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Extended Abstract 

 
 A general description of the autoregressive models (AR) could be given by 
saying that these models explain, partially at least, the values of a variable or set of 
variables, based on the past values of this variable or set of variables. Lately, AR 
models have increased their presence and importance within the field of economic and 
econometric analysis. It has been found that this kind of simple models, with a small 
number of variables and parameters, can seriously compete in terms of their prediction 
capabilities, with the large macroeconomic models with hundreds of variables and 
parameters, developed during the fifties and sixties. 
 
 This paper tries to show how System Dynamics (SD) models may easily 
incorporate fundamental elements of AR models. We first review the different elements 
of AR models with increasing complexity: a single variable AR model; vector 
autoregressive models (VAR) considering a vector with several variables; and structural 
vector autoregressive (SVAR) models, where several economy theory elements can be 
considered. As an illustration, we present a case study for the labor market in Spain. We 
explain the fundamentals of the problem and the formulation of the corresponding 
SVAR model. Finally, we develop the model within the framework of system dynamics. 
 
  We do believe this work is a good example of how system dynamics and 
econometric models can be considered as complementary analysis tools, in order to deal 
effectively with these complex problems. 
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1. Introduction to AR models 
  

As we have mentioned above, the more simple AR models have only one 
variable, where the value of the variable is expressed as a function of the previous 
values of the variable. This can be formulated as follows: 
 

 yt = φ1 yt-1 +  φ2 yt-2 +…+ φp yt-p + c + εt                                                                         [1] 
 
where yt, yt-1,…, yt-p  are the values of the variable y in periods t, t-1,…, t-p; φ1, φ2,…, φp 
and c are parameters and a constant that can be estimated; and εt is a random 
perturbation term, also called innovation, as this is the only new information that enters 
in period t, with respect to what it is already available from previous periods. The 
model in [1] is denoted AR(p), where the order p is the number of time lags of the 
model. Using the lag operator L defined as follows: 
 

L xt ≡ xt-1;   L
2 xt ≡ xt-2;…;   Lp xt ≡ xt-p;                                                                       [2] 

 
equation [1] can be written: 
 

(1 - φ1 L -  φ2 L
2 -…- φp L

p) yt = φ (L) yt = c + εt                                                                 [3] 
 
where φ (L)  is a polynomial in the lag operator: 
 

φ (L) = 1 - φ1 L -  φ2 L
2 -…- φp L

p                                                                              [4] 
 
 AR models are very closely related to moving average MA(q) models:  
 

 yt = εt + ψ1 εt-1 + ψ2 εt-2 +…+ ψq εt-q+ µ = ψ (L) εt+ µ                                 [5] 
 
where εt, εt-1, εt-2,…, εt-q denote the innovations in t, t-1,…, t-q; ψ1, ψ2,…, ψq and µ are 
parameters and a constant to be estimated, q is the order of the MA model and ψ (L) is 
the following polynomial in the lag operator: 
 

ψ (L) = 1 + ψ1 L +  ψ2 L
2 +…+ ψq L

q                                                                        [6] 
 
 Mixed (autoregressive-moving average) models ARMA(p, q) can also be 
formulated as follows: 
 

φ (L) yt = c + ψ (L) εt                                                                                         [7] 
 
where φ (L) and ψ (L) are polynomials in the lag operator of orders p and q, 
respectively. 
 
 Under suitable conditions, AR (MA) models can be transformed in MA (AR) 
infinite-order models. Then, comparing [3] and [5], the following should apply: 

 
ψ (L) =  φ (L)-1

                                                                                                 [8] 
 



 ARMA models, also under suitable conditions, can be transformed too in either 
autoregressive, or moving average models. 
 
 Autoregressive models (or ARMA models, in general) of just one variable, have 
obtained good results in predictions of variables showing a persistent temporal pattern 
like, for instance, seasonal inward and outward station movements in a telephone 
company. 
 

2. Introduction to VAR and SVAR models 
 
 VAR models can be interpreted as a vector generalization of AR models. 
Considering a vector of  n variables, denoted  yt, equation [3] is now transformed into: 

 
 ΦΦ(L) yt = c + εεt                                                                                                [9] 

 
where yt, c y εε t are vectors (n x 1) and ΦΦ(L) is a matrix polynomial in the lag operator 
with (n x n) matrices ΦΦj: 

 
ΦΦ(L) = In - ΦΦ1 L -  ΦΦ2 L

2 -…- ΦΦp L
p                                                                      [10] 

 
where In represents the identity matrix of order n. Notice that, as In is the identity 
matrix, in the VAR model in equation [9] each element of the vector yt (endogenous 
variables determined within the system) is expressed as a function of lagged values of 
all the elements in the same vector (variables predetermined in previous periods). 
However, they do not appear contemporaneous relations between the variables, that is, 
each variable is not related to the values of the others in that same period. Thus, 
equation [9] can be viewed as the reduced  autoregressive form that could be obtained 
from a SVAR model in which there would be a relationship among endogenous 
variables for the current time period: 

 
B(L) yt = k + ut                                                                                                [11] 

 
where k is a vector (n x 1) with constants, ut a vector (n x 1) of perturbations, that in 
this structural model are called structural shocks, and B(L) is a matrix polynomial in the 
lag operator with (n x n) matrices Bj: 

 
B(L) = B0 - B1 L -  B2 L

2 -…- Bp L
p                                                                      [12] 

 
Notice how B0 denotes the contemporaneous relationships among the endogenous 
variables yt. 
 

Equation [11] is the structural autoregressive form of the model. If we pre-
multiply both members of the equation by B0

-1 we would obtain [9] (reduced 
autoregressive form) and, vice versa, known the matrix B0, the structural autoregressive 
form of the model can be obtained by pre-multiplying B0 in both members of [9]. 
However, it can be demonstrated that the information contained in yt is not enough to 
identify the matrix B0 and some additional restrictions are required. 

 
These additional restrictions can be obtained from the implications that 

theoretical models have on the expected behavior of the variables yt.  In this sense, it 



can be affirmed that whereas in the VAR model of the equation [9] the theoretical 
requirements are minimum (a set of variables whose interaction is going to be analyzed 
and number of time lags to be included), in the SVAR model a greater theoretical 
content can be found, given by the model from which the above mentioned additional 
restrictions are obtained.  
 

Like the models of a single variable, vector autoregressive models in its reduced 
[9] or structural [11] form, under suitable conditions, can be transformed into the 
reduced or structural moving average forms, just by premultiplying both equations by 
ΦΦ(L)  -1 and B(L)  –1, respectively. 

 
 yt = ΨΨ(L) εε t + d                                                                                             [13] 

 
 yt = C(L) ut + h                                                                                             [14] 

 
where d and h are vectors (n x 1) of constants, and: 

 
ΨΨ(L) = ΦΦ(L)  -1                                                               [15] 

 
C(L) = B(L)  –1                                                               [16] 

 
 

3. SVAR models and System Dynamics 
 

We will now show how it is possible to implement a SVAR model within the 
framework of SD. In order to do so, we consider a concrete application of a SVAR model 
to the labor market in Spain, developed by Dolado and Gómez (1997) that, in turn, takes 
as reference the study carried out by Blanchard and Diamond (1989). We will explain 
how we have implemented this model constructing two basic SD models, the model 1 and 
the model 2, each of which corresponds to different phases of the process of analysis, as it 
will be later exposed closely. 

 
3.1. The initial SVAR model  
 

Dolado and Gómez (1997) SVAR model centers on the quarterly series of three 
variables: unemployment (U), vacancies (V), and labour force (L). In this model the 
vector yt is obtained from a few previous transformations, and it is composed by the 
variables ∆(v-u), ∆u y ∆l, where v, u and l are the logarithms of V, U and L, and where 
∆x indicates the first difference of the corresponding x variable. These three 
transformed variables correspond respectively to the rates of growth of the 
unemployment/vacancies ratio, unemployment and labour force. 
 
 Relating each of these three transformed variables with the lagged values (up to 4 
quarters) of all of them, the reduced autoregressive form [9] is obtained, in which it is 
included also a vector of dummy quarterly variables dt with its coefficients matrix D, that 
were not included in the generic form [9], and that serve to control the seasonal effects: 

 
 ΦΦ(L) yt = c + D dt + εε t                                                                                                [17] 

 
  



As it was mentioned in section 2, in this reduced autoregressive form, 
contemporaneous relations do not appear among the variables, that is, each variable is 
not related to the values of the others in the same period. These contemporaneous 
relations do appear in the structural autoregressive form [11]: 

 
B(L) yt = ut + …                                                                                                [18] 

 
where other terms, corresponding to the constants and seasonal variables, have been 
omitted. The matrix B0, within the polynomial in the lag operator B(L), reflects the 
contemporaneous relations among the variables. As it was also exposed in section 2, the 
information contained in the time series yt it is not sufficient to identify the elements of B0, 
and therefore it is necessary to add restrictions. These restrictions can be obtained from the 
implications that theoretical models may have on the expected behavior of the variables yt. 
 

Dolado and Gómez (1997) use a theoretical model, using a flow approach to 
labour market, constituted by four blocks: the flows of job creation and job destruction, 
the hiring process through a matching function between vacancies and unemployment, the 
wage determination based on the excess demand in the labor market, and the labour 
supply or labour force as a function of wages and of unemployment. This is used to 
obtain a relation among the transformed variables that compose the vector yt in the 
structural autoregressive form [18]. At the same time, the structural shocks ut, are 
identified using three types of disturbances in the economy: aggregate activity shocks, 
due to disturbances in the different components of aggregate demand, reallocation 
shocks, due to disturbances  affecting the efficiency in the matching process between 
vacancies and unemployed (skill mismatch, geographical mismatch …) and labour 
force shocks, due to disturbances that affect directly this variable (women participation 
in the labor market …). The additional restrictions for the identification of B0, obtained 
as implications of this theoretical model, are that a labour force shock does not have 
permanent effects on unemployment and vacancies and that a reallocation shock does 
not have permanent effects on the vacancies/unemployment ratio. 
 
3.2. General approach followed to build the SD models. 
 
 In order to accomplish the SVAR analysis and its application to the labor market 
within the SD framework, we have built using VENSIM software two basic models: 
model 1 and model 2. Each of which corresponds to a different phase of the analysis 
process, that will be exposed in detail later on. In Figures 1 and 2, stock and flow 
diagrams of both models are presented. 

 
The common nucleus of both models is the prediction of the variables in every 

period from its values in the previous periods, according to the reduced autoregressive 
form of the equation [17]. The main difference between both models is that model 1 
uses the real data of the variables in the previous periods, whereas model 2 uses the 
values predicted for the previous periods by the model.  For this reason, we can say that 
the prediction horizon is of a single period in the first model, and multi-period in the 
second. 



Figure 1 : Model 1, stock and flow diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2 : Model 2, stock and flow diagram 
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Model 1 is used to estimate the parameters of the model in the reduced 
autoregressive form [17] from a series of real values of the variables. With the same 
model, it is studied the adjustment obtained between the predictions of the estimated 
model and the series of real values of the variables, calculating the differences between 
both of these residuals (or estimated values of innovations εε t) and their variance-
covariance matrix. 
 

With the values of the estimated parameters, model 2 is used to calculate the B0 
matrix. By doing that we can obtain the structural autoregressive form from the reduced 
autoregressive form, with the additional restrictions that the theoretical model imposes on 
the long-term values of the variables. Model 2 also allows simulating the response of the 
variables to different impulses (in innovations εεt or in structural shocks ut), known as 
impulse-response functions. These functions are also related to the moving average forms 
of the model. In order to obtain all these results model 2 is used in three versions differing 
only in the magnitude of the innovations. 
 

In the next two sections, we present in detail the analysis process that both 
models follow, divided in six steps, two for model 1 and four more for model 2. 

 
3.3. Detailed explanation of model 1 
 

The model 1 is in the figure 1 (the names of the variables will be indicated 
within quotation marks as they are explained). 
 
1) Data input and initial transformations. 

 
First, there is a reading of the "data" imported from an external file: quarterly 

series of values for corrected vacancies (V), unemployment (U) and labour force (L), 
together with the quarterly dummy variables. 
 

Later, several data initial transformations are made, obtaining "variables in t " and 
the "dummies". The obtained variables are ∆(v-u), ∆u and ∆l, composing the yt vector, 
where ∆x is the first difference of the corresponding x variable. In order to calculate 
these differences, the level variables "data in t-1" need to be calculated first, and are 
updated at the end of every period with an input  flow "incr dat" that stores the data of 
this period as lagged information for the following period, and an output flow "decr dat" 
that eliminates the data stored previously. Besides this, the four seasonal dummies (d1, 
d2, d3, d4) are reduced to three (dum1, dum2, dum3), to avoid the problem of perfect 
collinearity among them, by doing: 
 

dum1=d1-d4 
 
dum2=d2-d4                    [19] 
 
dum3=d3-d4 

 
 



2) Estimation of the model in reduced autoregressive form, the residuals, and the 
variance–covariance matrix. 
 

The VAR model is based on the relation that the vector of variables yt in a 
period, holds with the same vector in previous periods. In a similar way to what we did 
with the data in the step 1, the level variables "variables in t-i" (where i indicates the lag 
order; i = 1..., 4 in our application to the labor market) are generated, and updated at the 
end of every period as previously explained. 
  

As we said before, the core of the model 1 is the prediction of the variables for 
every period ("variables prediction in t ") from their values in the previous periods, in 
accordance with the model in reduced autoregressive form [17], which includes also a 
vector of "constants" c, and the term corresponding to the seasonal "dummies" dt. The 
model parameters to estimate are "variable coefficients in t-i", "dummies coefficients" and 
the "constants". The variable "Time" is used to control the periods in which the model is 
initialized, introducing the real values of the variables as first lags. 

 
The estimation of the model parameters, starting from the series of variables’ real 

values, is done using a modified Powell Method1 included in the “calibration” option of 
VENSIM. By doing so, the values obtained for the parameters minimize the sum of the 
squared residuals (real values of the variables minus predictions of the model) for all the 
periods that compose the estimation interval. A joint estimation is done for all three 
equations that compose [17], corresponding to each variable in the vector yt, giving the 
same weight to the sums of the squares of every equation residuals in the global payoff 
function to minimize. 

 
With the estimated values of the parameters, we obtain the estimated “residuals”, 

and by multiplying those values we obtain the estimate of the variance–covariance matrix 
"cov". The flow variable "inc" increases in every period the accumulated level "previous 
cov" of the sum of the residuals products for all the previous periods. Finally, the variable 
"FINAL TIME” provides the number of periods that it is necessary to take into account in 
this process. 
 
3.4. Detailed explanation of model 2 
 

The model 2 stock and flow diagram can be observed in figure 2.  
 
 

                                                             
1 Among the numerical optimization techniques, the direct-search method that does not evaluate 

the gradient, is most suitable for the analysis of dynamics of complex nonlinear control systems. The 
Powell method (Powell, 1964), is well known to have an ultimate fast convergence among direct-search 
methods. The basic idea behind Powell's method is to break the N dimensional minimization down into N 
separate one-dimensional (1D) minimization problems. Then, for each 1D problem a binary search is 
implemented to find the local minimum within a given range. Furthermore, on subsequent iterations, an 
estimate is made of the best directions to use for the 1D searches.  

 
Some problems, however, are not always assured of optimal solutions because the direction vectors are 
not always linearly independent. To overcome this difficulty, the method was revised (Powell,1968) by 
introducing new criteria for the formation of linearly independent direction vectors.  This revised method, 
which is the one used in this paper, is called “The Modified Powell Method” 



3) Obtaining the polynomial matrix ΨΨ(L) corresponding to the reduced or structural 
moving average form , and  the impulse-response functions (non orthogonalized). 
 

The impulse-response functions (non orthogonalized) are obtained as a result of 
the simulation2 of the response of the vector of variables yt to impulses in the 
innovations εε t. The specification "non orthogonalized" refers to the fact that innovations 
appear contemporaneously correlated among them, as shown by the variance-covariance 
matrix obtained in step (2). The response obtained as a result of the simulation is 
"variables prediction in t", which corresponds to the vector yt, obtained by means of the 
model in reduced autoregressive form of the equation [17], with "variables coefficients 
in t-i" estimated also in the step (2). The "variables in t-i", in this model 2, are generated 
from the prediction in t3, them updating at the end of every period with an input flow 
"incr var", that stores as lagged data (lags 1 to 4) for the following period the prediction 
and the variables with 1, 2 and 3 lags in this period, and an output flow "decr var" which 
eliminates the information stored previously. 
 

The impulse are the "innovations" εε t, that are made equal to 1 in the initial period 
for the corresponding variable of the vector yt, whereas they are made equal to zero for 
the remaining variables in this period and for all variables in the following periods. Three 
simulations are done, therefore, according to which of these three variables experiences 
the unitary initial impulse. Nevertheless, it is possible to carry out three simulations at the 
same time by using subscripts. The innovations are obtained as the product of "duration", 
which establishes the time that the innovation lasts (in this case, an initial impulse that 
then disappears) by the "magnitude" of the same innovation (in this case, which is the first 
version of the model 2, the "magnitude" is 1 for the variable that experiences the impulse 
and 0 for the others). 
 

From the impulse-response functions, we can obtain the matrix ΨΨ(L) 
corresponding to the moving average reduced form [13]: 

 
yt = ΨΨ(L) εε t + …                                                               [20] 

 
where other terms corresponding to constants and seasonal dummies have been omitted. It 
is just required to take into account that in ΨΨ(L), the term corresponding to the lag s, is 
composed by the elements of the impulse-response functions corresponding to the period 
s of simulation. In the case of our application to the labor market, the terms of ΨΨ(L) are 
3x3 matrices and their elements correspond to the response of each one of the three 
variables to each one of the three simulated impulses. 
 
4) Obtaining the matrix S = B0

-1, the structural autoregressive form, the structural 
moving average form, and the structural shocks.  

 
As previously exposed in section 2, pre-multiplying both members of the 

reduced autoregressive form [9] by B0, the structural autoregressive form [11] can be 
obtained and, vice versa, known the matrix S = B0

-1, it is possible to obtain [9] from 
[11], pre-multiplying both members of this equation by S. As the ut are standardized 

                                                             
2 See Hamilton (1994). 
3 Initially, its values are made equal to 0. 



structural shocks, not contemporaneously correlated to each other, their variance-
covariance matrix is the identity (E (ut ut´) = I) and εε t = S ut, then: 

 
E (εεt εε t´) = ΩΩ = S S´                                                                          [21] 

 
where ΩΩ is the variance-covariance matrix of the residuals εε t estimated in step (2). As ΩΩ  
is a 3 x 3 symmetric matrix, the equation [21] provides 6 conditions to identify the nine 
elements of S. The other three conditions, as it was exposed in the section 3.1, are 
obtained as implications of the theoretical model. These conditions are that a labour 
force shock does not have permanent effects on unemployment and vacancies, and that 
a reallocation shock does not have permanent effects on the vacancies/unemployment 
ratio. 
 

Since the model 2 corresponds to the reduced autoregressive form, we must 
consider that, according to the equation εε t = S ut,  an unitary value of one of the shocks 
ut is equivalent to a vector of innovations εε t  of magnitude equal to the respective 
column of the matrix S. Therefore, the matrix S that we look for will be formed by the 
values that  the variable "magnitude" takes in our model (of each innovation in each of 
the three simulations). 
 

The properties of the theoretical model refer to the values of u, v and v-u in the 
long term. As the variable "variables prediction in t” corresponds to the first differences 
∆(v-u), ∆u y ∆l, the model recovers v-u, u and l accumulating the prediction in the 
variable "accumulated prediction”. The level “previous accumulated prediction” is 
updated at the end of every period with the input flow “inc previous accumulated 
prediction”, that is equal to the prediction of the variables obtained in this period, and 
"accumulated prediction" is obtained by adding this prediction to the one accumulated 
previously (notice that this is required since the updating of the level variables at the 
end of every period is not registered in the output of the model until the following 
period, and therefore only the accumulated prediction in the previous period would be 
registered). "Accumulated prediction v" is then obtained adding the levels v-u and u. 
 

The numerical optimization is guided by the fulfillment of the aforementioned 
conditions, that are reflected in a vector of nine variables "payoff", maximized giving the 
same weight to all these variables. The first three are the square of the prediction in the 
final period (long term) of u and v, responding to an unitary labour force shock, and the 
square of the prediction in the final period of v-u responding to an unitary reallocation 
shock, all of them with negative sign. The other six are the square of the differences 
among all six non identical elements of the symmetrical matrices S S ' and ΩΩ, also with 
negative sign. Initially, in the second version of the model 2, we give initial unitary values 
to all the elements of "magnitude", and therefore to all the elements of S. After that, the 
process of optimization continues until are found the values of the above mentioned 
elements that approximates the payoff  sufficiently to its maximum possible value, which 
is zero.  That value is reached when ΩΩ = S S´, and the prediction of u and v in the final 
period responding to an unitary labour force shock, and the prediction of v-u responding 
to an unitary reallocation shock in that final period are all them zero. In the variables 
"cov" y "cov1" (with the corresponding subscripts) are respectively the elements of the 
matrix ΩΩ estimated in the step 2) and the elements of the product = S S’, obtained from 
the values of "magnitude" forming the matrix S. The variables “Time” and “FINAL 
TIME" are used to control that the payoff is calculated in the final period. 



 
Once the matrix S = B0

-1 has been obtained, pre-multiplying both members of the 
reduced autoregressive form [9] by B0, the structural autoregressive form [11] and the 
structural shocks ut =  B0εεt are obtained. The structural moving average form [14] can also 
be obtained from the moving average reduced form [20], obtained in step number 3), 
multiplying ΨΨ(L) by S, since, as εεt = S ut, we get:  
 

yt = ΨΨ(L) εεt + …  = ΨΨ(L) S S-1 εεt + ... = C(L) ut +...                [22] 
 
where C(L) = ΨΨ(L) S is the polinomial matrix corresponding to the structural moving 
average form. 

 
 
5) Obtaining the orthogonalized  impulse-response functions 

 
In the third version of model 2, the elements of "magnitude" are made equal to the 

values obtained for S in the previous step. As it was already explained, each of the 
parallel simulations thus carried out with the reduced autoregressive form corresponds to 
unitary values in the initial period of each one of the structural shocks. Therefore, the 
values obtained in the simulations of the variables u and l in "accumulated prediction", 
and of v in "accumulated prediction v", represent the orthogonalized impulse-response 
functions for these variables, recovered from their first differences. The specification 
"orthogonalized" refers to the fact that the structural shocks are not contemporaneously 
correlated among each other. 
 
6) Variance of the forecast error decomposition 
 

From the values, in each period, of u and l in "accumulated prediction" and of v 
in "accumulated prediction v" in the orthogonalized impulse-response functions of the 
previous step, we can obtain the decomposition of the variance of the forecast error 
"dfe" in the same period. This error is originated by the responses to each of the 
structural shocks. So, for the variables v, u and l, the percentage that supposes the 
square of their value in each of the three simulations is calculated in relation to the sum 
of these three squares. 
 

4. Conclusions 
 

The central topic of this work has been the comparison between SVAR and System 
Dynamics methodologies. With this purpose we have considered both, their theoretical 
foundations and the general procedures that they use, and we have applied them to the 
study of the labor market in Spain. 
 

Within the System Dynamics framework, we have adapted a labor market 
SVAR model, originally developed in the fields of economic theory and econometrics. 
This is a good example, in our opinion, of the high capacity that system dynamics has to 
"import" from other fields and methodologies. Since the model was already defined and 
formalized, the initial phases of the SD model construction have been omitted. The 
main effort has been done searching for the correspondence, in system dynamics, of the 
main formal concepts and procedures that appear in the SVAR model. 



To develop this SD version of the SVAR model, we have built two models using 
the VENSIM simulation environment. Each of these models corresponds to different 
phases of the process of the SVAR analysis. The lagged variables, essential in the SVAR 
analysis, are now treated as SD level variables. The calculation procedures have been 
similar to those of the original econometric SVAR analysis, although the analytical 
resolution of some of the steps of the problem has been done through simulation within 
the SD models. 

 
The results obtained (estimations of the parameters, impulse-response functions, 

decomposition of the variance of the forecast error) with the SD models reproduce 
faithfully those of the original application of the SVAR analysis. Likewise, the 
adjustment between the real series of the considered variables, and the predictions of the 
models, is good for the period of estimation. A possible extension of this research might 
study the ex-ante predictive capacity of these models beyond the period of estimation. 
On the other hand, the core of the SD models built is the reduced autoregressive form of 
the SVAR analysis. The responses to the structural shocks have been obtained 
transforming them into non orthogonalized innovations, by means of the corresponding 
matrix, which also has been estimated with the second one of these SD models. Another 
possible extension of our work might consist in the construction of a SD model directly 
from the structural autoregressive form. 
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