Table of Contents

Go Back

Enhancing Metamodels with Scenarios: Plug-&-Simulate Extensions
for Model Developers

MA'RCIO DE OLIVEIRA BARROS
CLAUDIA MARIA LIMA WERNER
GUILHERME HORTA TRAVASSOS

COPPE / UFRJ— Computer Science Department
CaixaPodd: 68511 - CEP 21945-970 - Rio de Janeiro — RJ
Fax / Voice 5521 2562-8675
{marcio, werner, ght} @cos.ufrj.br

Abstract

In a previous work, we presented the concept of metamodels, an extension to system
dynamics that allows the development and specialization of domain models. A domain model
provides a high-level representation for the elements that compose a knowledge area. Specific
models developed for the domain are based on these elements, inheriting their behavior from
the domain model. Traditional system dynamics constructors (stocks, iates, and processes)
describe the behavior of domain eements. Domain models are believed to smplify model
development within a knowiedge area.

In this paper, we present scenario models, which act as “ plug-&-smulate” extensions
to domain models. A scenario model allows a developer to change the behavior of domain
elements without direct and error-prone intervention in the domain model equations. While
analyzing a model, a developer can select relevant scenarios and activate them upon the
model components. The model behavior is adjusted for the selected scenarios, presenting
their impact upon the original modd behavior. We present the system dynamics metamodel,
the structure of scenario models, and their integration with specific models.

KEYWORDS. system dynamics metamodd, modd extensons

1 Motivation

In a previous work, we presented the concept of metamodes for sysem dynamics
modd devdopment (Baros e d., 2001a). By usng metamodds, we propoe a different
goproach for modding, where specific modds for a knowledge area are developed based on a
doman modd. The doman modd conveys spedfications for rdevant dements of the
knowledge aea, desribing ther behavior in teems of sysem dynamics traditiond
congructors — stocks, rates, and processes. Specific modes for the knowledge area contain no
sysem dynamics condructors, but ingances of the doman dements specidized for the
mode under interest.

Doman modds atempt to group the eguaions that describe the behavior of each
rdevant demet within a domain, in order to improve modd reedability and understanding.
In a traditiond modd deveopment effort, the rdevant dements that compose a knowledge
aea ae not eadly identified in a maze of system dynamics congructors. Ther representation
is usudly soreed among severd equdions, which forces deveopers to andyze the whole
modd to determine the precise group of equations thet destribe the behavior of an dement
and its rdlaionships to other dements.



Domain modds dso dlow the reuse of domain knowledge when building modds. In a
tradiiond modding effort, modd eguations convey knowledge for the problem under
interest, but they dso contan knowledge that could be shared by severd modds within the
same doman. This domain knowledge should be repested in every paticular mode
developed for the domain. By usng the sysem dynamics meamodd, doman knowledge is
spaady represented in a doman modd, while every modd developed for the doman
inherits and specidizes this knowledge.

Scenario modds are extensons to domain modds that address the issue of separating
facts from assumptions within a modd. Traditiondly, sysem dynamics modds blend known
facts about the red-world dements that compose a modd with severa assumptions upon ther
behavior and interaction. Mogt of these assumptions are controlled by parameters that dlow
them to be activated or deectivaled during a specific amulaion. By running different
gmuldions, injecting didinct configurations of vaues into these parameters, an andyst can
evduate the implications of the assumptions upon the modd behavior. However, it is usudly
difficult to tet other assumptions then those provided with the modd: modd equations
should be changed to incorporate the behavior that is sought. Changing modd eguations is a
error-prone process, gpecidly in large models with hundreds or thousands of eguations

By sgparding facts from assumptions, a modd andyst can build a basdine modd,
containing only known facts aout a knowledge area, and separale models describing the
uncertain assumptions. The modd andys Smulaes the basdine modd to evduae its
behavior without any assumptions. Next, he peforms an iteraive process, where assumption
modds are integrated to the basdine modd and the combined modd is smulaied to evauae
how the assumptions affect the basdine modd behavior. In the metamodd framework, a
soecific modd for a doman represents known facts while scenario modds separately
describe assumptions.

This paper is organized in five sections. The firs one comprises this mativation. Section
2 briefly destribes the sysem dynamics metamodd, presenting an example that will be
further used to illudtrate scenario modds. Section 3 shows the dructure of scenario modes
and ther integraion to a basdine modd. Section 4 presents an gpplication example of the
sysdem dynamics metamodd and scenario modds. Findly, sedion 5 presents some find
congderations and future perspectives of this work.

2 The System Dynamics M etamodel

The purpose of this paper is to present scenario modds and how they can be used to
evduae the impact of assumptionss upon a sydem dynamics modd. However, due to
scenarios draight link to the system dynamics metamodd, we briefly describe the concepts
that compose the metamodd, as presented in (Baros e d., 2001a). Also, we introduce an
example, based on the clasic bathtub modd, to illustrate the metamodd concepts. Further,
this example will be used to describe scenario modds.

The sydem dynamics metamodd proposes a threestaged process for  modd
development. Firs, an expat in a given knowledge area builds a doman modd, conveying
descriptions for the rdlevant eements that compose a doman. Each eement is described as a
class, which contains the properties that describe the dement and its behavior equaions.
Traditiond system dynamics condructors describe a dass behavior. The doman modd dso
contains declarations for acceptable relationships among classes. A rdaionship is a directed
connection between two dasses that dlows behavior eguations for one dass (rdationship
source) to access information and behavior equations in the other class (relationship target).

Table 1 presents a smple domain modd describing a bathtub with two kinds of vaves
sources, which add water to the bathtub, and snkers, that drain waer from the bathtub. The
behavior that describes the whole system of bathtub and vaves is separated in three classes.



The bathtub behavior, presented in the Bathtub class, is stated by a single stock that describes
the amount of water within the bathtub. Behavior eguations for sources and sinkers, which are
presented in their respective classes, declare rates that affect the levd of the bathtub stock.
These rates use class rdaionships to address the stock. Also, sources and snkers have
properties, describing the amount of water that they dlow in or out of the bathtub.

The doman modd does not describe a modd for a specific problem, but a knowledge
aea where modding can be gpplied. It is a generic description of the domain, which should
be gpecidized to a paticula problem (Baros e d., 20018). Obsarve that the doman modd
in Table 1 does not specify how many sources or snkers are connected to a bathtub. It only
dates that sources and sinkers can be connected to a single bathtub (class relaionships) and
how they behave when this connection is established. The rdaionships defined in the domain
mode aso prevent incorrect class connections. For indance, the doman modd in Table 1
does not dlow a source to be directly connected to a sinker.

Table 1 — A domain modd for the bathtub example

MCDEL Bat ht ubMbdel
{

CLASS Bat ht ub
{
}s

CLASS Sour ce

STOCK Level O;

PRCPERTY G owt hRat e 10;

RATE (Sour ceTub. Level ) Gowth G owt hRat e;
b

CLASS Si nker
{
PROPERTY Si nkRat e 10;

RATE (Si nker Tub. Level ) Sink - M n(Si nkRate, SinkerTub. Level);
I

RELATI ON Sour ceTub Source, Bathtub;
RELATI ON Si nker Tub Si nker, Batht ub;

Domain modd dasses ae used as highlevd congructors for modds developed within
the doman. The group of dasses described in a domain modd composes a domain specific
modding language Seved modds can be built from the same doman modd. Modd
developers interested in describing a problem within that knowledge area specify the problem
in teems of dasses, reusng their behavior eguatiions from the doman modd. To avoid
confuson with domain modds we will refer to modds developed for a doman as specific
models for the domain or just specific models.

In the second stage o the mode development process, a developer specifies how many
instances of each cdass defined for the doman exig in the specific modd of interest. For
indance, a modd devdoped for the “bahtub doman” gspecifies how many sources and
snkers are connected to each bathtub, aong with the amount of water that they drain or put
into the bahtub per smulation sep. Table 2 presents a modd developed from the bahtub
domain modd, containing a single beathtub, one Snker, and one source.

Each modd dement (bathtub, sinker, and source) is defined as an indance of a doman
modd dass. The property vaues for the ingtances are specified after their declaration. In the
modd presented in Table 2 the source does not specify its GrowthRate property vadue So,
this property assumes its default vaue (10 ml) for the indtance. In contradt, the sinker defines
its SnkRate property vaue, indicating thet it drains 5ml of water per mulation step.



Table 2— Specific modd for the bathtub domain

DEFI NE MyBat ht ub Bat ht ubMbdel

{
Bat ht ub = NEW Bat ht ub

Sourcerl = NEW Sour ce
LI NK Sour ceTub Bat hTub;

Si nker1 = NEW Si nker
SET SinkRate = 5;
LI NK Si nker Tub Bat hTub;

The modd dso describes how ingtances relate to each other, based on the rdationships
among dasxes defined in the doman modd. In the modd presented in Table 2, the source and
the snker are associated to the Bathtub ingtance. If severd bathtubs, sinkers, and sources
composed the whole system, the class rdaionships would dlow eech snker or source to
indicate the bathtub that it affects. So, the rates within these dements would address the stock
that describesthe level of the correct bathtub.

A specific modd for a doman conveys only information about the dements that it uses.
It does not present any system dynamics condructor. Such condructors are inherited from the
dases behavior, which are desribed in the doman modd. By usng the system dynamics
metamodd, we expect tha modding becomes esde than udng pure sydem dynamics
condructors, Snce modd developers use doman dements described by the domain specific
language to build ther modds

Regarding the property vaues in the bathtub example, every cdlass indance has different
property vaues. So, every ingance property must be represented by an independent equation.
Severd equations are required to represent the whole st of indtances, capturing their
particular properties. This leads to larger and error-prone modds, which are difficult to handle
menudly. By usng the metamodd, the modd devdoper just defines the individud property
vadues for the indances and the modd behavior automaticdly adjusts to these vaues
Behavior eguations can be parameterized by the propety vaues of eech individud instance,
generating different behavior for dements with digtinct characterigtics.

Findly, in the third sep of the modd devdopment process, the specific modd is
trandated to sysem dynamics equaions in order to be andyzed in dandard system dynamics
smulators. The resulting modd uses only traditiond condructors, while the preceding modd
is desribed in the high levd, dement-oriented representation. The high-level representation
helps modd devdopment and understanding, smplifying the interaction between developers
and modds. The representation based on sysem dynamics condructors dlows smulation and
behavior andyds. Table 3 presents the compiled verson for the mode presented in Table 2.
To reduce the number of equaions in the compiled moded, reducing thus the time required for
itssmulaion, compiler level optimizers can further process the modd.

Table 3— Compiled model (without optimization) for the modd presented in Table 2

# Code for object "Bathtub"
STOXK Bat ht ub_Level O0;

# Code for object "Sourcerl"
PROC Sourcer1_G owt hRat e 10;
RATE ( SOURCE, Bat hTub_Level) Sourcerl G owt hl Sourcerl G owt hRate;

# Code for object "Sinkerl"
PRCC Si nker 1_Si nkRat e 5;
RATE (SOURCE, BathTub_Level) Sinkerl_Sinkl -MN (Sinkerl_SinkRate, BathTub_Level);




3 Scenario Modéls

Scenaio modds address the problem of andyzing hypothess upon a sysem dynamics
modd. Usudly, a modd has severd paamees tha control the activation of predefined
assumptions, supporting the andyss of a modd under diginct conditions. However, when a
different assumption, theory, dtrategy or uncertan event has to be andyzed upon a modd,
mode eguations have to be changed to include the new behavior before it could be smulated.
Even more, the recently introduced eguations can contradict some of the origind behavior,
eventudly reslting in incondgencies within the modd. Findly, changes within a modd can
introduce errors, affecting both the origind and the innovative behavior.

Scenario models are extensons to domain modes that propose the separation of facts
from assumptions. A scenario is developed for a particular doman and provides new behavior
and characterization for one or more domain classes From the separation point of view, a
goecific modd for a domain contans known fects while scenaios for the same domain
represent uncertain assumptions.

A scenario modd is composed by connections and condraints A connection associates
the scenario to a domain dass, so tha the scenario can be enacted upon ingtances of the class
in a goecdific modd for the domain. A constraint declares redrictions to which the connected
ingances and its associated indances have to apply in order to use the scenario. Table 4
presents asmple scenario modd for the bathtub domain.

Table 4— A smple scenario modd for the bathtub domain

SCENARI O Spl ashSour ce Bat ht ubModel
{
CONNECTI ON TheSour ce Sour ce
{
PROPERTY Spl ashPeriod 5;
PROC Dv TIME / SplashPeri od;
PROC RDiv Round (TIME / Spl ashPeri od);
PROC Ti meToSpl ash AND(Di v-RDi v < 0.001, Div-RDiv > -0.001);

AFFECT Growt h i f(Ti meToSpl ash, G owh, 0);

The scenario in Table 4 models a “splashing source’, that is, a non-continuous source
that dlows water into the bathtub in periodic turns. The scenario has a single connection and
no condraints. The TheSource connection dlows the scenario to be connected to an ingtance
of the Sour ce dass in gpecific modes developed for the Bathtub domain.

A connection extends the behavior and characterization of its associated dass by adding
new propeties and behavior equations. It dso declares behavior redefinition clauses, which
dlow the scenario to change behavior eguations previoudy defined for the dass in the domain
modd. The TheSource connection in the scenario mode presented in Table 4 declares a single
property, namdy SplashPeriod, which indicates the water-supplying period for the splashing
source. The connection aso presents three auxiliay behavior equations, represented by
procesees (PROC) in the scenario model, which are ultimatedly used by a behavior redefinition
clause.

Scenarios are deveoped to adjust the equations of rates and processes defined in the
doman modd. In the scenario in Table 4, the dngle behavior redefinition dause, represented
by the AFFECT keyword, indicates that the scenario modifies the Growth equation defined
for the Source dass in the doman modd. The origind equaion that describes a source's
water-supplying rate is overridden by the scenario definition. In this scenario, the new Growth
equation refers to the origind equetion. However, it uses the TimeToSplash process, which



ggnds the smulation seps when the splashing source shdl pour weter into the bethtub, to
turn the source intengity to zero out d the periodic supply turns.

Like the domain modd, a scenario is not a sdf-contaned modd. It is a complementary
modd that adjusts the behavior of previoudy developed modds A scenario can be activated
upon a modd devdoped for the same doman to which the scenario was created. When a
scenario is activaied upon a modd, its connections must be enacted upon dass instances
declared within the modd. The effects of enacting a connection upon an indance are Smilar
to dedaing the properties and behavor equaions defined in the connection directly in the
domain modd class. However, if such properties and behavior equations were declared in the
doman modd, they would gpply for every indance of the dass in every specific modd
developed for the domain. Scenario connections can be enacted upon specific class ingtances,
modifying the behavior of those paticular indances Table 5 shows a SplashSource scenaio
activation upon the Sour cer 1 ingtance in the specific modd preserted in Teble 2

Table 5— Scenario modd activation upon amodd for the bathtub domain

DEFI NE MyBat ht ub Bat ht ubMbdel

{
Bat ht ub = NEW Bat ht ub

Sourcer1l = NEW Sour ce
LI NK Sour ceTub Bat hTub;

Si nker1 = NEW Si nker
LI NK Si nker Tub Bat hTub;

ACTI VATE Spl ashSour ce
CONNECT TheSour ce Sourcer1;

Snce no splashing source was defined in the domain modd, a specific modd for the
doman cannot directly contain such kind of source Ingeed, the modd shdl create an
ingance of a conventiond, continuous source and activate the SplashingSource scenario upon
this source. Table 6 presents the compiled version for the modd in Table 5.

Table 6 — Compiled version for the model in Table 5 (accounting for scenario equations)

# Code for object "Bathtub"
STOXK Bat ht ub_Level O0;

# Code for object "Sourcerl"

PROC Sourcer1_G owt hRate 10;

PROC Sour cer 1_Spl ashPeri od 5;

RATE ( SOURCE, Bat hTub_Level ) Sourcer1_@Q owt hl | F( Sourcer 1_Ti meToSpl ash,
(Sourcerl_G owt hRate), 0);

PROC Sourcer1 Div TIME/ Sourcerl_Spl ashPeri od;

PROC Sourcer1_RDiv ROUND (TIME / Sourcer1_Spl ashPeri od);

PROC Sour cer 1_Ti meToSpl ash AND (Sourcerl _Dv - Sourcerl RDiv < 0.001, Sourcerl Dv -
Sourcerl RDiv > -0.001);

# Code for object "Sinkerl"

PRCC Si nker 1_Si nkRat e 5;
RATE (SOURCE, Bat hTub_Level) Sinkerl Sinkl -MN (Sinkerl SinkRate, BathTub_Level);

By compaing the compiled modd presented in Table 6 with its origind verson,
generated without the scenario activation and presented in Table 3 we observe that the
equations for the Bathtub and Snkerl instances were not modified. This occurs because no
scenario connection was enacted upon those ingances. However, the equations defined in the
TheSource connection of the SplashingSource scenario were added to the Sourcerl ingtance
description. The Div, RDiv and TimeToSplash processes were declared for the instance, while
its Growth rate was redefined as indicated in the behavior redefinition dause in the scenario.



The properties defined by a scenario connection are added to the list of properties that
describe the class instance upon which the connection was enacted. As it occurs in the doman
modd, these properties have a default vdue, which can be redefined by particular ingances in
a secific modd. Table 7 presents an extract for the modd in Table 5 where the Sourcerl
ingance redefines the vaue of its SplashPeriod property. The connection eguations assume
the new property vdue for the ingance, adjuding scenario behavior for this vaue Observe
that, if no scenario connections were enacted upon the Sourcerl indance, the initidization of
the SplashPeriod property would result in an eror, since the property was not defined for the
dassin the domain modd.

Table 7— Scenario modd activation uponamodd for the bathtub domain

DEFI NE MyBat ht ub Bat ht ubMbdel
{

Sourcer1l = NEW Sour ce
SET Spl ashPeriod = 10;
LI NK Sour ceTub Bat hTub;

ACTI VATE Spl ashSour ce
CONNECT TheSour ce Sourcer1;

The SplashSource scenario and the Bathtub doman modd hdp to illudrate the man
advantage of usng scerario modes. Condder that a modd andyst wants to evduate the
bahtub water levd behavior with a continuous source and with a splashing source. To
evduae the fird, the andyst uses the specific modd for the Bathtub domain presented in
Table 2. This mode shows the behavior presented in the lefthand grgph in Figure 1. Next, to
evduate the splashing source behavior, the andyst activates the FpolashingSource scenario
upon the continuous source, generding the modd presented in Table 5 This modd shows the
behavior presented in the right-hand grgph in Figure 1.

Bathtub Level with a Continuous Source Bathtub Level with a Splashing Source
120 - 2
— 100 - _t0q
[0} (9]
3 80 - 25
- -
S 604 ERh
= | =
g 40 = 4
o0
20 A 2 4
0 T T T T T T T T T T T T T T T 0
- e e g3 d s a3 - o m e I.‘:I IEI IEI Itl I?'_I I
Simulation Step Simulation Step

Figure 1 —Modd behavior with and without scenario activation

So, scenarios dlow an andys to peaform behavior andyses upon a modd without
direct intervention in its equaions or even parameter redefinitions. Scenarios are separately
modded and activated upon modd ingances. They act as “plug-&-smulae’ extensons to a
doman modd: they provide different behavior for domain modd dasses tha can be plugged
and anayzed, according to the andyst needs. These anadyses can be rather difficult with the
current textua representation for scenarios and models, since usars need to change the modd
representation, but gragphicd tools for specific modd development, scenario cregtion and



integretion can be built to dlow a user to grgphicaly build a modd and activate scenarios
upon it.

Scenarios are ds0 reusable dong many modes deveoped for a doman. They separae
the knowledge about an uncertain event, assumption, theory, or drategy from the generd, and
usudly more relisble, doman knowledge. The integration of scenarios to a specific modd for
a doman may reved changes in the goedfic modd behavior. Smulaing a modd with a
scenario demondrates the potentia impact of the scenaio in the modd behavior. This kind of
dmulation dlows the modd andys to test project sendtivity to the assumptions expressed by
the scenario modd. Scenario modes can only be smulated when integrated to a specific
model

3.1 Scenarios with Multiple Connections

Besdes the basc fundamentds for scenario development, more complex scenarios can
be built. Table 8 presents a scenario modd with two connections. This scenario describes a
periodic source and a periodic dnker. Since its behavior involves two doman modd dasses
(Source and Sinker), the scenario must have two connections. Each connection declares
independent properties, behavior equations and behavior redefinition dlauses for its class

Table 8— A scenario modd with two connections for the bathtub domain

SCENARI O Al t er nat eTubs Bat ht ubModel
{
CONNECTI ON TheSour ce Sour ce
{
PRCPERTY BaseStart O;
PROPERTY Period 2;

STOCK d ock BaseStart +Peri od;
RATE (d ock) O ockRT if(dock < 0.001, Period, -1);
AFFECT Gowth if (Qock < 0.001, Gowh, 0);

1

CONNECTI ON TheSi nker Si nker

{
PRCPERTY BaseStart 1;
PRCPERTY Period 2;

STOCK d ock BaseStart +Peri od;
RATE (d ock) O ockRT if(dock < 0.001, Period, -1);
AFFECT Sink if (dock < 0.001, Sink, 0);

When a scenario with severd connections is activated upon a mode, every connection
must be enacted upon a class indance. Table 9 presents an extract from a specific mode
where the AlternateTubs scenario is activated. The modd presents the enactment of the
TheSource and TheSinker connections upon the Sourcer 1 and Sinker 1 instances, respectively.

Table 9 —An extract of a specific modd, focusing on the AlternateTubs scenario activation
DEFI NE MyBat ht ub Bat ht ubMbdel
ACTI VATE Al t er nat eTubs

COONNECT TheSour ce Sourcer1;
QONNECT TheSi nker Si nker1;




3.2 Congtrained Scenarios

Scenarios may depend on other scenarios to represent their behavior. Suppose, for
indance, a gplashing source whose water-supplying intendty is dochegic and  uniformly
digtributed. The scenario presented in Table 10 could represent this effect.

Table 10 —A constrained scenario modd for the bathtub domain

SCENARI O Randonspl ashSi zeSour ce Bat ht ubModel
{
CONNECTI ON TheSour ce Sour ce
{
I

CONSTRAI NT TheSour ce, Spl ashSour ce. TheSour ce;

AFFECT G owt h i f(Ti neToSpl ash, Gowh * (0.5 + Uiforn(0,1)), 0);

The scenario in Table 10 redefines a source's Growth rate, modding the stochedticaly
driven source. Note thet the eguation redefinition uses the TimeToSplash process thet is not
defined in the scenario, nor in the domain modd. This process is defined in the SplashSource
scenario, which must be enacted upon the same indance upon which the TheSource
connection from the RandomSpl ashS zeSour ce scenario was enacted.

The condrant in the scenario warrants the egtablishment of this connection. It dates
that instances affected by the TheSource connection in the RandomSplashSzeSource scenario
must dso be affected by the TheSource connection of the SplashSource scenario. If the last
connection is not enacted upon the ingance, the metamodd compiler issues an eror and does
not generae the compiled modd.

Condraints are not redricted to cdass ingtances upon which a scenario connection is
enacted. Other ingances, linked to the connected ingdances by dass rdaionships, can dso be
affected by condraints. To dlow associated indaces evduation by a condrant, a dot
operator and a reationship identifier should follow the TheSource connection in the left-hand
dde of the comma that divides the condraint declaration. All class instances associated to the
connected indance through this rdaionship should atend to the scenaio connection
presented by the right-hand side of the comma

3.3 Scenario Activation Ordering

Since severd scenarios can redefine the same equation for a class indance in a specific
mode, and due to operaior precedence rules within an equation, scenario activation ordering
is relevant. If severd scenario connections are enacted upon the same dass ingance, ther
behavior redefinition clauses affect the domain dass equations according to the scenario
activation order.

Condder the scenarios presented in Table 11. The first scenario represents a pumped
source, where a pumping engine enhances the water-supplying rae by a multiplying factor.
The second scenario represents a dripping source, where a hole reduces the water-supplying
rate by a consant amount per smulaion step. Both scenarios affect a sources Growth rate,
but the combined effect of enacting ther connections upon the same class ingance depends
on the order that they were activated upon the modd.

Congder that the TheSource connection in the PumpedSource scenario was enacted
upon a dass ingance and then the TheSource connection in the DrippingSource was enacted
upon the same indance The resulting Growth eguaion, amplified by the pump factor and
then reduced by the hole dripping rate, would be described as:

Qowh = (GowhRate * PunpRate) — Hol eSi ze



Table 11— Scenarios that affect a source’ swater supplying rate

SCENARI O PunpedSour ce Bat ht ubMbdel
{
CONNECTI ON TheSour ce Sour ce
{
PROPERTY PunpRat e 2;
AFFECT Gowh Gowth * PunpRate;
I
I

SCENARI O Dri ppi ngSour ce Bat ht ubMbdel
{
CONNECTI ON TheSour ce Sour ce
{
PRCPERTY Hol eSi ze 1;
AFFECT Gowh Gowh - Hol eSi ze;
I

However, if scenario activation ordering changed, enacting the TheSource connection in
the DrippingSource scenario before the TheSource connection in the PumpedSource scenario
upon the same ingtance, the Growth equation would be such as

Qowh = (GowhRate — Hol eSize) * PunpRate

In the second ectivation order, the hole effects are perceived prior to the pump
amplification effects. Depending on propety vadues (hole sze and pump rate), these two
equations would show diginct behavior in a specific modd. So, scenaio ordering must be
consdered when connections from several scenarios are enacted upon the same class ingtance.

4 An Application Example

The Bathtub doman is a dmple example presented in this paper to illudrate the
dructure of scenario models, how they are integrated to a specific modd for a domain, and
how this integretion affects the modd behavior. A more complex application of the sysem
dynamics metamodd and scenaios modds can be found in the scenario based project
management paradigm (Barroset d., 2001b; Baros et d., 2002).

The scenario based project management is a paradigm for software project management
that proposes that a manager should plan and document the expected behavior for a project as
a modd. Snce this behavior can be affected by urexpected events during project
development, the manager should test its senghility to severd combinations of such events,
getting feedback about possble risks tha can chdlenge the project success. Project
management scenarios represent such events, caweying knowledge that can be reused dong
severd projects.

In this context, the expected behavior for a project is modded as a Foecific modd for
the project management knowledge aea A doman modd was developed for this knowledge
aea and severa scenaios were built upon it. Currently, we have about tweve scenario
modds developed for the doman. These scenarios include theories regarding developers
productivity and error generation rates due to their experience, developers productivity due to
learning the application domain, effects of overworking and exhaudion upon Software
developers, communication overhead, error propagaion dong the activities that compose a
work breskdown gructure, among others.

In an indudrid setting, where the scenario based project management paradigm can be
used to manage red software projects, senior managers develop scenario models expressing
the experiences they have collected by participating in severd projects. These scenarios dlow
less experienced managers to share senior managers knowledge. In an academic  setting,



scenarios developed by experts and supported by the software engineering literature can be
ussful to training activities. For instance, based on a proposed software project, trainees could
use scerario integration and smulaion to evduate the impact of their decisons upon the
project behavior (cost, schedule, qudity, and o on).

Scenarios are supposed to be smdl: they shdl concentrate on the behavior equaions
that describe a particular problem or opportunity. The power of scenarios is ther integration
with specific models and the dependencies among scenarios that can be described through
condraints. For indance, the scenario that describes the effects of exhaustion upon
developers producivity and error generation rates depends on the scenario that describes the
effects of overworking upon developers. Since further scenarios can describe other effects of
overworking upon developers (beyond productivity and error generation rates), the effects of
overworking and exhaustion were separated and described by two related scenarios.

5 Final Consderations and Future Per spectives

This paper presented scenario models, an extenson to the sysem dynamics metamode
that alows the separation of uncertain assumptions from the facts expressed in a modd. Such
uncertain assumptions are described in separate modds, namdy scenario modes, which can
be activatled upon modd components. Such adtivaion adjusts the origind modd to the
equations that describe the scenario, dlowing a modd andyst to evduate the impact of these
assumptions upon the modd behavior. Scenarios dlow modd devdopers to extend the
behavior of adomain modd without direct and error -prone intervention in its equations.

The metamodd compiler to sysem dynamics condructors was adjusted to account for
scenaio activaion and some scenaio modes were built, modly for the project management
knowledge area. We expect to creste new scenaios for this domain and use the proposed
techniques as a traning tool. Software project maneger tranees would be given a project
description and a set of scenarios to evauate their impact upon project behavior. Recently, we
have conducted an experimentd sudy that showed indications that managers using scenarios
to support ther decisons peform better than managers that support their decisons only upon
persona experience.

Future perspectives of this work include the development of grgphicd tools to support
the cregtion and evdudion of specific modds and scenario modds Such tools would be
ussful as a amulaion environment, where a modd andys could sdect rdevant scenarios for
the andyds context and eesly activate them upon a modd deveoped for the same domain.
We ds0 expect to goply scenarios and the sysem dynamics metamodd to training by
developing a scenario-based training environment.

Acknowledgements

The authors would like to thank CNPg, CAPES and FINEP for ther financid invesment in
this work.

References

Baros, M.O., Werna, CM.L., Travassos, G.H. (2001a), “From Metamodes to Modds
Organizing and Reusng Doman Knowledge in Sysem Dynamics Modd
Development”, in Proceedings of the 19" International  Conference of the System
Dynamics Sodety, Atlanta (July)

Barros, M.O,, Werner, CM.L., Travassos, G.H. (2001b), “Towards a Scenario Based Project
Management Paradigm”. Computer Science and Systems Engineering Technical Report
543/01, COPPE/UFRJ (February)



Baros, M.O., Werner, CM.L., Travassos, G.H. (2002), “Project Maregement Knowledge
Reuse Through Scenario Modds’, accepted for publication in Proceedings of the
Seventh Internationa Conference on Software Reuse, Texas (April)

Back to the Top



	Abstracts: 
	Table of Contents: 
	back to the top: 


