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 Abstract--A matrix architecture for development of system dynamics models is described.  
The approach concentrates on the formulation of the Forrester stock and flow diagram, and 
incorporates the concept of an interaction matrix to assist in the formulation of such models.  
The interaction matrix is formally derived.  Set and graph-theoretic concepts are utilized in the 
derivation.  The rules (primitives) of system dynamics are expressed in the form of definitions 
and axioms.  From these primitives, theorems are proven.  The theorems describe whether 
interaction between certain pairs of quantity types is possible and what type of interaction can 
exist between the pairs.  The theorems are used to rationalize the interaction matrix.  The paper 
is accompanied by a companion article [3] by the same authors that employs the interaction 
matrix in a component development strategy.  The methodology is applied to example problems 
in the companion paper.   
 
Notation, assumptions, definitions, and axioms 

In this article the assumptions and axioms of system dynamics will be asserted using set 
and graph theory. In addition, notation and definitions will be introduced as required by the 
component approach.  Using these primitives, theorems that describe what interactions are 
possible are proven.  The implications for the interaction matrix are then illustrated.  
 
Notation 
 Let the model M by which a system is to be represented consist of the following 
assemblage:  M = {B, X, Cx} where B is the boundary of the system, X is the set of components 
used to represent the system and Cx is the set of connectors that exist among the components.  A 
component is a subsystem of a system that is differentiated (from other subsystems) by the type 
of flow contained within it.  Each component will be allowed to contain only a single type of 
flow, although that flow could proceed through several stocks. 
  
 All stock or level variables that accumulate a particular flow are members of the same 
component.  All rates whose associated units are simply the unit of the flow divided by time are 
also members of the same component.  Thus a component is a subsystem of the larger system 
encompassing all rates and stocks associated with a particular flow.  
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 Another assemblage which could be used to represent systems is the following: M = {B, 
Q, C}, where C is the set of connectors among the set of quantities Q, and B is the boundary of 
the system.  The boundary B of the system is the same under both definitions and is specified 
once the quantities have been chosen.   
 The set Q shall also be referred to as a space because the quantities represented may be 
variables that are functions of time.  Let q be the vector of quantities contained in the set Q.  An 
element of q will be denoted by a qi. A system that can be represented by ñ quantities will 
possess a q vector of length ñ, whose associated quantity space Q is of dimension ñ.  When the 
vector q(t) is an element of Q, this is denoted by q∈Q.   
 Using system dynamics methodology, i.e. Forrester [5,6,7,8], the sets Q and C are 
partitionable into the following subsets:  IIQ = {S; O; U; V; P; R} and :  IIC  = {F; I}.  This 
partitionability follows directly from the fact that each of the elements in Q and C can be 
uniquely identified and therefore will belong to one and only one of the respective subsets of Q 
and C.   
 The above quantity categories are listed in Figure. 1 with their respective set and 
symbolic representations.  This s is the vector of stock variables whose associated space is S, an 
individual element of which is denoted by si and similarly for the other quantity categories.  The 
space S can also be thought of as the subset of quantities qi that are stocks. To designate a 
particular quantity qi as a stock, the notation qi∈S, meaning qi, is an element of the set S, is used.  
If a quantity qi is known to be a member of one or two quantity types, say the set of parameters P 
or inputs U, this is denoted by qi∈PU.  Thus, PU denotes the union of P with U : PU = P∪U.   
  Name   Subset Member  Symbol 
 
 Stock (level) variable        s ε S          si 
 
 Output variable        o ε O          oi 
 
  

Input variable         u ε U                                ui        

 
 
 Auxiliary variable        v ε V                        
 
 
 Parameter (constant)        p ε P                  pi 
 
 
 Rate variable         r ε R                                        ri  
 
 
 Flow connector       cij  ε F     i                   j 
 
 Information connector      cij  ε I     i                   j 
 
Figure 1.  Subset and symbolic presentations of quantity and connector categories. 
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1 2 3 4 5 6 7                           

                  1 0 1 0 0 0 0 0                   

      2 0 0 1 0 0 0 0             

      3 0 1 0 1 0 0 0                  

      4 0 0 0 0           -1 0 0                    

      5 0 1 0 0 0 0 1                 

      6 0 0 0 1 0 0 0                                                       

      7 0 0 0 0 0 0 0           

                      Square ternary matrix (STM)   

 

Causal loop diagram (CLD)  
 
           1     2      3     4     5     6     7 
       P     1      0     I      0     0     0     0      0                

       R   2      0     0      F     0     0     0     0                          

       S    3      0      I      0     I      0     0     0                                                                                                         

       R    4      0     0       0     0   -F     0     0      

       S    5      0     I       0     0     0     0     I                                                                      

       P    6       0     I      0       I     0     0    0       

       O    7      0     0      0      0     0     0    0        

Modified square ternary matrix (MSTM)       Stock-and-Flow Diagram (SFD) 

Figure 2.  An Isomorphic Correspondence of the STM to the CLD and of the MSTM to 
the SFD of a Hypothetical System. 

q3 q5

q2 q4

q1
q6

q7
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 A connector directed from qi toward qj will be represented by cij  or (qi, qj).  Each of the 
connectors are signed and may be used to represent either a transmission of information or a 
transfer of substance (a flow).  In general, a connector is said to exist if qi somehow directly 
affects, causes, influences, or has an impact upon qj.  The set C of all connectors cij is defined by 
causal relations ℜ on Q x Q and can be formatted for computer manipulation in the form of a 
square ternary matrix.  An example of a square ternary matrix and its associated causal diagram 
are provided in Fig. 2.  

 The capability to represent symbolically the connectors and quantities adjacent to or 
associated with a quantity qj is needed in the following development.  Let Ac(qj) represent the set 
of signed connectors directed toward qj, and let  Ec(qj) represent the set of signed connectors 
directed away from qj.  Similarly, let Aq(qj) represent the set of quantities which have connectors 
directed toward qj and therefore are adjacent to qj, and let Eq(qj) represent the  set of quantities 
which have connectors directed away from qj and therefore are adjacent to qj.  The sets Ac(qj), 
Aq(qj) will be referred to as the affector subsets of qj, whereas the sets Ec(qj) will be referred to as 
the effector subsets of qj. 

 In the ensuing discussion, set operators are used to denote the union, intersection, and 
subsets of sets, using the symbols ∪, ∩, and ⊆, respectively, whereas logical operators are used 
to denote the ‘ and ‘ and ‘ or ‘ operations between propositions, using the symbols ∧ and ∨, 
respectively.  The notation Ac(qj) ⊆I, for example, denotes the proposition, considered to be true, 
that Ac(qj) is a subset of the set I.  When its occurrence is simultaneous with the proposition 
Ec(qj)⊆ I, the compound proposition is denoted Ac(qj) ⊆I ∧ Ec(qj)⊆ I.  Using the suggested 
notation the assumptions can be stated in the next section. 

 Finally, Xi will be used to denote component I, and quantities within Xi will be denoted 
by Qi.  Specifically, the set of rates within Xi will be denoted by Ri while the set of stocks within 
Xi is Si.  Similar conventions apply to the remaining quantity types:  auxiliaries, outputs, inputs, 
and parameters.  On the other hand, quantities that appear at the interface between two or more 
components will be denoted by Qb and similarly for the specific quantity types:  Vb, Pb, Ub, Ob.  
As previously noted, by the definition of component, between-component quantities cannot 
include those quantities that control and accumulate flows, i.e. rates and stocks.  All flows must 
occur within a component and wherever a flow is observed, a component must be defined for it. 

Assumptions 

 As has been observed, the component approach assists with the generation and 
identification of each quantity and connector.  However, a minimal understanding of the quantity 
and connector types employed in system dynamics is assumed on the part of users.  Moreover, 
the approach assumes that once a Forrester schematic or stock-and-flow diagram has been 
arrived at, there is an inherent behavior or set of behaviors that is prescribed by the diagram; the 
purpose of the simulation process is to extract that behavior or set of behaviors. 

 The following additional assumptions are made by the approach being described: 
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(1) The insertion of integrating functions (delays, smoothing functions in information 
channels) will be performed after the delineation of the preliminary schematic (stock-
and-flow) diagram of the system. 

(2) Information paths leading from rates to auxiliaries, outputs or other rates will be 
omitted completely.  The same information used by the rate will be directly channeled 
to the quantity under consideration, where the rate value can be reconstructed.  This 
eliminates the need for an information path leading from a rate to any other quantity 
in system dynamics. 

Under such conditions all connectors directed toward a particular quantity of the same type, 
either F or I, and similarly for connectors directed away from a particular quantity.  For example, 
all connectors directed both toward and away from an auxiliary are information connectors 
because of the nature of auxiliaries.  In a similar vein all connectors directed toward a stock are 
flow connectors; all connectors directed away from a parameter or an input and all connectors 
directed toward outputs are information connectors when these quantities are considered within 
the context of the CLD. 

 It is very infrequent that a mixture of inward-directed or outward-directed connectors is 
observed.  However, such mixtures could occur on the input side of a level and on the output side 
of a rate as previously intimated by assumptions (1) and (2) above.  These mixtures will be 
momentarily neglected in favor of the elegant simplicity that results from such benign neglect.  
This we state as proposition S1, the continuity proposition. 

 S1. Continuity. For any qj. 

   [Ac(qj) ∩ I = { ô ∨ Ac(qj)}] ∧ Ac(qj) ∩ F = [Ac(qj)∨ ô }] 

Also, 

   [Ec(qj) ∩ I = { ô ∨ Ec(qj)}] ∧ Ec(qj) ∩ F = [Ec(qj)∨ ô }] 

Here, ô denotes the null set.   In words, the proposition asserts that the members of the 
connector subset Ac(qj) are all of the same connector category, either I or F, and that the 
members of the connector subset Ec(qj) are likewise all of the same connector category, either I 
or F, and that this is true for all qj.  The reader can empirically verify that the models described 
in Goodman [10] are compatible with this proposition once integrating functions in information 
channels and information paths leading from rates to outputs are removed and these models are 
considered in their causal loop diagram formats. 

 The insertion of integrating functions in information or flow channels is accomplished in 
step 8 of the component approach as discussed in the companion paper [3].  If the user desires, it 
would also be possible to insert information links from rates to outputs; however, as previously 
discussed these links are not necessary because the modeler can always reconstruct the rate using 
the information directed toward it at another quantity. 

 Using the continuity proposition it is now possible to state precise set-theoretic 
definitions for each of the quantity types in terms of the connectors adjacent to them. 
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Definitions 

 Provided in what follows are set-theoretic definitions of the quantity and connector types 
of system dynamics, analogous definitions in numerous contexts can also be found in Forrester 
[5, 6, 7, 8]. 

 Parameters, inputs, and outputs are defined first. 

 D1.  Parameters and inputs.  Any quantity qj whose associated Ac(qj) = ô, the null set, 
and Ec(qj) ⊆ I, is a parameter or an input; that is, Ac(qj) = ô ∧ Ec(qj) ⊆ I ⇒ qj ∈ PU. 

 Note that parameters are distinguished from inputs by virtue of an identified manager’s 
capability to manipulate or change the latter.  In terms of the STM, whereas Ac(qj) = ô, then qj is 
affected by nothing and its associated column, column j, is filled with zeros.  In Fig. 2, quantities 
q1 and q6 are members of the input-parameter subset because their columns consist entirely of 
zeros and their respective Ec(qj) are subsets of I. 

 D2.  Outputs.  Any quantity qj whose associated Ec(qj) = ô, and Ac(qj) ⊆ I, is an output;  
that is Ec(qj) = ô ∧ Ac(qj) ⊆ I ⇒ qj ∈ O.  In terms of the STM, whenever Ec(qj) = ô, then qj 
affects nothing and its associated row, row j, is filled with zeros.  In Fig. 2, quantity q7 is 
potentially a member of the set of outputs provided its associated inward-directed connector c57 

(=Ac(q7)) is an information connector. 

 In system dynamics, stocks can be recognized as accumulations or integrations of rates of 
flow.  They integrate the results of action in a system.  The following definition for stocks is 
intended to permit recognition of the same on the basis of the kind of connectors directed toward, 
and directed away from the stock. 

 D3.  Stocks.  Any quantity qj whose Ac(qj) ⊆ F and whose Ec(qj) ⊆ I is a stock; this we 
write as follows: 

Ac(qj) ⊆ F ∧ Ec(qj) ⊆ I ⇒ qj ∈ S 

In words, this definition asserts that any quantity whose affector subset Ac is a subset of the set of 
flow connectors and whose effector subset Ec is a subset of the set of information connectors is a 
stock.  Suppose that all interactions along row 3 in Fig. 2 were identified as information links 
whereas all interactions indicated in column 3 were known to be flows.  The q3 would be 
classified as a stock.  This definition is consistent with the notion that information generally 
proceeds from stocks to rates, whereas rates control the flows into and out of stocks.  The next 
definition is for rates. 

 D4.  Rates.  Any quantity qj whose Ac(qj) ⊆ I and whose Ec(qj) ⊆ F is a rate; thus, 

Ac(qj) ⊆ I ∧ Ec(qj) ⊆ F ⇒ qj ∈ R 

This definition asserts that any quantity whose inward-directed connectors Ac are information 
connectors and whose outward-directed connectors Ec are flow connectors is a rate.  Referring to 
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Fig. 2, if c45 was an identified flow connector whereas c34 and c64 were known to be information 
links, then q4 must by D4 be a rate. 

 Auxiliaries are those quantities placed within information paths that modify or transform 
the information as it is passed from stocks to rates.  The following definition is given for 
auxiliaries. 

 D5.  Auxiliaires.   Any quantity qj whose Ac(qj) ⊆ I and whose Ec(qj) ⊆ I is an auxiliary; 
thus,  

Ac(qj) ⊆ I ∧ Ec(qj) ⊆ I ⇒ qj ∈ V 

 Flow connectors generally indicate that substance is being moved from place to place 
within a system, such substance being controlled by rates.  On the other hand, information 
connectors do not cause a transfer of substance within a system but just give information about 
the magnitude of the content.  The following definitions are given for flow and information 
connectors. 

D6.  Flow connectors.  Any connector cij = (qi, qj) whose qi is a rate or whose qj is a 
stock, is a flow connector; mathematically, this is written qi∈ R∨ qj ∈ S⇒ cij ∈ F. 
 

D7.  Information connectors.  Any connector cij = (qi, qj) whose qi is not a rate and  
whose qj is not a stock is an information connector; thus  qi∈ V ∪ S ∪ P ∪ U ∧ qj ∈ V ∪ R ∪ 
O⇒ cij ∈ I. 
 In what follows, use is made of the causal relation alluded to in Klir [13].  Klir suggests 
that causal relations exist whenever the dependent quantities can be expressed explicitly and 
uniquely as a function of the independent quantities.  A binary causal relation ℜ( , ) disallows 
(by definition) the following formulations: 
 

(1) self-loops involving  a single quantity; 
(2) loops involving exclusively information paths or auxiliary variables; 
(3) more than one connector joining any two quantities (qi, qj); and 
(4) connectors that have more than one originating quantity qi or more than one 

destination quantity qj. 
 

Coincidentally, none of the above constructions are allowed in system dynamics methodology; 
consequently, all legitimate relations in system dynamics are causal relations.  Since self-loops 
are not allowed, ℜ(qi, qi) = ô for all (i) and all individual entries along the diagonal in the 
interaction matrix are always zero.  In addition, all relations in system dynamics are by their 
nature deterministic and for the most part time-invariant.  The definition for the causal relation ℜ 
can now be stated. 
 D8.  Causal relations.  A causal relation ℜ ( , ) is a deterministic relation satisfying 
properties (1) to (4) above. 
 A precise definitional understanding of the concepts relating to quantities within 
components and quantities between components is required.  Previously, the notation Qi  and Qb 
was introduced to denote quantities within component (i) and quantities at the interface between 
components respectively.  In addition it is necessary to give special consideration to those 
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quantities in Qi not directly associated with the flow – i.e. all quantities in Qi except rates and 
stocks.  Denoting these quantities as Qwi, it should be apparent that Qwi = Qi – Si – Ri = PiUiViOi.  
The following definition is required for Qwi. 
 D9.  Within-component quantities Qwi.  Qwi includes only those auxiliaries, outputs, 
inputs and parameters whose affector and effector subsets Aq and Eq are exclusively proper 
subsets of Qi; that is, Aq (Qwi) ∪ Eq (Qwi) ⊆ Qi.  Thus only parameters, inputs, outputs and 
auxiliaries which pass information destined for rates within component (i) or receive information 
originating from stocks within component (i) are included within Qwi.  This definition is 
compatible with a previous discussion of these quantities in the main text of the paper. 
 The remaining between-component quantities Qb are obviously those quantities left over 

from the set subtraction operation Q -U
η

1
,

=i
iQ , if there are η components.  The types of quantities 

included within Qb will be taken up later as a theorem. 
 
Axioms 
 This subsection relates the axioms necessary to formulate a system dynamics model using 
the component approach.  These axioms are tautologous to notions popularized by Forrester [6].  
The first axiom states the constituents used by Forrester to model a system. 
 A1.  Elements.  The basic components of a dynamic system can be modeled by means of 
the following quantity categories – stocks S, rates R, inputs U, outputs O, auxiliaries V, and 
parameters P – and by means of the following connector categories – flow F and information I.  
Specifically, the system is modeled by M = {B, Q, C}, where Q is the specified set of quantities, 
C is the specified set of connectors and B is the boundary of the system.  Thus, Q = SRUOPV 
and C = FI.  
 The next axiom is, perhaps, the most fundamental to the Forrester methodology and 
suggests the minimum ingredients necessary for loops. 
 
 A2.  Feedback.  Any feedback loop consists as a minimum of rate, flow connector, stock, 
information connector, and associated connectors, as depicted in Fig. 3 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  The feedback loop. 
 

 
rate 

(decision  
process) 

 
Information connector 
 
 
 

Stock 
(level) 
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 Although several other axioms are characteristic of system dynamics methodology, i.e. 
Burns [2], these two and the one that follows are the only ones necessary for the succeeding 
development. 
 
 A3.  Interaction between components.  By our definition of component there cannot be 
flows between components nor can there be components that are isolated (uncoupled) from all 
remaining components. 
 The first part of this axiom is a restatement of Principle 9-7 in Forrester [6], whereas the 
second part of the axiom can be inferred from Principle 4.1-1 of [6].  It is not useful to include 
within the boundary of the system a component that is uncoupled from other components.  The 
component does not contribute to the dynamics of the other components nor are its dynamics in 
any way affected by the dynamics of the remaining components.  Such a component is unrelated 
to the system and is said to be disjoint.  Thus, it would be possible to partition the entire set of 
quantities Q into subsets Q1, Q2, that are completely disjoint; that is ℜ(Q1, Q2) ∪ ℜ (Q2, Q1) = 
ô.  If the latter statements were true, then it would be possible to study the sets Q1, Q2 in 
complete isolation from each other.  As a result of Axiom A3, information paths form the 
connecting tissue between components. 
 

Theorems related to component approach 
The theorems in this section are developed to maximize the inferences possible in filling 

the modified square ternary matrix.  They will reduce the number of entries in the MSTM that 
the user has to consider in specifying the connectors among quantities whose identities are 
predetermined.  The theorems are based on the primitives stated in section 1 of the paper.  The 
first theorem below specifies the connectors types in the affector and effector sets of a quantity 
whose identity is known. 

 
T1.  Given a quantity qj whose identity is known, then its associated connector subsets 

Ec(qj) and Ac(qj) are also known.  Specifically, 
 
(a) For any qj ∈ S, Ac(qj) ⊆ F ∧ Ec(qj) ⊆ I. 
(b) For any qj ∈ R, Ac(qj) ⊆ I ∧ Ec(qj) ⊆ F. 
(c) For any qj ∈ V, Ac(qj) ⊆ I ∧ Ec(qj) ⊆ I. 
(d) For any qj ∈ PU, Ac(qj) = ô  ∧ Ec(qj) ⊆ I. 
(e) For any qj ∈ O, Ac(qj) ⊆ I ∧ Ec(qj) = ô. 
 
P1.  The theorem can be established provided each of the parts (a) to (e) are proven.  

Referring to the definitions given in section 1 for each quantity type, contraposition can be used 
for each part.  Specifically, (a) is contrapositive to definition D3, (b) to D4, (c) to D5 (d) to D1 
(e) to D2. 

As an example of the utility of this theorem, suppose a particular quantity qj shown in 
Fig. 2 has been identified.  All other interaction shown in the row and column (of the STM) 
associated with qj are also known.  Specifically, if in Fig. 2, q3 were identified as a stock, then all 
connectors shown in row 3 are information connectors and all connectors shown in column 3 are 
flow connectors.  Each of the parts (a) to (e) in theorem T1 above can be depicted graphically as 
shown in Fig. 4 below. 
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 Figure 4.  Adjacent Connector Interactions for each of the Quantity Types.  
 
A consequence of the continuity proposition S1 is the following theorem stipulating when 

a quantity qj is allowed to interact with another quantity qk. 
 
T2.  A quantity qj can potentially affect only those quantities qk whose inward-directed 

connectors Ac(qk) are of the same type as the outward-directed connectors Ec(qj) of qj.  
Conversely, qj, can only be affected by those quantities qi whose outward-directed connectors 
Ec(qi) are of the same type as the inward-directed connectors Ac(qj). 

 
P2.  The proof follows from the fact that, in system dynamics, there are no restrictions as 

to what quantities can affect what other quantities, other than the very restriction mentioned in 
theorem T2.  In the absence of any other restrictions, there are no counter examples or 
exceptions.  If the theorem is true, then Fig. 4 suggests that the following interactions are 
possible: 
 
R→→S  S→→O  S→→R  S→→V 

V→→O  V→→R  V→→V 
P→→O  P→→R  P→→V 
U→→O  U→→R  U→→V 
 

Here R→→S is intended to suggest that rates could directly affect stocks only.  A consideration of 
each of the interactions indicated above leads to the conclusion that all are possible.  In the 
absence of exceptions, the claim of the theorem must be true. �  
 

 
F  Si                          I            (a) 
 
 
 
   
I  ri                          F            (b) 
 
  
 
I                           vi                          I                (c) 
 
 
 
                                     pi  
   ui                        I             (d) 
                        
 
I                                  oi                                      (e)
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 The next theorem enables identification of the adjacent quantities contained in the subsets 
Aq(qi), Eq(qi) when the identify of qi is known.  
 
 T3.  If the type of quantity is known, then such knowledge imposes specific limitations 
upon the subsets Aq(qj), and Eq(qj) as follows:  
 

(a) If qj∈S, then Aq(qj), ⊆ R ∧ Eq(qj) ⊆  V R O. 
(b) If qj∈R, then Aq(qj), ⊆ S V P U  ∧ Eq(qj) ⊆  S. 
(c) If qj∈V, then Aq(qj), ⊆ S V P U  ∧ Eq(qj) ⊆  V R O. 
(d) If qj∈PU, then Aq(qj), = ô ∧ Eq(qj) ⊆  V R O. 
(e) If qj∈O, then Aq(qj), ⊆ S V P U  ∧ Eq(qj) = ô 
 
P3.  The theorem is established by proving each part separately.  In (a), if qj∈S, by T1 

part (a), Ac(qj) ⊆ F.  However, as shown in Fig. 4, the only quantities qi whose Ec(qi) are flow 
connectors are rates.  Thus Aq(qj), ⊆ R.  Again, by T1 part (a), Ec(qj) ⊆ I and quantities affected 
by qj through an information connector can be outputs yi∈O, auxiliaries, vi∈V, and rates ri∈R as 
depicted in Fig. 4.  Hence Eq(qj) ⊆ O V R by T2, and part (a) is proven.  Parts (b), (c), (d), and (e) 
of T3 are established using an identical procedure involving definitions D1 to D5, theorems T1 
and T2 and Fig. 4. 

 
In terms of the STM one effect of this theorem is, among other effects, the intimate 

interconnection between rates an stocks:  along any row whose associated qj∈R, those qk for 
which mjk ≠ 0 must be stocks.  Likewise, the entries along the column associated with any qj∈S 
for which mij ≠ 0 must be rates. 

 
Each of parts (a) to (e) in T3 could be more concisely written as the following corollary, 

in which Eq(S) denotes the entire set of quantities affected by all quantities in S, and similarly for 
Eq(I), Eq(O), Eq(U), Eq(V), etc.  An analogous notion is used to interpret Aq(S), Aq(I), Aq(O), etc. 

 
COR.  For any quantity subset, the following statements are true: 
 
(a)  Aq(S) ⊆ R ∧ Eq(S) ⊆ V R O ; 
(b)  Aq(R) ⊆ S V P U ∧ Eq(R) ⊆ S ; 
(c)  Aq(V) ⊆ S V P U ∧ Eq(V) ⊆ V R O ; 
(d)  Aq(PU) = ô ∧ Eq(PU) ⊆ V R O ; 
(e)  Aq(O) ⊆ S V P U ∧ Eq(O) = ô. 
 

P. The proof follows directly from T3 and the fact that all quantities within a particular 
subset conform to the same rules for interaction as specified by T3.�  

 
The next theorem will use the causal relation ℜ defined on the Cartesian product of a 

pair.  The theorem is concerned with quantity subset pairs, i.e. (S, R), (S, O), (U, V), etc.   
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T4.  Given any quantity subset pair, the existence as well as the type of interaction (i.e. 
flow or information) that is possible for connectors directed from quantities in the first member 
of the pair toward quantities within the second member of the pair, is known.  Specifically:  
 

(a) For the Cartesian product pairs S x P, S x U and S x S no connectors exist; that is ℜ(S, 
P) = ℜ(S, U) = ℜ(S, S) = ô, in which ℜ( , ) denotes the set of connectors between subset pairs.  
On the other hand information connector subsets can exist for pairs S x R, S x V and S x O; thus, 
ℜ(S, R)∪ ℜ(S, V) ∪ ℜ(S, O) ⊆ I.   
 

(b) For the Cartesian product pairs R x V, R x P, R x U, R x O and R x R no connectors 
exist; that is ℜ(R, V) = ℜ(R, P) = ℜ(R, U) = ℜ(R, R) = ô.  On the other hand, a flow connector 
subset exists for R x S ; thus ℜ(R, S) ⊆ F.  
 

(c) For the Cartesian product pairs V x S, V x P, and V x U no connectors exist; that is, 
ℜ(V, S) = ℜ(V , P) = ℜ(V, U) = ô.  On the other hand, information connector subsets can exist 
for V x R, V x V and V x O; thus, ℜ(V, R) ∪ ℜ(V, V) ∪ ℜ(V, O) ⊆ I.   
   
 (d) For the Cartesian product pairs P x S, P x U, and P x P no connectors exist; that is, 
ℜ(P, S) = ℜ(P,U) = ℜ(P, P) = ô.  On the other hand, information connector subsets can exist 
for P x R, P x V, and P x O; thus ℜ(P, R) ∪ ℜ(P, V) ∪ ℜ(P, O) ⊆ I. 
 

(e) For the Cartesian product pairs U x S, U x P, and U x U no connectors exist; that is, ℜ 
(U, S) = ℜ (U, P) = ℜ(U, P) = R(U, U) = ô.  On the other hand, information connector subsets 
can exist for U x R, U x V, and U x O; thus ℜ(U, R) ∪ ℜ(U, V) ∪ ℜ(U, O) ⊆ I. 

 
(f)For the Cartesian product pair O x Q, where Q = S R V P U O no connectors exist; that 

is ℜ(O, Q) = ô. 
 
 P4.  The theorem can be established, provided each of its constituent parts are 
substantiated.  Consider first part (a) of T4.  It should be apparent that ℜ(S, P) = ℜ(S, U) =  ô 
because neither P nor U can have connectors directed toward quantities contained in their 
subsets.  The fact that ℜ(S, S) = ô follows from COR, part (a) which states that Eq(S) ⊆ V R O.  
Thus ℜ(S, P) = ℜ(S, U) = ℜ(S, S) = ô.  However, ℜ(S, V R O) does contain connectors and ℜ(S, 
V R O) = ℜ(S, V) ∪ ℜ(S, R) ∪ ℜ(S, O), all of which must be information connectors.  Parts (b), 
(d), (e), and (f) are established using an identical rationale. 
 
 T4 can be used effectively in filling the modified STM (square ternary matrix).  Figure 5 
shows a MSTM (modified square ternary matrix) with connector subset types deliberately 
designated.  Empty spaces of the matrix refer to the nonexistence of connectors among quantity 
subset pairs.  A large number of entries in the MSTM obviously can be inferred – in fact, all 
boxes left blank contain entries which are known to be blank or zero.  These inferences and 
previous specification of connector types also ensure correct Forrester schematics for the system.  
The model-maker must concern himself only with those submatrices in the MSTM where the 
connector subset types are specified as ± F or ± I.  The MSTM of Fig. 5 could represent the 
interactions within a single component or an entire system. 
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                 S    R    V    PU    O  

                                                       S         ± I   ± I           ± I  

                                                       R  ± F  

                  V          ± I   ± I           ± I      

                 PU        ± I    ± I           ± I 

                  O 

 
Figure 5.  Inferences possible in a component (subsystem) matrix A. 

 
 The matrix depicted in Fig. 5 is referred to as the component matrix.  Entries and non-
entries along row S are justified by T4, part (a), while entries along row R are justified by T4, 
part (b), etc.   
 
 Next, the interconnection matrix is considered.  The matrix is redrawn in Fig. 6, where 
for convenience it is indexed by the sets Si, Ri, Qwi, along its column and by the sets Sj, Rj, Qwj, 
along its row.  (Recall that, by definition, Qwi =   PiUi ViOi.)  Clearly from D9, �(Qwi, Qj) is null 
since it is impossible for quantities inside Qwi   to affect quantities outside component i.  By the 
same token, �(Qi, Qwj) is also null.  Thus  
 
     
 
 
 
 
 

 
 
 
 
Figure 6.  Inferences possible in the interconnection matrix B 

 
all portions of the interconnection matrix are blank except possibly the matrix indexed by SiRi, 
Sj,Rj.  Consider the Si x Sj submatrix; by T4 part (a). �(Si, Sj) = ô, and this submatrix is blank.  
Likewise by T4 part (b). �(Ri, Rj) is null and its corresponding submatrix is blank.  This leaves 
only the submatrices  Si x Rj and Ri x Sj.  Considering theorem T4 part (b), the only connectors 
directed from rates to stocks are flow connectors.  However a flow connector directed from a rate 
of one component toward a stock of another component would violate the definition of a 
component, as stipulated by the following theorem.  
 

 
         Sj        Rj      Qwj 
 
Si            ±I 
 
Ri 

 

iwQ  
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 T5.  The rates of component i, qj∈Ri, j = 1, …, mi, i = 1, …, n, can be coupled through 
flow connectors, cjk = (qj, qk)∈F, only with the stocks of component i, qk∈Si, but not with the 
stocks of the other components of the system.  
 
 P5.  The definition of components identifies each component with a different flow of 
substance within the component.  Hence the rates of one component cannot influence the stocks 
of any other component except of its own.�  
 Clearly, then �(Ri, Sj) is null and the only submatrix left to consider is Si x Rj.  By T4 
part (a), �(S ,R) ⊆ I, thus the only non-blank submatrix in the interconnection matrix is the Si x 
Rj submatrix which can potentially contain information connectors.  
 
 Now, consider the following lemma.  
 L6.  The only quantities that could conceivably comprise the set of between-component 
quantities Qb are auxiliaries Vb, parameters and inputs PUb, and outputs Ob.  
 
 P6.  If the set of quantities Qb contains stocks S or rates R, then a flow exists outside of 
those components previously identified for the problem, and a new component must be defined 
for the newly identified flow.  This is necessarily consistent with the adopted convention which 
stipulates that wherever a flow exists, a component must be defined for that flow (see Axiom 
A3).�  This result will be used in the discussion to follow.  
 In addition to the matrices labeled A and B there is a need to rationalize the matrices 
labeled C, D, and E in the interaction matrix.   Consider first the interface matrix C.  For 
convenience matrix C is pictured in Fig. 7 below where it is indexed by Si, Ri, Qwi along its 
column and by Vb, PUb, Ob along its row.  The matrix is sparse in the sense that it contains few 
non-blank entries.  By virtue of the fact that Eq (Qwi ) ⊆ Qi, �(Qwi,Qb) = ô by definition and all 
rows associated with Qwi are zero.  Likewise, the row associated with Ri must be zero as 
�(Ri,Qb) = ô.  This follows directly from theorem T5 which Ri is shown to be incapable of 
affecting quantities outside its own component.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 

                                 Qb 
      
                       Vb     PUb      Ob 
 
             Si       ±I                  ±I 
 
    Q      

 Ri 

 
            wQ  
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Figure 7.  The interface matrix C. 
 
 Thus only the row associated with Si remains undiscussed.  Since parameters and inputs 
are unaffected by anything, �(Si, PUb) = ô.  However, it would be entirely possible for stocks Si 
to affected  auxiliaries Vb and outputs Ob by means of information connectors, as stipulated by 
theorem T4.  Such deliberations are sufficient to rationalize the insertion of entries within the 
interface matrix C C as depicted in Fig. 7 above.  
 
 Consider next the interface matrix D.  Its appearance is, for convenience, depicted in Fig. 
8 below where it is indexed by Vb, PUb, Ob along it column, and by Si, Ri  Qwi along its row.  As 
in the case of previously considered matrices, the matrix is sparse.  Since Eq(Ob) = ô, �(Ob, Qi)  
= ô and the row associated with Ob contains no non-zero entries.  Also, by our convention  
 
   
 
  
 
 
       
     
 
 
 
 
 

Figure 8.  The interface matrix D. 
 
between-component parameters and inputs PUb will not affect any quantities outside of the set of 
between-component quantities Qb.  A parameter or input which affects quantities within Qb and 
any Qi must be defined twice, using different symbolic designations.  This very situation 
occurred in the example treated in the companion paper [3] in which ‘initial gas reserves’ was 
given a p4 designation for its inclusion within component S2 and a p5 designation for its inclusion 
in the set of between-component quantities Qb. Consequently �(PUb, Qi ) = ô and the middle 
row in the interface matrix DD contains no non-zero entries.  
 
 Only the row associated with Si remains undiscussed.  By T4, R(Vb, Si ) = ô as auxiliaries 
cannot affect stocks.  By our convention, �(Vb, Qwi ) = ô; that is, between-component quantities 
cannot affect within-component quantities Qwi, as this violates the definition provided for 
quantities Qwi.  The only submatrix in which connectors might occur is within the (Vb, Ri) 

                                   � b 
       
                         Si      Ri      

iwQ  

              Vb                ±I 
 
Qb      PUb 

 
             Ob 
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submatrix; theorem T4 does allow for interactions directed from auxiliaries toward rates.  In fact, 
the entire between-component structure must reside on an information path that originates at a 
stock in one component and terminates at a rate within another component.  Thus the only 
feasible interactions from quantities within Qb to quantities within Qi are information connectors 
contained within the (Vb, Ri) submatrix.  
 
 Finally, the interface matrix E will be rationalized.  The matrix is indexed by Vb, PUb, 
and Ob along both its row and column as shown in Fig. 9 below.  The matrix exhibits the 
interactions possible for quantities within Qb.  As such the matrix conforms exactly to the rules 
of interaction provided by theorem T4.  By T4, part (c), information connector subsets exist for 
the sub-matrices associated with the products V x V and V x O, and the submatrix associated with 
the product V x P, V x U (i.e. the (Vb, PUb) submatrix) is empty.  By T4, part (f),  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  The interface matrix E. 
 
all submatrices associated with Ob are zero.  And by T4, parts (d) and (e), the submatrix (PUb, 
PUb) is empty, while the submatrices (PUb, Vb) and (PUb, Ob) may have information connectors 
within them.   
 
 This is sufficient to rationalize the structural format of the interaction matrix.   Certainly, 
the appearance of the interaction matrix is strongly influenced by the conventions that were 
adopted.  For example, the definition of Qwi and the implication of that definition upon Qb 
strongly determines where interactions will take place.  Since all auxiliaries, parameters, inputs, 

and outputs are contained within the sets Qb and Qw ,
1









=

=
U
n

i
wiQ     which themselves are mutually 

exclusive, it is possible to partition Q such that ∏Q = {S; R; Qb; Qw}.  By definition D9, �(Qb, 
Qw)∪�(Qw, Qb) = ô and accounts for many of the 
vacancies in the interaction matrix.  
 
 
       
 
  
 
 

                                   Qb 
         
                          Vb     PUb     Yb 

 
              Vb       ±I                      ±I              
 
Qb      PUb        ±I                      ±I 
 
             Yb 

 

        Q1      Q2      …  Qn      Qb 

 
Q1     A        B             B       C  
 
Q2     B        A             B       C 
 
�  
�  
�  
Qn     B       B              A        C 
 
Qb     D      D              D        E 
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                           Figure 10.  The n-component interaction matrix.   
 
  The generalization of the matrix depicted in Fig. 10 to 3, 4 and n components is a 
straightforward analytic exercise that will not be treated here.  In Figure 10 above, Qn  is the set 
of quantities associated with the n-th subsystem or component.  If all between-component 
quantities are grouped together under the name Qb, the interaction matrix for n components 
assumes the form exhibited in Fig. 10 above, where A, B, C,, D, and E are the previously 
defined matrices.   
 
Conclusion.  The matrix architecture presented in this paper offers several advantages over 
conventional approaches.  First, it limits the interaction possibilities amongst the quantities to 
those that are governed by the rules, axioms of system dynamics as originally set forth by 
Forrester.  Particularly, for model developers that are relatively new to the discipline, this can be 
a considerable advantage—like placing training wheels on a person who is just learning to ride a 
bike.  The matrix architecture prevents interactions that are inconsistent with basic system 
dynamics constructs.  Thus, the architecture can prevent errors of commission.   

Similarly, the interaction matrix suggests where interactions are likely to occur.  In that 
sense, the architecture prevents errors of omission by focusing the developer’s attention on those 
interaction possibilities that are most-likely to occur—the nonblank cells in the interaction 
matrix. 

The interaction matrix is a compact way to present the rules of interaction that are 
possible in system dynamics.  As such, there may be some disagreement amongst practitioners as 
to whether the rules imposed by the interaction matrix represent reality or not.  In that sense, the 
interaction matrix is a good vehicle for dialogue and discussion about what interactions should 
be allowed, especially for novice users. 
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