
OPTIMAL NEURAL FEEDBACK CONTROL

FOR CARBON TAX POLICY GAUGING IN

TRANSPORTATION

A. Alessandri,Æ C. Cervellera,ÆÆ and F. Grassia,ÆÆÆ

Æ Institute for Studies in Intelligent Systems and Automation,

ISSIA-CNR National Research Council of Italy, Via De Marini 6, 16149 Genova, Italy �

Phone: +39-10-6475611, Fax: +39-10-6475600, Email: angelo@ian.ge.cnr.it

ÆÆ Department of Communications, Computer and System Sciences, DIST

University of Genoa, Via Opera Pia 13, 16145 Genova, Italy

Phone: +39-10-3532983, Fax: +39-10-3532948, Email: cristiano.cervellera@dist.unige.it

ÆÆÆ Institute for Studies in Intelligent Systems and Automation,

ISSIA-CNR National Research Council of Italy, Via De Marini 6, 16149 Genova, Italy

Phone: +39-10-64751, Fax: +39-10-6475600, Email: �lippo@ian.ge.cnr.it

Abstract

The e�ects of carbon emissions have been the objective of an investiga-

tion that was based on the model of the nation-wide transportation system

with railway, waterway, and roadway. The dynamics of such a complex phe-
nomenon depends on a set of control variables (i.e., the percentage of carbon

tax on the fuel cost, the operational cost coverages, and growth rates of the

various transportation modes) that can be chosen in a suitable way so as

to minimize a given cost function (e.g., carbon emissions, public and private

costs, fuel consumption, etc.). This problem has been addressed by searching

for a feedback control law that can be approximated by means of the com-

bination of both Dynamic Programming and neural networks. Preliminary

simulation results with the afore-mentioned model are presented to demon-

strate the e�ectiveness of the proposed method.

Keywords: carbon taxation, optimal control, feedback, neural networks.

�N. Bianchi is kindly acknowledged for providing stock-ow diagram, model port-
ing from Cosmic to Matlab, debugging, and simulation comparisons.



1 Introduction

In recent years, much attention has been devoted to evaluate the impact of
carbon abatement policies on economy (see, for example, (Wirl, 1991; Nail et
al., 92; Ford, 1994)). A carbon taxation policy provides an emission reduction
but a�ects investment assets, technological change, and economic growth, which, in
turn, inuence the sources of emissions. Thus, the analysis of the questions is quite
diÆcult and models have been proposed to help in setting economic intervention
strategies (see, e.g., (Parry, 1999; Damania, 2000; Aronsson, 2001)).

The problem of determining a carbon tax policy by evaluating its e�ects on the
overall transportation system of a country is the objective of this work. A model
of the impact of the so-called green taxes on the transportation market has been
proposed in (Piattelli et al., 2002) and represents the starting point for devising a
control policy that is aimed at being optimal by minimizing suitable performance
indexes.

A computationally eÆcient design methodology turns out to be an essential tool
in decision making, particularly if the dynamic model is complex and a�ected by
exogenous inputs like, for example, transportation demand and cost of fuel. In such
cases, a closed-loop strategy is preferable as it allows to account for the capacity of
the economy governor to react in the presence of unpredicted, abrupt changes in the
values of the above-written inputs.

Unfortunately, most tools for optimization in economy applications allow one to
solve only open-loop control problems or are based on linearization procedures that
provide linear control strategies (see, for example, (Islam and Craven, 2001; Neck,
1999; Neck, 2001)). A di�erent approach has been followed with respect to the above-
mentioned optimization techniques as the optimal policy design is accomplished by
solving a functional optimization problem in an approximate way. More precisely, a
cost functional has to be minimized with respect to a sequence of decisions described
by feedback control functions. For example, in the discrete-time case, the cost is
related to the evolution of a system state over a �nite horizon of time stages, in
the presence of random disturbances of which we suppose to know the probability
density functions.

The \classic" algorithm for the solution of such kind of problems is Dynamic
Programming (Bellman, 1957; Bertsekas, 2000) (DP in the following). However, it
is known that the DP equations can be solved analytically only in simple cases,
or under special assumptions on the system and the cost function (typically, linear
system and quadratic cost).

For the general case we must look for approximate solutions. This leads to the
discretization of the state space, and to the need of approximating the cost-to-go
functions for the points that do not belong to such discretization. Unfortunately, the
necessity of dealing with grids of samples in the state space causes dimensionality
issues that have been faced in literature in di�erent ways, typically by recurring to
a simpler model or cost function (see, for example, (Yakowitz, 1982; Archibald et
al., 1997)), or by using more \powerful" approximating schemes (see, among others,
(Bellman et al., 1963; Johnson et al., 1993)).

In order not to incur an exponential growth of the computational requirements



(commonly known as \curse of dimensionality"), we employ neural networks for their
advantageous approximating properties (see (Haykin, 1999) for a detailed description
of many neural architectures and theoretical properties) and Montecarlo-like sam-
pling techniques (Bratley et al., 1987) for the various discretizations. In this way it
is possible to cope with the high-dimensional context of the carbon-tax model, and
actually solve the optimization problem. The experimental results, compared to a
�xed unoptimized policy, show the goodness of the method, and the advantages of
optimization.

The paper is organized as follows. Section 2 is devoted to the description of the
model used to apply a neural DP-based approach for the selection of the control
policy. Such method is presented in Section 3. The simulation results are illustrated
in Section 4. Finally, the conclusions are drawn in Section 5.

2 A model for the transportation system and car-

bon taxation

In this section, a brief description of the model proposed in (Piattelli et al., 2002)
is presented. The complexity of the system prevents from a complete discussion on
the overall model and the interested reader can refer to (Piattelli et al., 2002) for
details (see Fig. 1).

The objective of modelling consists in bringing together the knowledge on a
system in order to get a deeper understanding of the phenomena and provide support
for supervision and/or control. In the case study (Piattelli et al., 2002) regarding
the German economy, the complexity of the Transportation System (TS, for short)
is somehow tackled by introducing a description of the carbon tax impact on the
growth of the transportation market that is shared among railway, waterway, and
roadway. Each transportation mode relies on its own network, where trains, ships,
and trucks perform, respectively, depending on infrastructure investment, network
extension, and taxation policy. For the reader's convenience, the state variables,
control and exogenous inputs are shown in Tables 1, 2, and 3, respectively, with

the corresponding measurement units, where 1DM
4
= oneGermanMark , 1Y

4
=

one year , 1Mton
4
= 106t , and 1KKm

4
= 103Km .

Note that the cost of fossil fuel results from the sum of industrial price and
taxation, which depends on the country policy. The total cost of fuel determines
the fares of the various transportation modes. Moreover, for the sake of compactness,
let the fare cost functions be de�ned as follows. For the railway, the fare cost of
transportation is given by

FR(x1; u1) = [(Cf + x1)�R + CR0] (1� u1)

where Cf is fuel net cost in DM=m3, �R = 1:7 �105m3=(MtonKKm) is the mean
railway fuel consumption rate, CR0 = 50 � 106DM=(MtonKKm) is the amount of
�xed cost for railway transportation, and u1 is the public coverage of the operational
cost for railway ( u1 2 [0; 1] ).

The fare cost for waterway transportation is

FW (x1; u2) = [(Cf + x1)�W + CW0] (1� u2)



x1 carbon tax DM=m3

x2 transportation demand MtonKKm=Y
x3 railway network extension KKm
x4 railway transportation capacity Mton=Y
x5 number of train deliveries
x6 railway transportation amount MtonKKm=Y
x7 inland waterway network extension KKm
x8 inland waterway transportation capacity Mton=Y
x9 number of inland ship deliveries
x10 inland waterway transportation amount MtonKKm=Y
x11 roadway network extension KKm
x12 roadway transportation capacity Mton=Y
x13 number of truck deliveries
x14 roadway transportation amount MtonKKm=Y

Table 1: State variables with measurement units.

u1 operational cost coverage for railway
u2 operational cost coverage for waterway
u3 operational cost coverage for roadway
u4 yearly carbon tax rate 1/Y
u5 yearly railway growth rate 1/Y
u6 yearly waterway growth rate 1/Y
u7 yearly roadway growth rate 1/Y

Table 2: Input variables with measurement units.

Cf fuel cost DM=m3

r yearly transportation demand growth rate 1/Y

Table 3: Exogenus inputs with measurement units.
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Figure 1: Flow diagram of the model.

where �W = 1:3 � 105m3=(MtonKKm) is the mean waterway fuel consumption
rate, CW0 = 1:79 � 108DM=(MtonKKm) is the amount of �xed cost for waterway
transportation, and u2 is the public coverage of the operational cost for waterway
( u2 2 [0; 1] ).

For roadway transportation, the fare function has been taken equal to

FT (x1; u3) = [(Cf + x1)�T + CT0] (1� u3)

where �T = 4:1 � 105m3=(MtonKKm) is the mean roadway fuel consumption
rate, CW0 = 2:49 � 109DM=(MtonKKm) is the amount of �xed cost for roadway
transportation, and u3 is the public coverage of the operational cost for roadway
( u3 2 [0; 1] ).

2.1 Carbon tax

The carbon tax is accounted for by the simple equation

_x1 = x1 u4 (1)

where u4 is the yearly percentage rate of taxation.



2.2 Transportation demand

The transportation demand dynamics is described by

_x2 = x2 r (2)

where r is the yearly percentage of growth rate. r is usually a�ected by a noise.
For example, the trend of growth may be 2.7 % a year with random uctuations in
the range between -3 % and +3 %.

2.3 Railway transportation

The model of railway TS is composed of three di�erent subsystems, i.e., (i) network
extension (in KKm), (ii) the number of carrier deliveries, and (iii) capacity (in
Mton). On the basis of (Piattelli et al., 2002), railway capacity and network grow
according to the scheduled growth rate. Thus, the dynamics of railway network
extension and capacity are given by

_x3 = x3 u5 (3)

_x4 = x4 u5 (4)

respectively, where u5 is the yearly percentage of growth rate in railway transporta-
tion.

The variation in the number of train deliveries is represented by means of

_x5 =
x4
C1

(5)

where C1
4
= 360 t is the mean transportation capacity of a train.

The behavior of the transportation amount may be somehow related to the its
own \appeal" that depends mainly on the transportation demand but also on other
factors like, for example, extension of the network, capacity, number of carrier deliv-
eries, fuel cost, and transportation fare. Such a modeling paradigm in general case
studies has been proposed in (Senge, 1975). In our case, each of the aforementioned
variables provides a contribution to the attractiveness of the transportation mode
that may be expressed by the following dynamic equation (see, for details, (Piattelli
et al., 2002)):

_x6 = C2 x2

(
2 x3

x3 + x7 + x11
+

x4
x4 + x8 + x12

+
x5

x5 + x9 + x13

+
�R

�R + �W + �T
+

1"
1

FR(x1; u1)
+

1

FW (x1; u2)
+

1

FT (x1; u3)

#
FR(x1; u1)

)
(6)

where C2
4
= 0:87 is an adjustment coeÆcient. Roughly speaking, the transportation

amount grows as much as demand increases. Moreover, such variations depend on
the characteristics of the transportation mode, e.g., railway is as more attractive
as the network is larger, the capacity is bigger, and the number of train is more



numerous (we assume that it is proportional to the resulting load deliveries). As
outlined in (Piattelli et al., 2002), also the rate of fuel consumption reects the
attractiveness of the transportation mode, in the sense that consumers prefer to use
the high-consuming transportation means. However, a TS is more appealing if the
fare is lower. It is worth noting that the network is made more important than the
other contributions are by means of the selection of a parameter equal to 2 in (6)
(see (Piattelli et al., 2002)).

2.4 Waterway transportation

The model of the inland waterway TS is composed of four dynamic equation con-
cerning network, carriers, capacity, and transported quantity. The network changes
are modelled by using

_x7 = x7 u6 (7)

where u6 is the yearly percentage of waterway growth rate.
The dynamics of the transportation capacity is given by

_x8 = C4 x8 x10 (8)

where C4 = 0:5=KKm is a constant parameter. In other words, the transportation
capacity grows as more as the waterway transportation amount increases. This
relationship is quite reasonable as, unlike what cast for the railway model, the
waterway TS is not directly controlled by the Government and its evolution depends
on the market (see, for details, (Piattelli et al., 2002)).

The variation in the number of ship deliveries is represented by means of

_x9 =
x8
C3

(9)

where C3
4
= 980 t is the mean transportation capacity of a ship for inland navigation.

The attractiveness of waterway TS may be expressed like in (6), i.e.,

_x10 = C5 x2

(
2 x7

x3 + x7 + x11
+

x8
x4 + x8 + x12

+
x9

x5 + x9 + x13

+
�W

�R + �W + �T
+

1"
1

FR(x1; u1)
+

1

FW (x1; u2)
+

1

FT (x1; u3)

#
FW (x1; u2)

)
(10)

where C5
4
= 0:94 is an adjustment coeÆcient. The same comments on (6) in Section

2.3 apply to (10).

2.5 Roadway transportation

The dynamics of network, capacity, carrier deliveries, and transportation amount for
the roadway TS is given by a set of four equations similar to those of the waterway
TS.



The dynamics of the roadway network is

_x11 = x11 u7 (11)

where u7 is the percentage of roadway growth rate. The dynamics of the trans-
portation capacity resembles to that of the waterway one, i.e.,

_x12 = C7 x12 x14 (12)

where C7 = 1:0=KKm is a constant parameter. Like for the waterway TS dynam-
ics, the roadway transportation capacity grows as much more as the corresponding
transportation amount increases and depends on the transportation market.

The evolution in the number of truck deliveries may be modelled as follows:

_x13 =
x12
C6

(13)

where C6
4
= 3:8 t is the mean transportation capacity of a truck.

The attractiveness of this TS inuences the transportation amount like in (6)
and (10), i.e.,

_x14 = C8 x2

(
2 x11

x3 + x7 + x11
+

x12
x4 + x8 + x12

+
x13

x5 + x9 + x13
+

�T
�T + �W + �T

+
1"

1

FR(x1; u1)
+

1

FW (x1; u2)
+

1

FT (x1; u3)

#
FT (x1; u3)

)

(15)

where C8
4
= 1:074 is an adjustment coeÆcient.

2.6 Cost function for performance evaluation

Di�erent cost functions have been considered to assess the above-described (see, for
details, (Piattelli et al., 2002)). Such cost functions for a generic time interval from
0 to T > 0 are de�ned as follows:

J1
4
=
Z T

0
x14 dt : roadway transportation amount (in MtonKKm);

J2
4
=

Z T

0
(�ER x6 + �EW x10 + �ET x14) dt : CO2 emission (in m3), where

�ER = 48:1m3=(MtonKKm) , �EW = 33:4m3=(MtonKKm) , and �ET =
164:0m3=(Mton KKm) are the CO2 emission rates for railway, waterway,
and roadway transportation mode, respectively;

J3
4
=
Z T

0
(�R x6 + �W x10 + �T x14) dt : fuel consumption (in m3);



Figure 2: Block diagram of the model (grey and white boxes correspond to dynamic
and algebraic mappings, respectively).

J4
4
=
Z T

0
(PR x6 + PW x10 + PT x14) dt : pollution cost (in DM), where PR =

11:5 �106DM=(MtonKKm) , PW = 3:5 �106DM=(MtonKKm) , and PT =
50:1DM=(MtonKKm) are the pollution cost rates for railway, waterway, and
roadway transportation mode, respectively;

J5
4
=
Z T

0

h
(PR + ((Cf + x1)�R + CR0) u1 � �R x1) x6

+(PW + ((Cf + x1)�W + CW0) u2 � �W x1) x10

+(PT + ((Cf + x1)�T + CT0) u3 � �T x1) x14
i
dt : carbon tax net public cost

(in DM);

J6
4
=
Z T

0
[FR(x1; u1) x6 + FW (x1; u2) x10 + FT (x1; u3) x14] dt : user cost (DM);

J7
4
= J4 + J6 : pollution and user cost (DM);

J8
4
= J5 + J6 : total (public and user) cost (in DM);

J9
4
= J5 +

Z T

0
(IR x6 + IR x10 + IT x14) dt : cost for transportation inci-

dents (in DM), where IR = 1:2 � 106DM=(MtonKKm) , IW = 0:01 �
106DM=(MtonKKm) , and IT = 17:8 � 106DM=(MtonKKm) are the in-
cident cost rates for railway, waterway, and roadway transportation mode,
respectively.



J1 roadway transportation amount MtonKKm
J2 CO2 emission m3

J3 fuel consumption m3

J4 pollution cost DM
J5 carbon tax net public cost DM
J6 user cost DM
J7 pollution and user cost DM
J8 total (public and user) cost DM
J9 cost for transportation incidents DM

Table 4: Cost functions with measurement units.

Table 4 summarizes the above-de�ned cost functions.

2.7 Discretization

A pictorial representation of the overall model is shown in Fig. 2. Equa-
tions (1){(14) have been discretized by using a simple Euler's method with sam-
ple time �T equal to Y=� , where � 2 N , � � 1 , the number of samples
in which the unit time Y is divided. The complete model includes 16 aux-
iliary state variables �i(t) , i = 1; 2; : : : ; 16 . Thus, we will refer to a state

vector xk
4
= col fcol [xi(k�T ) ; i = 1; 2; : : : ; 14] ; col [�i(k�T ) ; i = 1; 2; : : : ; 16] g,

input vector uk
4
= col [ui(k�T ) ; i = 1; 2; : : : ; 7] , and disturbance vector �

k

4
=

col [r(k�T ); cf(k�T )] .
In the following, for the sake of compactness, let hp(x; u) be the integrand of the

corresponding cost function Jp , p = 1; 2; : : : ; 9 , i.e., Jp
4
=
Z T

0
hp(x; u) dt . Moreover,

it is useful to re-state the system in terms of years of evolution. Speci�cally, since
a year corresponds to the evolution of the system for � temporal stages, we can

de�ne ~xt
4
= x�t, as the new state vector.

If we suppose that the input vector and the disturbance vectors remain the same
during a whole year, we can write the new state equation as

~xt+1 = ~f(~xt; ~ut; ~�t)

where ~ut and ~�t are the input vector and the disturbance vector of the t-th year, and
~f keeps track of the evolution of f during the � stages that cover one year. Thus,
in order to minimize the cost indexes during the whole year, we can de�ne the new
functions

~h
(p)
t (~xt; ~ut; ~�t) =

�X
j=0

h(p)(x� t+j; ~ut; ~�t) ; p = 1; 2; : : : ; 9

Therefore, the cost function for the whole horizon can be written, for p = 1; : : : ; 9,
as

~J (p) =
T�1X
t=0

~h
(p)
t (~xt; ~ut; ~�t) :



3 A Dynamic Programming scheme for optimiza-

tion

As we have de�ned the state vector, the input vector and the disturbance vector,
we can state the optimization problem in the following way:

Problem P

Find the optimal control law �Æ = col(�Æ0; : : : ; �
Æ
T�1) that minimizes

F (p)(�) = E
~�

~J (p)(~x0; �; ~�)

where ~x0 is a given initial state and ~�
4
= col(~�

0
; : : : ; ~�

T�1
), subject to the constraints

~ut = �
t(~xt) 2 Ut; t = 0; : : : ; T � 1

and
~xt+1 = ~ft(~xt; ~ut; ~�t); t = 0; : : : ; T � 1 :

We de�ne the feasible space X̂t for the t-th state space as the set of all points that
can be actually reached from year t � 1 by applying all the possible input vectors
~ut�1 2 Ut and all the possible random vectors ~�

t�1
2 Dt:

X̂t
4
=

n
~xt = ~f(~xt�1; ~ut�1; ~�t�1); ~xt�1 2 X̂t�1; ~ut�1 2 Ut�1; ~�t�1 2 Dt�1

o
X̂0

4
= f~x0g

As already said, the well known Dynamic Programming equations are the main
method of solution for problems like Problem P. Anyway, as we are not under \LQ"
hypotheses, we have to solve them numerically.

In order to do so we discretize each feasible space in the most uniform way by L
points, which form the following sets

XtL =
n
~x(l)t 2 X̂t : l = 1 : : : ; L

o
; t = 1 : : : ; T � 1

For notational convenience, in the following we will omit the superscript p. Let us
now write, for stage T � 1:

JÆT�1(~x
(l)
T�1) = min

~u
T�1

2UT�1

E
~�
T�1

n
~hT�1(~x

(l)
T�1; ~uT�1; ~�T�1)

+~hT [
~f(~x

(l)
T�1; ~uT�1; ~�T�1)]

o
; ~x(l)T�1 2 XT�1;L

Once we have obtained the L pairs [~x
(l)
T�1; J

Æ
T�1(~x

(l)
T�1)], we can approximate the cost-

to-go function JÆT�1 for the whole XT�1;L by means of a neural network having the

structure ĴT�1(~xT�1; wT�1), where wT�1 2 R
K is the vector of the parameters of the

network.



Speci�cally, we obtain the optimal parameter vector wÆT�1 by minimizing the
empirical risk in this way

wÆT�1 = arg min
w
T�1

LX
l=1

h
JÆT�1(~x

(l)
T�1)� ĴÆT�1(~x

(l)
T�1; wT�1)

i2

By the means of the newly obtained ĴT�1(~xT�1; w
Æ
T�1), we can solve the DP equa-

tions for stage T � 2, i.e., we compute

�JÆT�2(~x
(l)
T�2) = min

~u
T�2

2UT�2

E
~�
T�2

n
~hT�2(~x

(l)
T�2; ~uT�2;

~�
T�2

)

+ĴT�1[~f(~x
(l)
T�2; ~uT�2;

~�
T�2

); wÆT�1]
o
; ~x(l)T�2 2 XT�2;L

This time �JÆT�2 is an approximation of the real JÆT�2, due to the fact that we use

the neural network ĴT�1 in the DP equation, instead of the real JÆT�1 (which is
unknown).

Once again, we can approximate �JÆT�2 by a new neural network ĴT�2(~xT�2; wT�2).
The optimal parameter vector wÆT�2 is given by

wÆT�2 = arg min
w
T�2

LX
l=1

h
�JÆT�2(~x

(l)
T�2)� ĴÆT�2(~x

(l)
T�2; wT�2)

i2
:

If this procedure is repeated for t = T � 3; : : : ; 1, we obtain \o�-line" all the neural
network approximations Ĵt(~xt; wt) that can be used for the \on-line" minimization of
the cost. Thus, in general, at a given year t and for a given state x̂t, the approximate
optimal control ûÆt = �̂Æ

t (x̂t) is given by

ûÆt = arg min
~u
t
2Ut

E
~�
t

n
~ht(x̂t; ~ut; ~�t) + Ĵt+1[~f(x̂t; ~ut; ~�t); w

Æ

t ]
o

and the new state vector is computed by

x̂t+1 = ~f(x̂t; û
Æ

t ; �̂t)

where �̂
t
is the actual random disturbance acting on the system \on-line".

The discretization issue deserves a comment. In fact, the key for the success of
the neural DP method is that the \training sets" Xt;L for the various networks must
grow \moderately" with the dimension d of the state vector.

It is well known that the \classic" choice of uniform discretization of each com-
ponent of the state vector in the same number of levels does not satisfy this require-
ment, as it leads to an exponential growth of L with the dimension d (\curse of
dimensionality").

Montecarlo methods can be applied in order to generate sequences of points
with L that does not depend \structurally" on d. In fact it is possible to randomly
extract points with uniform probability, in order to have sequences of any desired
length L, for each dimension d. Of course, we still must expect some dependency of
L on d, since in general it is likely that higher-dimensional functions require bigger
training sets in order to be approximated with the same level of accuracy (see, for
a discussion, (Cervellera, 2001)).



4 Numerical results

The optimization method has been tested in simulations corresponding to the evo-
lution of the model for eight years (T = 8 ). The chosen cost index to be minimized
is J8 , as it is one of the most representative and important. The kind of approxi-
mators employed is feedforward one-hidden layered neural networks with sigmoidal
activation function, i.e.,

Ĵt(~xt; wt) =
�X
i=1

cit�(~x
>�it + �it)

where � is the hyperbolic tangent.
The number of neural units � used in the tests is 20 for each stage t, and the

number of points used for the discretization of the various feasible sets is L = 2000.
Such points were extracted randomly by using a uniform distribution.

The growth of the transportation demand r has been taken constant at every
time stage and equal to 2:275% per year. A random perturbation of the fuel price
cf has been considered, by assuming that the price can change every new year by
a value in a range of �50% of the price of the �rst year. Such perturbation are
modeled as random variables with uniform distribution. In order to approximate the
expected value in the DP equations, such random variables have been discretized
in 10 equispaced values, on which the cost-to-go is averaged and then the minimum
computed.

In order to test the goodness of the \on-line" closed-loop solutions, three di�erent
sequences of disturbances have been chosen, starting from the same initial point ~x0,
and the cost given by the DP method has been compared to the cost corresponding
to the real policies applied in 1992, here kept constant for the 8 years. ~x0 has been
chosen according to the available data on the German economy for the year 1992.

Four di�erent \on-line" disturbance sequences have been used, in order to show
the advantages of the closed-loop control system. Such sequences are displayed
in Table 6. For such random inputs, Fig.s 3-5 show the comparison between the
closed-loop neural policies and the 1992 \real," �xed policies.

Note that the neural policy produces a lower cost than the 1992 �xed policy in
all the simulation runs. For a better understanding of the results, Table 6 shows a
comparison of the various �nal cost values at the end of the 8-th year.

The comparison of Fig.s 3 and 4 suggests that the oscillating behavior of the fuel
price may be tackled by pursuing the expansion of the waterway TS that is obtained
by a higher cost coverage and an increase of the network growth (see the plots of u3
and u6, respectively). Note that the carbon tax rate u4 remains constant and equal
to 0.05 (i.e., 5.0 % increment of taxation per year), which appears in accordance
with the conclusions of (Piattelli et al., 2002). Of course, the results change with
the selection of a di�erent cost function.



~�
(1)

col(0,0,0,0,0,0,0,0)

~�
(2)

col(.5,-.5,.5,-.5,.5,-5,.5,-.5)

~�
(3)

col(0.45,-0.27,0.11,-0.01,0.39,0.26,-0.04,-0.48)

Table 5: \On-line" random sequences.

Random Sequence 1992 Policy Closed-loop Policy Di�erence (saving)

~�
(1)

6:6850 � 1011 DM 6:6634 � 1011 DM 2:16 � 109 DM

~�
(2)

6:4462 � 1011 DM 6:4258 � 1011 DM 2:04 � 109 DM

~�
(3)

6:4551 � 1011 DM 6:4314 � 1011 DM 2:37 � 109 DM

Table 6: Comparison of the �nal costs (i.e., for the 8-th year).
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Figure 3: Neural control actions, disturbance, (on the left) and cost function h8 (on

the right) for ~�
(1)
.
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Figure 4: Neural control actions, disturbance, (on the left) and cost function h8 (on

the right) for ~�
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.

1 2 3 4 5 6 7 8
−0.1

0
0.1

u
1

1 2 3 4 5 6 7 8
0

0.5

1
u

2

1 2 3 4 5 6 7 8
0

0.5

1
u

3

1 2 3 4 5 6 7 8
0

0.05

0.1
u

4

1 2 3 4 5 6 7 8
0

0.05
u

5

1 2 3 4 5 6 7 8
0

0.05
u

6

1 2 3 4 5 6 7 8
0

0.05
u

7

1 2 3 4 5 6 7 8
−0.5

0
0.5

ξ

Year
1 2 3 4 5 6 7 8

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8
x 10

11

[ DM ]

Year

h
8
 (1992 Policy)               

h
8
 (Closed−loop neural control)
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5 Conclusions

An approach to the design of optimal feedback control laws has been presented.
This method relies on the combination of both dynamic programming and neural
networks. Neural networks are used as approximators of the solution of the DP
problem associated with a general discrete-time nonlinear system.

The generality of such approach has allowed us to address the problem of �nding
closed-loop control policies that minimize a given cost function for a complex model
of a nation-wide transportation system, with railway, waterway, and roadway. It is
worth noting that the model is composed of 30 state variables. Preliminary simu-
lation results con�rm the e�ectiveness of the method and its potential as decision
support tool for policy making.
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