0.2 –0.2 
SSE* 1.302581548690 0.000032366260 0.000000042438 0.000000000063  
*SSE = Sum of Square Error 

 

Table 4. The learning process for model 2 with a learning rate of 0.1 
Epochs 

Links 
1 50 100 200 In FD 

DI->OR 0.11011 0.21374 0.20021 0.2 0.2 
GO->OR –0.07076 –0.00995 0.00013 0 0 
I->OR –0.10091 –0.21682 –0.20033 –0.2 –0.2 
DI->RR 0.11052 –0.01960 –0.00025 0 0 
GO->RR 0.08630 0.11929 0.09987 0.1 0.1 
I->RR –0.10843 0.02385 0.00043 0 0 
SSE 4.030906200408 0.083232857286 0.000025431156 0.000000000038  

 

                                                
3 A set of links connected from the same state unit through different hidden units to the same output unit. 



 
 

Table 5. The learning process for model 3 with a learning rate of 0.1 
Epochs 

Links 
1 3 5 10 In FD 

S->SHR 0.01248 0.01986 0.01998 0.02 0.02 
SSE 0.107980273663 0.000050484439 0.000001129671 0.000000000084  

 

Table 6. The learning process for model 4 with a learning rate of 0.1 
Epochs 

Links 
1 1000 5000 10000 Values in 

FD 
1 ES->ESC –0.10942 –0.14061 –0.09534 –0.09688 –0.09685 
2 I->ESC 0.21019 –0.27144 –0.20974 –0.21254 –0.2125 
3 AS->ESC 0.28022 1.39048 0.98466 1.00011 1 
4 ES->P 0.61841 0.66777 0.62893 0.62969 1.0625 
5 I->P 0.43406 0.58526 0.63217 0.63128 –0.25 
6 AS->P 0.62896 0.07293 0.25377 0.25072 0 
7 ES->S 0.48159 0.43222 0.47107 0.47030 0.903124 
8 I->S 0.86594 0.71474 0.66783 0.66873 –0.2125 
9 AS->S 0.87104 1.42707 1.24623 1.25072 1 
4–7 0.13682 0.23555 0.15786 0.15939 0.159376 
5–8 –0.43188 –0.12948 –0.03566 –0.03745 –0.0375 
6–9 –0.24208 –1.35414 –0.99246 –1 –1 
SSE 2.134996175765 0.019681053236 0.000089574292 0.000000019754  

 

Table 7. The learning process for model 4 with a learning rate of 0.05 
Epochs 

Links 
1 5000 10000 15000 Values in 

FD 
1 ES->ESC –0.09791 –0.09770 –0.09685 –0.09687 –0.09685 
2 I->ESC 0.22023 –0.21234 –0.21251 –0.21250 –0.2125 
3 AS->ESC 0.28055 1.00563 0.99981 1.00000 1 
4 ES->P 0.62255 0.63175 0.62964 0.62971 1.0625 
5 I->P 0.43555 0.63359 0.63118 0.63124 –0.25 
6 AS->P 0.62887 0.23292 0.25034 0.24961 0 
7 ES->S 0.47745 0.46825 0.47037 0.47035 0.903125 
8 I->S 0.86445 0.66642 0.66883 0.66877 –0.2125 
9 AS->S 0.87113 1.26696 1.24938 1.24945 1 
4–7 0.1451 0.1635 0.15927 0.15936 0.159376 
5–8 –0.4289 –0.03283 –0.03765 –0.03753 –0.0375 
6–9 –0.24226 –1.03404 –0.99904 –0.99984 –1 
SSE 3.454487562179 0.000304681831 0.000000247206 0.000000007560  

5. Discussion 

Now is the time to have some discussions on the PRN representation and compare it 

with traditional representations for a SDM. As one has seen, an obvious advantage of the new 

representation is its learning capability in the usage of assisting model construction. Being 

learnable, it can also make a created model adaptive to its surround outside environment. In 

particular, it can be applied to policy design too since a PRN can learn its structures from a 

set of prepared data. The idea is the same. By assigning an expected output pattern as a new 

set of training data to a given model, one can obtain a new structure after the training process; 



 
 

the difference between the original and the new structure is the place for policy design to be 

considered. Similarly, by re-starting the learning process on and off after some period of 

using a model, one can fine-tune it to adapt to the environmental changes over time. 

The other characteristic of the PRN representation is that it can be treated simply as a 

directed graph consisting of two symbols, i.e. nodes and arcs. In this aspect, it is more close 

to a CLD than a FD. The advantage of viewing this way is that many algorithms that apply to 

a graph can be applied to it. For example, it is easy to enumerate all loops within a model 

simply by a graph traversal algorithm; when the node equation used in a PRN is given, it is 

also easy to determine whether a loop is positive or negative from the weights associated with 

links. If there is an even number of weights in the same sign (positively correlated), it is a 

positive loop; otherwise, it is negative. This is different from a FD in which a loop is positive 

or negative depends on both the equation and the diagram. 

There are of course weaknesses for the PRN representation. First, it is not suitable for 

conceptualization and communication because it lacks of meaningful semantic symbols to 

represent a model. It is better used in companion with a FD and servers as the backend engine 

for it. In this way, we can combine the benefits of both model representations. With a good 

tool support that implements the mapping between a FD and a PRN, this can be done 

transparently. Thus, it enhances the capability of a traditional FD. Second, some special 

components found in commercial SD modeling tools (e.g. STELLA and i-THINK) do not 

exist in the current PRN representation, e.g. “conveyor” and “queue”. These components 

however are optional and do not support in a normal FD, either. Third, the functions in a PRN 

are restricted to be linear, e.g., a weighted sum form. As describe in Section 3.2.4, a rate 

equation can be any arbitrary function. So it suffers a limitation if it has to be faithfully 

re-implemented in its original form in a PRN. Those functions (e.g., a look-up table) whose 

derivative value cannot be calculated will not participate in the learning process. Lastly and 

most importantly, to take the advantages of the new representation, there needs to be a set of 

well-prepared exemplar data. This is usually not available. 

In summary, the new representation provides an enhancement to the traditional FD 

representation. By easily switching between the two model representations, people will have 

an additional choice of using which model in problem solving, and it is shown some 

problems, e.g. model construction, may now be solved easier in a new representation. This 

opens a new dimension for future SD research. 

In the last section, we have illustrated the possibility of using the PRN representation to 

construct a SDM by inductive learning. Although it is a simple example that does not fully 

show the effectiveness of new model construction approach, it indeed shows the potential of 

it. A traditional approach of model construction is a deduction process performed based on 

human experts’ observation and intelligence. The difficulty is usually in that the target to be 

modeled is a dynamically complicated system, which may exist no observable guidelines or 



 
 

hints for assistance during the construction process. Thus, the constructor’s insight and 

experiences determines the quality of the created model. 

The PRN representation, in contrast, suggests a new approach for thinking, i.e., 

induction based on evidence. The approach relies on well-established artificial intelligence 

algorithms to systematically search a problem space and check out every possibility of 

cause-effect relationships in order to identify the most appropriate structure for a model. 

Although it may lack of insight that a human being has initially, the automatic method will 

eventually generate a satisfactory model through a systematic search, as is shown in the 

above experiments. Furthermore, the automatic approach is not competitive but 

complimentary with the traditional ones. An experienced model constructor may use it for 

review or evaluate the structure generated instead of creating by himself/herself.  

The future research will investigate the generality and scalability of the model 

construction approach in more detail and further study the feasibility of other applications, 

e.g. policy design and model adaptation. 
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