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Abstract 
 

In a previous work, we presented the concept of metamodels, an extension to system 
dynamics that allows the development and specialization of domain models. A domain model 
provides a high-level representation for the elements that compose a knowledge area. Specific 
models developed for the domain are based on these elements, inheriting their behavior from 
the domain model. Traditional system dynamics constructors (stocks, rates, and processes) 
describe the behavior of domain elements. Domain models are believed to simplify model 
development within a knowledge area. 

In this paper, we present scenario models, which act as “plug-&-simulate” extensions 
to domain models. A scenario model allows a developer to change the behavior of domain 
elements without direct and error-prone intervention in the domain model equations. While 
analyzing a model, a developer can select relevant scenarios and activate them upon the 
model components. The model behavior is adjusted for the selected scenarios, presenting 
their impact upon the original model behavior. We present the system dynamics metamodel, 
the structure of scenario models, and their integration with specific models. 

KEYWORDS: system dynamics metamodel, model extensions 

1 Motivation 

In a previous work, we presented the concept of metamodels for system dynamics 
model development (Barros et al., 2001a). By using metamodels, we propose a different 
approach for modeling, where specific models for a knowledge area are developed based on a 
domain model. The domain model conveys specifications for relevant elements of the 
knowledge area, describing their behavior in terms of system dynamics traditional 
constructors – stocks, rates, and processes. Specific models for the knowledge area contain no 
system dynamics constructors, but instances of the domain elements, specialized for the 
model under interest. 

Domain models attempt to group the equations that describe the behavior of each 
relevant element within a domain, in order to improve model readability and understanding. 
In a traditional model development effort, the relevant elements that compose a knowledge 
area are not easily identified in a maze of system dynamics constructors. Their representation 
is usually spread among several equations, which forces developers to analyze the whole 
model to determine the precise group of equations that describe the behavior of an element 
and its relationships to other elements. 



Domain models also allow the reuse of domain knowledge when building models. In a 
traditional modeling effort, model equations convey knowledge for the problem under 
interest, but they also contain knowledge that could be shared by several models within the 
same domain. This domain knowledge should be repeated in every particular model 
developed for the domain. By using the system dynamics metamodel, domain knowledge is 
separately represented in a domain model, while every model developed for the domain 
inherits and specializes this knowledge. 

Scenario models are extensions to domain models that address the issue of separating 
facts from assumptions within a model. Traditionally, system dynamics models blend known 
facts about the real-world elements that compose a model with several assumptions upon their 
behavior and interaction. Most of these assumptions are controlled by parameters that allow 
them to be activated or deactivated during a specific simulation. By running different 
simulations, injecting distinct configurations of values into these parameters, an analyst can 
evaluate the implications of the assumptions upon the model behavior. However, it is usually 
difficult to test other assumptions than those provided with the model: model equations 
should be changed to incorporate the behavior that is sought. Changing model equations is a 
error-prone process, specially in large models with hundreds or thousands of equations. 

By separating facts from assumptions, a model analyst can build a baseline model, 
containing only known facts about a knowledge area, and separate models describing the 
uncertain assumptions. The model analyst simulates the baseline model to evaluate its 
behavior without any assumptions. Next, he performs an iterative process, where assumption 
models are integrated to the baseline model and the combined model is simulated to evaluate 
how the assumptions affect the baseline model behavior. In the metamodel framework, a 
specific model for a domain represents known facts, while scenario models separately 
describe assumptions. 

This paper is organized in five sections. The first one comprises this motivation. Section 
2 briefly describes the system dynamics metamodel, presenting an example that will be 
further used to illustrate scenario models. Section 3 shows the structure of scenario models 
and their integration to a baseline model. Section 4 presents an application example of the 
system dynamics metamodel and scenario models. Finally, section 5 presents some final 
considerations and future perspectives of this work.  

2 The System Dynamics Metamodel 

The purpose of this paper is to present scenario models and how they can be used to 
evaluate the impact of assumptions upon a system dynamics model. However, due to 
scenarios straight link to the system dynamics metamodel, we briefly describe the concepts 
that compose the metamodel, as presented in (Barros et al., 2001a). Also, we introduce an 
example, based on the classic bathtub model, to illustrate the metamodel concepts. Further, 
this example will be used to describe scenario models.  

The system dynamics metamodel proposes a three-staged process for model 
development. First, an expert in a given knowledge area builds a domain model, conveying 
descriptions for the relevant elements that compose a domain. Each element is described as a 
class, which contains the properties that describe the element and its behavior equations. 
Traditional system dynamics constructors describe a class behavior. The domain model also 
contains declarations for acceptable relationships among classes. A relationship is a directed 
connection between two classes that allows behavior equations for one class (relationship 
source) to access information and behavior equations in the other class (relationship target). 

Table 1 presents a simple domain model describing a bathtub with two kinds of valves: 
sources, which add water to the bathtub, and sinkers, that drain water from the bathtub. The 
behavior that describes the whole system of bathtub and valves is separated in three classes. 



The bathtub behavior, presented in the Bathtub class, is stated by a single stock that describes 
the amount of water within the bathtub. Behavior equations for sources and sinkers, which are 
presented in their respective classes, declare rates that affect the level of the bathtub stock. 
These rates use class relationships to address the stock. Also, sources and sinkers have 
properties, describing the amount of water that they allow in or out of the bathtub. 

The domain model does not describe a model for a specific problem, but a knowledge 
area where modeling can be applied. It is a generic description of the domain, which should 
be specialized to a particular problem (Barros et al., 2001a). Observe that the domain model 
in Table 1 does not specify how many sources or sinkers are connected to a bathtub. It only 
states that sources and sinkers can be connected to a single bathtub (class relationships) and 
how they behave when this connection is established. The relationships defined in the domain 
model also prevent incorrect class connections. For instance, the domain model in Table 1 
does not allow a source to be directly connected to a sinker. 

Table 1 – A domain model for the bathtub example 

MODEL BathtubModel 
{ 
 CLASS Bathtub 
 { 
  STOCK Level 0; 
 }; 
 
 CLASS Source 
 { 
  PROPERTY GrowthRate 10; 
 
  RATE (SourceTub.Level) Growth GrowthRate; 
 }; 
 
 CLASS Sinker 
 { 
  PROPERTY SinkRate 10; 
 
  RATE (SinkerTub.Level) Sink -Min(SinkRate, SinkerTub.Level); 
 }; 
 
 RELATION SourceTub Source, Bathtub; 
 RELATION SinkerTub Sinker, Bathtub; 
}; 

Domain model classes are used as high-level constructors for models developed within 
the domain. The group of classes described in a domain model composes a domain specific 
modeling language. Several models can be built from the same domain model. Model 
developers interested in describing a problem within that knowledge area specify the problem 
in terms of classes, reusing their behavior equations from the domain model. To avoid 
confusion with domain models, we will refer to models developed for a domain as specific 
models for the domain or just specific models. 

In the second stage of the model development process, a developer specifies how many 
instances of each class defined for the domain exist in the specific model of interest. For 
instance, a model developed for the “bathtub domain” specifies how many sources and 
sinkers are connected to each bathtub, along with the amount of water that they drain or put 
into the bathtub per simulation step. Table 2 presents a model developed from the bathtub 
domain model, containing a single bathtub, one sinker, and one source. 

Each model element (bathtub, sinker, and source) is defined as an instance of a domain 
model class. The property values for the instances are specified after their declaration. In the 
model presented in Table 2, the source does not specify its GrowthRate property value. So, 
this property assumes its default value (10 ml) for the instance. In contrast, the sinker defines 
its SinkRate property value, indicating that it drains 5ml of water per simulation step. 



Table 2 – Specific model for the bathtub domain 

DEFINE MyBathtub BathtubModel 
{ 
 Bathtub = NEW Bathtub 
 
 Sourcer1 = NEW Source 
  LINK SourceTub BathTub; 
 
 Sinker1 = NEW Sinker 
  SET SinkRate = 5; 
  LINK SinkerTub BathTub; 
}; 

The model also describes how instances relate to each other, based on the relationships 
among classes defined in the domain model. In the model presented in Table 2, the source and 
the sinker are associated to the Bathtub instance. If several bathtubs, sinkers, and sources 
composed the whole system, the class relationships would allow each sinker or source to 
indicate the bathtub that it affects. So, the rates within these elements would address the stock 
that describes the level of the correct bathtub.  

A specific model for a domain conveys only information about the elements that it uses. 
It does not present any system dynamics constructor. Such constructors are inherited from the 
classes’ behavior, which are described in the domain model. By using the system dynamics 
metamodel, we expect that modeling becomes easier than using pure system dynamics 
constructors, since model developers use domain elements described by the domain specific 
language to build their models. 

Regarding the property values in the bathtub example, every class instance has different 
property values. So, every instance property must be represented by an independent equation. 
Several equations are required to represent the whole set of instances, capturing their 
particular properties. This leads to larger and error-prone models, which are difficult to handle 
manually. By using the metamodel, the model developer just defines the individual property 
values for the instances and the model behavior automatically adjusts to these values. 
Behavior equations can be parameterized by the property values of each individual instance, 
generating different behavior for elements with distinct characteristics. 

Finally, in the third step of the model development process, the specific model is 
translated to system dynamics equations in order to be analyzed in standard system dynamics 
simulators. The resulting model uses only traditional constructors, while the preceding model 
is described in the high level, element-oriented representation. The high-level representation 
helps model development and understanding, simplifying the interaction between developers 
and models. The representation based on system dynamics constructors allows simulation and 
behavior analysis. Table 3 presents the compiled version for the model presented in Table 2. 
To reduce the number of equations in the compiled model, reducing thus the time required for 
its simulation, compiler level optimizers can further process the model. 

Table 3 – Compiled model (without optimization) for the model presented in Table 2 

# Code for object "Bathtub" 
STOCK Bathtub_Level 0; 
 
# Code for object "Sourcer1" 
PROC Sourcer1_GrowthRate 10; 
RATE (SOURCE, BathTub_Level) Sourcer1_Growth1 Sourcer1_GrowthRate; 
 
# Code for object "Sinker1" 
PROC Sinker1_SinkRate 5; 
RATE (SOURCE, BathTub_Level) Sinker1_Sink1 -MIN (Sinker1_SinkRate, BathTub_Level); 



3 Scenario Models 

Scenario models address the problem of analyzing hypothesis upon a system dynamics 
model. Usually, a model has several parameters that control the activation of predefined 
assumptions, supporting the analysis of a model under distinct conditions. However, when a 
different assumption, theory, strategy or uncertain event has to be analyzed upon a model, 
model equations have to be changed to include the new behavior before it could be simulated. 
Even more, the recently introduced equations can contradict some of the original behavior, 
eventually resulting in inconsistencies within the model. Finally, changes within a model can 
introduce errors, affecting both the original and the innovative behavior. 

Scenario models are extensions to domain models that propose the separation of facts 
from assumptions. A scenario is developed for a particular domain and provides new behavior 
and characterization for one or more domain classes. From the separation point of view, a 
specific model for a domain contains known facts, while scenarios for the same domain 
represent uncertain assumptions. 

A scenario model is composed by connections and constraints. A connection associates 
the scenario to a domain class, so that the scenario can be enacted upon instances of the class 
in a specific model for the domain. A constraint declares restrictions to which the connected 
instances and its associated instances have to apply in order to use the scenario. Table 4 
presents a simple scenario model for the bathtub domain. 

Table 4 – A simple scenario model for the bathtub domain 

SCENARIO SplashSource BathtubModel 
{ 
 CONNECTION TheSource Source 
 { 
  PROPERTY SplashPeriod 5; 
 
  PROC Div TIME / SplashPeriod; 
  PROC RDiv Round (TIME / SplashPeriod); 
  PROC TimeToSplash AND(Div-RDiv < 0.001, Div-RDiv > -0.001); 
 
  AFFECT Growth if(TimeToSplash, Growth, 0); 
 }; 
}; 

The scenario in Table 4 models a “splashing source”, that is, a non-continuous source 
that allows water into the bathtub in periodic turns. The scenario has a single connection and 
no constraints. The TheSource connection allows the scenario to be connected to an instance 
of the Source class in specific models developed for the Bathtub domain.  

A connection extends the behavior and characterization of its associated class by adding 
new properties and behavior equations. It also declares behavior redefinition clauses, which 
allow the scenario to change behavior equations previously defined for the class in the domain 
model. The TheSource connection in the scenario model presented in Table 4 declares a single 
property, namely SplashPeriod, which indicates the water-supplying period for the splashing 
source. The connection also presents three auxiliary behavior equations, represented by 
processes (PROC) in the scenario model, which are ultimately used by a behavior redefinition 
clause. 

Scenarios are developed to adjust the equations of rates and processes defined in the 
domain model. In the scenario in Table 4, the single behavior redefinition clause, represented 
by the AFFECT keyword, indicates that the scenario modifies the Growth equation defined 
for the Source class in the domain model. The original equation that describes a source’s 
water-supplying rate is overridden by the scenario definition. In this scenario, the new Growth 
equation refers to the original equation. However, it uses the TimeToSplash process, which 



signals the simulation steps when the splashing source shall pour water into the bathtub, to 
turn the source intensity to zero out of the periodic supply turns. 

Like the domain model, a scenario is not a self-contained model. It is a complementary 
model that adjusts the behavior of previously developed models. A scenario can be activated 
upon a model developed for the same domain to which the scenario was created. When a 
scenario is activated upon a model, its connections must be enacted upon class instances 
declared within the model. The effects of enacting a connection upon an instance are similar 
to declaring the properties and behavior equations defined in the connection directly in the 
domain model class. However, if such properties and behavior equations were declared in the 
domain model, they would apply for every instance of the class in every specific model 
developed for the domain. Scenario connections can be enacted upon specific class instances, 
modifying the behavior of those particular instances. Table 5 shows a SplashSource scenario 
activation upon the Sourcer1 instance in the specific model presented in Table 2. 

Table 5 – Scenario model activation upon a model for the bathtub domain 

DEFINE MyBathtub BathtubModel 
{ 
 Bathtub = NEW Bathtub 
 
 Sourcer1 = NEW Source 
  LINK SourceTub BathTub; 
 
 Sinker1 = NEW Sinker 
  LINK SinkerTub BathTub; 
 
 ACTIVATE SplashSource 
  CONNECT TheSource Sourcer1; 
}; 

Since no splashing source was defined in the domain model, a specific model for the 
domain cannot directly contain such kind of source. Instead, the model shall create an 
instance of a conventional, continuous source and activate the SplashingSource scenario upon 
this source. Table 6 presents the compiled version for the model in Table 5. 

Table 6 – Compiled version for the model in Table 5 (accounting for scenario equations) 

# Code for object "Bathtub" 
STOCK Bathtub_Level 0; 
 
# Code for object "Sourcer1" 
PROC Sourcer1_GrowthRate 10; 
PROC Sourcer1_SplashPeriod 5; 
RATE (SOURCE, BathTub_Level) Sourcer1_Growth1 IF(Sourcer1_TimeToSplash, 

(Sourcer1_GrowthRate), 0); 
PROC Sourcer1_Div TIME / Sourcer1_SplashPeriod; 
PROC Sourcer1_RDiv ROUND (TIME / Sourcer1_SplashPeriod); 
PROC Sourcer1_TimeToSplash AND (Sourcer1_Div - Sourcer1_RDiv < 0.001, Sourcer1_Div - 

Sourcer1_RDiv >  -0.001); 
 
# Code for object "Sinker1" 
PROC Sinker1_SinkRate 5; 
RATE (SOURCE, BathTub_Level) Sinker1_Sink1  -MIN (Sinker1_SinkRate, BathTub_Level); 

By comparing the compiled model presented in Table 6 with its original version, 
generated without the scenario activation and presented in Table 3, we observe that the 
equations for the Bathtub and Sinker1 instances were not modified. This occurs because no 
scenario connection was enacted upon those instances. However, the equations defined in the 
TheSource connection of the SplashingSource scenario were added to the Sourcer1 instance 
description. The Div, RDiv and TimeToSplash processes were declared for the instance, while 
its Growth rate was redefined as indicated in the behavior redefinition clause in the scenario.  



The properties defined by a scenario connection are added to the list of properties that 
describe the class instance upon which the connection was enacted. As it occurs in the domain 
model, these properties have a default value, which can be redefined by particular instances in 
a specific model. Table 7 presents an extract for the model in Table 5 where the Sourcer1 
instance redefines the value of its SplashPeriod property. The connection equations assume 
the new property value for the instance, adjusting scenario behavior for this value. Observe 
that, if no scenario connections were enacted upon the Sourcer1 instance, the initialization of 
the SplashPeriod property would result in an error, since the property was not defined for the 
class in the domain model. 

Table 7 – Scenario model activation upon a model for the bathtub domain 

DEFINE MyBathtub BathtubModel 
{ 
 ... 
 
 Sourcer1 = NEW Source 
  SET SplashPeriod = 10; 
  LINK SourceTub BathTub; 
 ... 
 
 ACTIVATE SplashSource 
  CONNECT TheSource Sourcer1; 
}; 

The SplashSource scenario and the Bathtub domain model help to illustrate the main 
advantage of using scenario models. Consider that a model analyst wants to evaluate the 
bathtub water level behavior with a continuous source and with a splashing source. To 
evaluate the first, the analyst uses the specific model for the Bathtub domain presented in 
Table 2. This model shows the behavior presented in the left-hand graph in Figure 1. Next, to 
evaluate the splashing source behavior, the analyst activates the SplashingSource scenario 
upon the continuous source, generating the model presented in Table 5. This model shows the 
behavior presented in the right-hand graph in Figure 1. 

Figure 1 – Model behavior with and without scenario activation 

So, scenarios allow an analyst to perform behavior analyses upon a model without 
direct intervention in its equations or even parameter redefinitions. Scenarios are separately 
modeled and activated upon model instances. They act as “plug-&-simulate” extensions to a 
domain model: they provide different behavior for domain model classes that can be plugged 
and analyzed, according to the analyst needs. These analyses can be rather difficult with the 
current textual representation for scenarios and models, since users need to change the model 
representation, but graphical tools for specific model development, scenario creation and 
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integration can be built to allow a user to graphically build a model and activate scenarios 
upon it. 

Scenarios are also reusable along many models developed for a domain. They separate 
the knowledge about an uncertain event, assumption, theory, or strategy from the general, and 
usually more reliable, domain knowledge. The integration of scenarios to a specific model for 
a domain may reveal changes in the specific model behavior. Simulating a model with a 
scenario demonstrates the potential impact of the scenario in the model behavior. This kind of 
simulation allows the model analyst to test project sensitivity to the assumptions expressed by 
the scenario model. Scenario models can only be simulated when integrated to a specific 
model. 

3.1 Scenarios with Multiple Connections  

Besides the basic fundamentals for scenario development, more complex scenarios can 
be built. Table 8 presents a scenario model with two connections. This scenario describes a 
periodic source and a periodic sinker. Since its behavior involves two domain model classes 
(Source and Sinker), the scenario must have two connections. Each connection declares 
independent properties, behavior equations and behavior redefinition clauses for its class. 

Table 8 – A scenario model with two connections for the bathtub domain 

SCENARIO AlternateTubs BathtubModel 
{ 
 CONNECTION TheSource Source 
 { 
  PROPERTY BaseStart 0; 
  PROPERTY Period 2; 
 
  STOCK Clock BaseStart+Period; 
  RATE (Clock) ClockRT if(Clock < 0.001, Period, -1); 
  AFFECT Growth if (Clock < 0.001, Growth, 0); 
 }; 
 
 CONNECTION TheSinker Sinker 
 { 
  PROPERTY BaseStart 1; 
  PROPERTY Period 2; 
 
  STOCK Clock BaseStart+Period; 
  RATE (Clock) ClockRT if(Clock < 0.001, Period, -1); 
  AFFECT Sink if (Clock < 0.001, Sink, 0); 
 }; 
}; 

When a scenario with several connections is activated upon a model, every connection 
must be enacted upon a class instance. Table 9 presents an extract from a specific model 
where the AlternateTubs scenario is activated. The model presents the enactment of the 
TheSource and TheSinker connections upon the Sourcer1 and Sinker1 instances, respectively. 

Table 9 – An extract of a specific model, focusing on the AlternateTubs scenario activation 

DEFINE MyBathtub BathtubModel 
{ 
 ... 
 
 ACTIVATE AlternateTubs 
  CONNECT TheSource Sourcer1; 
  CONNECT TheSinker Sinker1; 
}; 



3.2 Constrained Scenarios  

Scenarios may depend on other scenarios to represent their behavior. Suppose, for 
instance, a splashing source whose water-supplying intensity is stochastic and uniformly 
distributed. The scenario presented in Table 10 could represent this effect. 

Table 10 – A constrained scenario model for the bathtub domain 

SCENARIO RandomSplashSizeSource BathtubModel 
{ 
 CONNECTION TheSource Source 
 { 
  AFFECT Growth if(TimeToSplash, Growth * (0.5 + Uniform(0,1)), 0); 
 }; 
 
 CONSTRAINT TheSource, SplashSource.TheSource; 
}; 

The scenario in Table 10 redefines a source’s Growth rate, modeling the stochastically 
driven source. Note that the equation redefinition uses the TimeToSplash process that is not 
defined in the scenario, nor in the domain model. This process is defined in the SplashSource 
scenario, which must be enacted upon the same instance upon which the TheSource 
connection from the RandomSplashSizeSource scenario was enacted. 

The constraint in the scenario warrants the establishment of this connection. It states 
that instances affected by the TheSource connection in the RandomSplashSizeSource scenario 
must also be affected by the TheSource connection of the SplashSource scenario. If the last 
connection is not enacted upon the instance, the metamodel compiler issues an error and does 
not generate the compiled model. 

Constraints are not restricted to class instances upon which a scenario connection is 
enacted. Other instances, linked to the connected instances by class relationships, can also be 
affected by constraints. To allow associated instances evaluation by a constraint, a dot 
operator and a relationship identifier should follow the TheSource connection in the left-hand 
side of the comma that divides the constraint declaration. All class instances associated to the 
connected instance through this relationship should attend to the scenario connection 
presented by the right-hand side of the comma. 

3.3 Scenario Activation Ordering 

Since several scenarios can redefine the same equation for a class instance in a specific 
model, and due to operator precedence rules within an equation, scenario activation ordering 
is relevant. If several scenario connections are enacted upon the same class instance, their 
behavior redefinition clauses affect the domain class equations according to the scenario 
activation order. 

Consider the scenarios presented in Table 11. The first scenario represents a pumped 
source, where a pumping engine enhances the water-supplying rate by a multiplying factor. 
The second scenario represents a dripping source, where a hole reduces the water-supplying 
rate by a constant amount per simulation step. Both scenarios affect a source’s Growth rate, 
but the combined effect of enacting their connections upon the same class instance depends 
on the order that they were activated upon the model. 

Consider that the TheSource connection in the PumpedSource scenario was enacted 
upon a class instance and then the TheSource connection in the DrippingSource was enacted 
upon the same instance. The resulting Growth equation, amplified by the pump factor and 
then reduced by the hole dripping rate, would be described as: 

Growth = (GrowthRate * PumpRate) – HoleSize 



Table 11 – Scenarios that affect a source’s water supplying rate 

SCENARIO PumpedSource BathtubModel 
{ 
 CONNECTION TheSource Source 
 { 
  PROPERTY PumpRate 2; 
  AFFECT Growth Growth * PumpRate; 
 }; 
}; 

SCENARIO DrippingSource BathtubModel 
{ 
 CONNECTION TheSource Source 
 { 
  PROPERTY HoleSize 1; 
  AFFECT Growth Growth - HoleSize; 
 }; 
}; 

However, if scenario activation ordering changed, enacting the TheSource connection in 
the DrippingSource scenario before the TheSource connection in the PumpedSource scenario 
upon the same instance, the Growth equation would be such as: 

Growth = (GrowthRate – HoleSize) * PumpRate 

In the second activation order, the hole effects are perceived prior to the pump 
amplification effects. Depending on property values (hole size and pump rate), these two 
equations would show distinct behavior in a specific model. So, scenario ordering must be 
considered when connections from several scenarios are enacted upon the same class instance. 

4 An Application Example 

The Bathtub domain is a simple example, presented in this paper to illustrate the 
structure of scenario models, how they are integrated to a specific model for a domain, and 
how this integration affects the model behavior. A more complex application of the system 
dynamics metamodel and scenarios models can be found in the scenario based project 
management paradigm (Barros et al., 2001b; Barros et al., 2002). 

The scenario based project management is a paradigm for software project management 
that proposes that a manager should plan and document the expected behavior for a project as 
a model. Since this behavior can be affected by unexpected events during project 
development, the manager should test its sensibility to several combinations of such events, 
getting feedback about possible risks that can challenge the project success. Project 
management scenarios represent such events, conveying knowledge that can be reused along 
several projects. 

In this context, the expected behavior for a project is modeled as a specific model for 
the project management knowledge area. A domain model was developed for this knowledge 
area and several scenarios were built upon it. Currently, we have about twelve scenario 
models developed for the domain. These scenarios include theories regarding developers’ 
productivity and error generation rates due to their experience, developers’ productivity due to 
learning the application domain, effects of overworking and exhaustion upon software 
developers, communication overhead, error propagation along the activities that compose a 
work breakdown structure, among others. 

In an industrial setting, where the scenario based project management paradigm can be 
used to manage real software projects, senior managers develop scenario models expressing 
the experiences they have collected by participating in several projects. These scenarios allow 
less experienced managers to share senior managers’ knowledge. In an academic setting, 



scenarios developed by experts and supported by the software engineering literature can be 
useful to training activities. For instance, based on a proposed software project, trainees could 
use scenario integration and simulation to evaluate the impact of their decisions upon the 
project behavior (cost, schedule, quality, and so on).  

Scenarios are supposed to be small: they shall concentrate on the behavior equations 
that describe a particular problem or opportunity. The power of scenarios is their integration 
with specific models and the dependencies among scenarios that can be described through 
constraints. For instance, the scenario that describes the effects of exhaustion upon 
developers’ productivity and error generation rates depends on the scenario that describes the 
effects of overworking upon developers. Since further scenarios can describe other effects of 
overworking upon developers (beyond productivity and error generation rates), the effects of 
overworking and exhaustion were separated and described by two related scenarios.  

5 Final Considerations and Future Perspectives 

This paper presented scenario models, an extension to the system dynamics metamodel 
that allows the separation of uncertain assumptions from the facts expressed in a model. Such 
uncertain assumptions are described in separate models, namely scenario models, which can 
be activated upon model components. Such activation adjusts the original model to the 
equations that describe the scenario, allowing a model analyst to evaluate the impact of these 
assumptions upon the model behavior. Scenarios allow model developers to extend the 
behavior of a domain model without direct and error-prone intervention in its equations. 

The metamodel compiler to system dynamics constructors was adjusted to account for 
scenario activation and some scenario models were built, mostly for the project management 
knowledge area. We expect to create new scenarios for this domain and use the proposed 
techniques as a training tool. Software project manager trainees would be given a project 
description and a set of scenarios to evaluate their impact upon project behavior. Recently, we 
have conducted an experimental study that showed indications that managers using scenarios 
to support their decisions perform better than managers that support their decisions only upon 
personal experience.  

Future perspectives of this work include the development of graphical tools to support 
the creation and evaluation of specific models and scenario models. Such tools would be 
useful as a simulation environment, where a model analyst could select relevant scenarios for 
the analysis context and easily activate them upon a model developed for the same domain. 
We also expect to apply scenarios and the system dynamics metamodel to training by 
developing a scenario-based training environment. 
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